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The hypersphere model is a simple one-parameter model of the potential energy landscape of
viscous liquids, which consists of a percolating system of hyperspheres of equal sizes randomly dis-
tributed in R3N , where N is the number of particles. We study random walks within overlapping
hyperspheres in 12 to 45 dimensions, utilizing an algorithm for on-the-fly placement of the hyper-
spheres in conjunction with the kinetic Monte Carlo method. We find behavior typical of viscous
liquids; thus decreasing the hypersphere density (corresponding to decreasing the temperature) leads
to a slowing down of the dynamics by many orders of magnitude. The shape of the mean-square
displacement as a function of time is found to be very similar to that of the Kob-Andersen binary
Lennard-Jones mixture and the Random Barrier Model, which predicts well the frequency-dependent
fluidity of nine glass-forming liquids of different chemistry [Bierwirth et al., Phys. Rev. Lett. 119,
248001 (2017)].

I. INTRODUCTION

Experimental studies[1–7] of the dynamics of glass-
forming liquids suggest that there might exist a generic
α-relaxation in viscous liquids sufficiently close to the
glass transition. Specifically, one has searched for
universalities[8] in the linear-response properties probed,
e.g., by the frequency-dependent dielectric loss [9], shear
or bulk moduli [10–12], or specific heat [13, 14]. One sug-
gested such universality is the conjecture that the high-
frequency loss varies with frequency ω as ω−1/2[1, 2, 15–
21].

Another more recently suggested possible universality
refers to the random barrier model (RBM). Using ex-
perimental frequency-dependent shear-modulus data it
was demonstrated[7] that the real part of the frequency-
dependent fluidity (inverse dynamic viscosity) for nine
glass-forming liquids of different chemistry is well de-
scribed by the RBM. For a crystallization-resistant ver-
sion of the Kob-Andersen binary Lennard-Jones mixture,
long molecular dynamics simulations demonstrated[22]
that the master curve for the mean-square displacement
(MSD) at low temperatures is also well fitted by the RBM
prediction.

The RBM was originally proposed for ac conduction in
disordered solids modeled as a random walk on a cubic
lattice with identical site energies and random energy
barriers for nearest-neighbor jumps[23, 24]. Thus the
RBM is based on a three-dimensional potential energy
landscape that is a lot simpler than the high-dimensional
landscapes of viscous liquids. In such liquids, the poten-
tial energies of the inherent structures (local potential
energy minima, corresponding to the lattice sites of the
RBM) are known to have a broad distribution[25–27].
This makes it puzzling that the RBM describes the data
so well, since it is characterized by identical site energies.
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In this paper, we study a simple model of the constant-
potential-energy hypersurface Ω defined in configuration
space as follows

Ω = {(r1, ..., rN ) ∈ R3N | U(r1, ..., rN ) = U0} . (1)

Here U0 denotes the constant potential energy, N the
number of particles, and U(r1, ..., rN ) the potential en-
ergy as a function of particle coordinates r1, ..., rN .
Samuelsen et al.[28] have proposed a simple one-

parameter toy model of Ω, which we will refer to as
the “hypersphere model”. The hypersphere model is
defined[28] as the surface of a percolating system of
equally sized hyperspheres centered on independently
and randomly distributed points in a d-dimensional hy-
percube with periodic boundary conditions. Note that
this model has no reference to the physical spatial di-
mension d = 3.
One motivation for studying this model is that

Samuelsen et al. found dynamics very similar to the
RBM and the Kob-Andersen mixture when applying
NVU dynamics on the hypersphere model. NVU dy-
namics is defined[29] by geodesic motion on Ω and has
been shown[30] to be equivalent to NVE dynamics in the
thermodynamic limit.
A second motivation for studying the hypersphere

model originates in the theory of strongly correlating
liquids. It has been shown[31] that the reduced-unit

constant-potential-energy hypersurface (denoted Ω̃) of
a strongly correlating system is invariant along the so-
called isomorphs in the density-temperature thermody-
namic phase diagram, which are defined as curves of
constant excess entropy (the configurational adiabats).
Along these curves, static and dynamic correlation func-
tions are invariant when expressed in reduced units[31].
In a strongly correlating system (an “R-simple” sys-
tem), the virial and the potential energy correlate better
than 90% in their thermal-equilibrium fluctuations in the
NVT ensemble[32]. Generally, van der Waal bonded and
metallic liquids are strongly correlating [14, 33].
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As shown in Ref. 31 all strongly correlating liquids
have isomorphs to a good approximation. There it is
also shown that the existence of isomorphs in the phase
diagram, along which the Ω̃ hypersurface is (almost) in-
variant, implies that for any strongly correlating liquid
there exists a single-parameter family of Ω̃ hypersurfaces.
It has moreover been argued[34] that the family of Ω̃ hy-
persurfaces is approximately the same for all strongly
correlating simple liquids. Thus, there might exist a one-
parameter model of a constant-potential-energy hyper-
surface, from which the dynamics of most or all R-simple
liquids can be derived. Our conjecture is that the hyper-
sphere model might approximate such a surface.

We use a slightly modified version of the hypersphere
model proposed by Samuelsen et al. by letting the dy-
namics be defined by a random walk on the inside of the
hypersphere model. Thus we redefine Ω to be the part
of configuration space considered,

Ω = {(r1, ..., rN ) ∈ R3N | U(r1, ..., rN ) ≤ U0}. (2)

This is similar to that of the potential energy landscape
ensemble in Refs. 35 and 36 (with a different dynamics).
Increasing the number of dimensions of the hypersphere
system forces the random walk towards the surface of
the hyperspheres, thus approximating a random walk on
the surface of the hypersphere model. Using an upper
limit makes things much simpler computationally, how-
ever, since no additional calculations are needed to guar-
antee the random walker actually is on the surface.

Through theoretical considerations of an ordinary po-
tential energy landscape we construct in Sec. II the hy-
persphere model. As the number of dimensions increases,
the ratio between the volume of a hypersphere of radius
r and a hypercube with sidelength 2r decreases at such
a pace that too many spheres are needed in order to fill
a hypercube to the required densities, thus rendering it
impossible to simulate in high dimensions. In order to
circumvent this problem - to a certain degree - we will in
Sec. III present an algorithm for generating spheres on
the fly. The algorithm is similar to that of Ref. 37 by
generating spheres only when and where they are needed
for the random walks. This also means that we avoid the
use of periodic boundary conditions and thus any finite-
size effects caused by these. Using this algorithm, we
performed random walks in the 12-, 18-, 30-dimensional
hypersphere model. Details about the random walks and
its inherent dynamics are described in Sec. IV. Since
the aim is to study diffusion at time scales way beyond
what is possible using random walks, we in Sec. V im-
plement inherent dynamics using the kinetic Monte Carlo
method[38]. We also implement two other optimization
methods and show that the resulting inherent dynamics
simulations provide similar results to that of the random
walks in the 18- and 30-dimensional hypersphere model.
In Sec. VI we present the results of the kinetic inherent
dynamics simulations. Here, we study the diffusion coef-
ficients in the 18-, 21-, 24-, 27- and 30- dimensional hy-

persphere model. It is also shown that time-temperature
superposition is satisfied at low densities (corresponding
to low temperatures) in the 33-, 42- and 45-dimensional
hypersphere model, and that these are also well fitted
by the RBM[24] and thus also to the experimental data
highlighted in Ref. 7. Finally, we discuss some problems
of the model and why, even given those problems, the
hypersphere model and the RBM provide similar results
at low densities.

II. THE HYPERSPHERE MODEL

Local minima of the potential-energy function are
called inherent structures.[39] The set of configurations
in the potential energy landscape that maps to a given
inherent structure under a steepest gradient descent is
called the basin of attraction of the inherent structure
in question.[39] It was stipulated by Goldstein[40] that
below a certain crossover temperature, liquid dynamics
is mainly governed by vibrations interspersed by transi-
tions between basins of the potential-energy landscape.
Numerical evidence of this was later found by Schrøder
et al.[41] by the use of Newtonian Molecular Dynamics.
At low temperatures it has been observed[42] that the

MSD between the inherent structure and a typical liq-
uid configuration in its basin of attraction reflecting har-
monic vibrations around the inherent structure. The po-
tential energy at a typical liquid configuration can there-
fore be approximated by a harmonic potential:

U(x1, x2, ..., x3N ) ≈ Uq+

3N∑
i,j=1

1

2
cq,ij(xi−qi)(xj−qj) (3)

in which q = (q1, q2, ..., q3N ) are the coordinates of the
inherent structure and Uq its potential energy. Inserting
the harmonic potential U into Eq. (2) yields a hyperel-
lipsoid centered at q in configuration space.
In order to arrive at the hypersphere model, we impose

three properties on the system, which all are significant
simplifications compared to the potential-energy land-
scape of, for example, the Kob-Andersen binary Lennard-
Jones liquid:

1. The potential energy around the inherent struc-
tures is assumed to be isotropic (cq,ij in Eq. (3)
proportional to the identity matrix, for each q).
Thus, the hyperellipsoids become hyperspheres.

2. The curvature (determined by the cq,ij ’s) and the
potential energy at the inherent structures are as-
sumed to be the same for all the inherent structures
across the potential energy landscape. That is Uq

and cq,ij each have identical values at all inherent
structures. This means that all spheres have the
same radius.

3. Inherent structures are assumed to be randomly
distributed in configuration space, without any cor-
relations.
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By imposing these properties, the model becomes a one-
parameter model since the only parameter is the reduced
density of hyperspheres. The reduced density is defined
according to Ref. 43: If Vd(r) is the volume of a sphere of
radius r in d dimensions, the reduced density η is given
by

η = ϱVd(r) (4)

with ϱ being the number density of spheres in Rd. Physi-
cally, the reduced density is the sum of all sphere volumes
divided by the total configuration-space volume. Note
that due to overlaps this is not the volume fraction, ϕ, of
the hypersphere system. These two numbers are related
by

ϕ = 1− e−η (5)

in any number of dimensions[44]. Notice that η ≪ 1
implies ϕ ≈ η. Since we mainly simulate at very low
densities (η < 0.01221), the difference between ϕ and η
becomes negligible. We avoid simulating too low densi-
ties, i.e., near the percolation threshold, since diffusion
requires a percolating cluster of hyperspheres.

III. SPHERE-GENERATING ALGORITHM

The simplest way to generate a system of hyperspheres
is to randomly distribute spheres inside a hypercube with
periodic boundary conditions. If the hypercube is too
small, however, the random walk might be able to enter
the same neighbouring sphere from two or more different
places of the current sphere. To avoid this problem, a
cube length greater than 4r is needed (r is the radius of
the spheres). Thus, just to reach the percolation thresh-
old ηc (which approaches 2−d from above as the number
of dimensions increases[43]), a minimum of H spheres are
required:

ηc ≈
1

2d
=

HVd(r)

(4r)d
⇔ H = 4d

Γ(d2 + 1)

π
d
2

1

2d
. (6)

In 30 dimensions this amounts to more than 1013 spheres,
which is computationally impossible to achieve. In order
to circumvent this, we use an algorithm similar to that
of Ref. 37 that generates spheres on-the-fly. Appendix A
demonstrates that the algorithm works as intended, i.e.,
it generates a system of spheres centered on randomly
and independently distributed points of point density ϱ
within the desired volume (a Poisson point process).

The algorithm works by only adding spheres to the
subset of Rd that is relevant for the random walk (the
red and light grey areas in Fig. 1). The only spheres that
are relevant are the ones that have been visited during
the random walk and all of their neighbours. Since the
centers of overlapping spheres can be no more than 2r
apart, the relevant subset of Rd must be a union of d-
balls of radius 2r. Each time the random walk enters a

new sphere that has not previously been visited, the set
of neighbours to this sphere is determined once and for all
- all being in the d-ball of radius 2r centered at the newly
visited sphere. This means that spheres can neither be
added nor removed to/from this volume after the first
visit (Fig. 1). Since all spheres have been assigned to
this volume, we call this volume the assigned volume.
In order to add neighbors to a new sphere, we utilize

that the number of neighbours to any given sphere is
Poisson distributed with mean 2dη (see Appendix A 5b).
Pick a number k from this distribution and place k ran-
dom points in a d-ball of radius 2r (Fig. 1(b)). By re-
moving the points, e.g., point g in Fig. 1(b) that lies in
the assigned volume, we can ensure that the number of
neighbors to each sphere is still Poisson distributed with
mean 2dη. That this is the case is shown in Appendix
A. A more detailed algorithm is also exemplified in the
Appendix. Using this algorithm the relevant subset of
Rd expands each time the random walk enters a sphere
that has not been visited before.

IV. RANDOM WALKS

The random walks were initiated from a random point
inside a hypersphere (that already had its neighbors gen-
erated). If a walker tried to exit the boundary of the cur-
rent sphere, it was checked whether the random walker
entered a neighbouring sphere. If so, neighbours were
generated to the new sphere as described above before
allowing the random walk to continue (Fig. 1). If not,
the step was not performed but the time counter was
still increased. In order to equilibrate the systems, ran-
dom walks were performed for the same amount of time
as the production runs.
The results of the random walk should be independent

of step length and only depend on time. In order to
achieve this, we note that the MSD for a random walk in
Rd is given by

< (∆r)2 >= Na2 (7)

where N is the number of steps and a is the step length.
By defining the time of the random walk as being pro-

portional to the number L defined by N = L/a2, the
random walk as a function of time becomes independent
of the step length. For a random walk in a system of
hyperspheres, at short time scales one expects behavior
similar to that of a random walk in Rd. It therefore seems
reasonable that the time after i random walk steps should
be given

t(i) = ka2i (8)

where k is the constant of proportionality between the
time and L. For all random walks we put k = 1.
In Fig. 2 we show the MSD for a random walk in the 12-

dimensional hypersphere model at five reduced densities.
The dynamics slow down in a manner similar to what is
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FIG. 1. Sphere-generating algorithm. Spheres are represented by dark grey circles, and random walks are represented by the
yellow line. (a) Since the random walk starts from a random point in sphere a, all its neighbors have already been determined
(spheres b, c and d). The centers of these were all randomly distributed in a sphere of radius 2r (the red area). (b) The random
walk has just entered sphere b for the first time. Random neighboring spheres are now determined for sphere b, leading to
points e, f , and g. (c) Since sphere a already has had all its neighbors determined, the point g is removed. The spheres e and
f are then added to the system of spheres, and the random walk is allowed to continue until it reaches a previously unvisited
sphere (sphere d), at which point the procedure is repeated.
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FIG. 2. The MSD for random walks in the 12-dimensional
hypersphere model at five different reduced densities. Each
curve is averaged over 1000 random walks of step length a =
0.02. The black dashed lines have slope unity, corresponding
to diffusive behavior.

typically observed for supercooled liquids: at long times
there is a diffusive regime, separated from the short-time
dynamics by a plateau that grows in extent with decreas-
ing reduced hypersphere density, corresponding to de-
creasing temperature. The relationship between reduced
density and temperature is discussed further below.

Random walk simulations like these take a very long
time to perform due to the large number of necessary
random walk steps. Since the aim is to study diffusion
at time scales way beyond what is possible using random
walks, we switch to its inherent dynamics characterized
by ignoring the vibrational motion in the basins of at-
traction. This can be achieved by quenching the poten-
tial energy to its local minima and using these minima
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(
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>
Random walks
Inherent dynamics

FIG. 3. Comparison between the MSD for the random
walk and its corresponding inherent dynamics in the 12-
dimensional hypersphere model. The black dashed lines have
slope unity.

(the inherent structures) as the current position when
calculating the MSD.[41] The MSD of the inherent dy-
namics will therefore only relay information about tran-
sitions between basins. Since the center points of the
spheres correspond to the inherent structures, the inher-
ent dynamics is easily found for the random walker in the
hypersphere system.

In Fig. 3 we see that the MSD for the random walk
and its inherent dynamics are similar at long time scales.
It therefore becomes possible to determine the diffusive
dynamics without referring to the random walk itself.
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V. KINETIC MONTE CARLO INHERENT
DYNAMICS

In order to simulate the inherent dynamics without
reference to the random walk itself, we implement the
kinetic Monte Carlo simulation method[38]. Instead of
waiting for a transition to happen during a random walk,
the kinetic Monte Carlo method draws a time to transi-
tion ∆t using the probability Wi of jumping from sphere
i to one of its neighbours. To determine Wi we let
Lij denote the distance between two neighbouring d-
dimensional spheres, i and j. The radius hij of the ”in-
tersecting” (d−1)-dimensional sphere is given by (Fig. 4).

hij = (r2 − L2
ij/4)

1/2 . (9)

As shown in Appendix B, for the relevant values of hij ,
the probability of transitioning from sphere i to sphere j
is given by

Γij = Γ0Lij (hij/r)
d−2

. (10)

The constant of proportionality Γ0, which only depends
on the number of dimensions, can be found by comparing
the MSD for the inherent dynamics of the random walk
and the kinetic method at a single reduced density; Wi

is then defined by

Wi =
∑
k

Γik, (11)

where k are the neighbours of sphere i. It should be noted
that this probability does not take overlap between in-
tersecting (d− 1)-dimensional spheres of neighbours into
account. However, due to the low densities (see the re-
lation between reduced density η and volume fraction ϕ
in Eq. 5) and high number of dimensions, we assume
that these overlaps are few and have minimal effect on
the results.

The time to transition ∆t is given by

∆t = − 1

Wi
ln ζ (12)

r

Lij/2

hij

i j

FIG. 4. Illustration of the radius hij of the intersecting (d−1)-
dimensional sphere between the two neighbouring spheres i
and j.

where ζ is randomly uniformly distributed between 0 and
1.[38]
The following further optimizations were implemented.

First, the previously visited spheres and their neighbors
are deleted along the way. Unless otherwise mentioned,
only the last 1000 unique previously visited spheres are
stored. Their neighbors are also stored in a correspond-
ing neighbor list. The neighbor list of the last 999 unique
previously visited spheres can then be used to create a
complete list of spheres when a new sphere is entered.
Combining this with the spheres generated by the sphere-
generating algorithm completes the neighbours for the
newly visited sphere and ensures that the neighbours for
all of the 1000 stored unique visited spheres remain con-
stant. Secondly, due to the increasing amount of jumping
back and forth between the spheres when lowering the
density toward the percolation threshold, we recall (in-
stead of recalculating) the jump probabilities, Wi, etc.,
when reentering a previously visited sphere. These opti-
mizations are only important at low densities. In fact, the
recalling optimization results in longer simulation time
at the higher densities, since the same spheres are rarely
visited many times.
In Fig. 5 we show that the MSD of the inherent dynam-

ics of the random walk and the fully optimized kinetic
Monte Carlo inherent dynamics provide similar results in
the 18-dimensional hypersphere model[45]. The reduced
densities are determined in terms of the average number
of neighbours ⟨Nb⟩ to a single sphere (see Eq. A14):

⟨Nb⟩ = 2dη ⇔ η = ⟨Nb⟩2−d ≈ ⟨Nb⟩ηc, (13)

Recall that ηc also denotes the percolation threshold.
In Fig. 6 we show the MSD as a function of time for

the inherent dynamics of the 30-dimensional hypersphere
model at very low reduced densities, corresponding to low
temperatures in a real system[46]. It is possible to run
simulations in higher dimensions, but here it becomes
harder to attribute a time scale to the simulations. This
is due to the lack of knowledge of how Γ0 scales with the
number of dimensions. The average number of neigh-
bours to a single sphere creates a practical upper bound
on the reduced density depending on the number of di-
mensions. Likewise, the lower the reduced density, the
longer a random walk is needed in order to compare the
results with the kinetic Monte Carlo method. Thus, there
exists a natural limitation to the number of dimensions
at which we can compare diffusion coefficients for the
random walks.

VI. RESULTS

A. Diffusion coefficients

In Fig. 7 we plot the diffusion coefficient D as a
function of the average number of neighbors ⟨Nb⟩ for
d = 18, 21, 24, 27, 30.
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FIG. 5. Comparing the MSD of the inherent dynamics using the random walk (symbols) and the kinetic Monte Carlo method
(full lines) in the 18-dimensional hypersphere model.
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FIG. 6. Comparing the MSD of the inherent dynamics using the random walk and the kinetic Monte Carlo method in the
30-dimensional hypersphere model. The reduced densities have the same proportionality to the 30-dimensional percolation
threshold as the 18-dimensional percolation thresholds in Fig. 5, i.e., the average number of neighbours are the same for the
same coloured lines.

A lower bound of the diffusion coefficient can be estab-
lished by finding the average transition rate from a ran-
dom sphere in the system. We do this by noticing that
the distance between the centers of any two neighboring
spheres is given by Lij = 2rS1/d (see Eq. (A12)), where
S is a random variable that is uniformly distributed in
[0,1]. Combining this with Eqs. (9) and (10) yields

Γ(S)

Γ0
= 2rS1/d(1− S2/d)

d−2
2 . (14)

Given that a sphere has Nb neighbours, the probability of
transitioning from the sphere into any of its neighbours
is given by:

W =

Nb∑
i=1

Γ(Si)

Γ0
. (15)

Thus, the average probability of transitioning from a
sphere with Nb neighbours into any of its neighbours is

given by

⟨W ⟩Nb
=

∫ 1

0

...

∫ 1

0

Nb∑
i=1

Γ(Si)

Γ0
dS1, ...dSNb

=
Nb

Γ0

∫ 1

0

2rS1/d(1− S2/d)
d−2
2 dS (16)

Since the number of neighbours are Poisson distributed
and the integral is independent of the number of neigh-
bours, this is also the average transition rate from any
sphere in the system. Plotting ⟨W ⟩Nb

/d alongside the
diffusion coefficients yields Fig. 7. In order to achieve
the results for the first diffusive regime of the inherent
dynamics, we averaged over one million short-time sim-
ulations; ⟨W ⟩Nb

/d is indeed the diffusion coefficient for
the first diffusive regime.
We now proceed to discuss how to relate the reduced

density, η, to the temperature, T , considering the po-
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tential energy surface of an atomic glass-forming liquid
as the starting point. For a given state point, the hy-
persphere model is arrived at by assuming the potential
energy in the basin of attraction of the relevant inher-
ent states is given by d-dimensional harmonic oscillators
with identical spring constants k. From the equipartition
theorem it then follows that R2 = dkBT/k. Combining
this with Eq. (4) gives:

kBT =
k

d

(
η

ρVd(1)

)2/d

. (17)

From this, we define a reduced temperature, T̃ , which is
proportional to the real temperature for a fixed energy
landscape in the sense that ρ and k are independent of
state point:

T̃ =
1

d

(
η

Vd(1)

)2/d

=
k

ρ2/d
T . (18)

In Fig. 8 the diffusion coefficients are plotted in
an “Arrhenius” plot in terms of the reduced tempera-
ture. The applied scaling parameters are found from fit-
ting the high-temperature results to Arrhenius behavior

D(T̃ ) = D0e
−Ed/T̃ . We observe an approach to “Arrhe-

nius” behavior as the number of dimensions increases.
Expressing this in terms of the non-reduced temperature
(see Eq. (17)), leads to,

D(T ) = D0e
− kEd

ρ2/dT . (19)

As a liquid is cooled, the lower parts of the potential
energy surface become increasingly important[42]. This
means that the number density of relevant inherent states
decreases with decreasing temperature. Via Eq. (17) this
results in an apparent activation energy that increases
with decreasing temperature, i.e., the non-Arrhenius be-
haviour that is a hallmark of viscous liquids.

B. The Random Barrier Model

When the actual time is not needed such as when scal-
ing onto a master curve, we can ignore Γ0 and thus sim-
ulate at a higher number of dimensions than 30. We
have therefore run simulations of the 33, 42 and 45-
dimensional hypersphere model. In Fig. 9 we fitted the
data to the MSD of the RBM[22]. The figure shows that
these give similar results to those achieved by molecular
dynamics simulations[22]. It can be seen that increasing
the number of dimensions and/or decreasing the density
brings the results closer to the prediction of the RBM.
Due to the similarities between the models, this should
not come as a surprise. The RBM is a cubic lattice model
with identical site energies and random energy barriers
for nearest-neighbor jumps[23, 24]. The latter two prop-
erties are also present in the hypersphere model. The
conjecture that lattice and continuum percolation are in

101 102 103

Nb

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

D

First diffusive regime
Second diffusive regime
Theoretical prediction: W Nb/d

FIG. 7. Diffusion coefficients and the average transition rate
from any sphere in the system with Nb average neighbours vs.
average number of neighbouring spheres in the 18- (purple),
21- (red), 24- (green), 27- (orange) and 30-dimensional (blue)
hypersphere model.

10 15 20 25 30 35
Ed/T

20
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6

4

lo
g(

D
/D

0)

d = 30; Ed = 14.18; D0 = 4838.2
d = 27; Ed = 12.27; D0 = 586.11
d = 24; Ed = 10.71; D0 = 114.38
d = 21; Ed = 9.45; D0 = 37.46
d = 18; Ed = 8.51; D0 = 21.85
D/D0 = e Ed/T

FIG. 8. “Arrhenius” plot of the scaled diffusion coefficients.

the same universality class[44, 47, 48] could thus explain
why the MSD as a function of time for the inherent dy-
namics in the hypersphere model approaches that of the
RBM prediction at low densities.

VII. DISCUSSION

In this paper a method is presented that makes it possi-
ble on-the-fly to generate simple models of NVU surfaces
on-the-fly (or surfaces capped by a potential energy) with
randomly distributed inherent structures. In order to do
this, only knowledge of the shape of the basins in con-
figuration space is needed. Knowing the transition rates
between the basins (using any type of dynamics) allows
fast simulations of inherent dynamics, since vibrational
motion is ignored and no energy minimization is required.
For the hypersphere model, we performed simulations

reaching experimentally realistic time scales and showed
that the average behavior of a random walk several
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FIG. 9. (a) The MSD of the kinetic Monte Carlo inherent dynamics at reduced densities nearing the percolation threshold.
(b) Data from (a) scaled to fit the RBM prediction [24]. In addition to these data, we have also plotted the MSD from
simulations[22] of a crystallization-resistant version of the Kob-Andersen binary Lennard Jones mixture at T = 0.37.

decades prior to diffusion is described by the RBM. This
encapsulates the behavior of real glass-forming liquids,
compare the experimental results of Bierwirth et. al [7].
Although the agreement with the typical viscous liq-

uid behavior is striking in view of the simplicity of the
model, there are outstanding issues that deserve further
investigation. In particular, we point out the following:
Consider the results for the 30-dimensional hypersphere
model with η = 12ηc in Fig. 9. These results are in
good agreement with the RBM for about the same range
of reduced times as the Kob-Andersen model. However,
the duration of the plateau in MSD for the Kob-Andersen
model is approximately 4 decades. Referring to Fig. 6 we
see that for the 30-dimensional hypersphere model, a sim-
ilar duration of the MSD plateau is found for η = 3200ηc
(blue curve) where there is hardly any hint of RBM-
behavior; the inherent dynamics is close to simply being
an extrapolation of the diffusive behavior. We conclude
from this that much of the slowing down is due to the sys-
tem being localized in a single hypersphere, which gives
a plateau in the MSD but no contribution to the inherent
MSD. Whether this is due to all inherent structures hav-
ing the same potential energy, the shape of their basins
(hyperspheres, instead of the more general hyperellip-
soids), their completely random and independent distri-
bution, or simply the random walk dynamics itself, is an
interesting open question for future research.

This work was supported by the VILLUM Foundation
(Grant Nos. 00016515 and 00023189).
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FIG. 10. For each (η, d) 1000 d-dimensional cubes with pe-
riodic boundary conditions were made. The cube length was
decided such that there would be on average 200 spheres of
radius 1 inside the cube. A d-dimensional integer lattice of
points were generated and spheres were placed around these
using the assigned volume principle of the algorithm. The
dashed lines marks the Poisson distribution with mean 2dη,
whereas the bars lines show the neighbour count.

Appendix A: Validating the sphere generating
algorithm.

Let µ denote a countable set of independently and ran-
domly distributed points in Rd of point density ϱ, which
is by definition a homogeneous Poisson point process on
Rd with density ϱ.

Let B̄d
q,r denote a closed d-ball of radius r centered at
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q, i.e.,

B̄d
q,r = {x ∈ Rd||q− x| ≤ r}. (A1)

Then the d-dimensional hypersphere model defined by µ,
is defined as the surface of the union⋃

q∈µ

B̄d
q,r. (A2)

A model consisting of a system of hyperspheres, whose
centers constitute a homogeneous Poisson point process
on Rd, is referred to in the mathematical literature as
the Poisson ”blob” model (among other names); it is also
one of the simplest examples of a Boolean model, cf. [49],
[50]. For a given realization of the model, the connected
components of the union of hyperspheres are called clus-
ters. The number of spheres in a given cluster, is called
the size of the cluster.

We start this section by presenting two numerical tests,
that show that the method presented in section III works
as intended. First we show that the number of neigh-
bours to an arbitrary point in µ (equivalently an arbi-
trary sphere in the model) is Poisson distributed with
the correct mean, followed by showing that the algorithm
grows clusters of the correct size distribution according
to theory, see also sections A 3 c and A4.

The algorithm generates a realization of a Poisson
point process of point density ϱ on-the-fly, i.e. the al-
gorithm generates the points, and hence the spheres in
the hypersphere model, step by step as they are needed.

A more precise definition of a Poisson point process
will follow after a more detailed description of the algo-
rithm. We will thereafter show by induction that, indeed,
a realization of a Poisson point process is formed when
using this algorithm.

1. Testing the algorithm numerically

In order to show that the method of section III pro-
vides a Poisson distributed number of neighbours with
mean 2dη, we ensure that the entire volume of a d-
dimensional cube is assigned by placing spheres using lat-
tice points (not regarded as spheres themselves). These
lattice points are along each axis separated by distance 1.
Spheres are then added for each lattice point, according
to the method described in section III.

In order to find a sufficiently high 2r to place spheres
within, we use the distance to the center of a hypercube
of sidelength 1 from any of its lattice points. Thus, 2r >
(0.52d)1/2. For the results in Fig. 10, we used r = 1.

For each of the spheres placed, the number of neigh-
bours were counted. It can indeed be seen that the num-
ber of neighbors is Poisson distributed with mean 2dη.
In order to check that the distribution of cluster sizes

matches the theoretical prediction by Ref. 49 and 51, the
algorithm is run until either a cluster of size 1 ≤ k < 5
has formed or the cluster contains 5 or more spheres.

0.0 0.1 0.2 0.3 0.4 0.5
= 1 e

0.00

0.05

0.10

0.15

0.20

0.25

p k

k = 2
k = 3
k = 4
Simulation results

FIG. 11. The curves show the theoretical probabilities pk of
a cluster being of size k when picking a random sphere in a
system of spheres in 3 dimensions. These are plotted as a
function of volume fraction ϕ = 1 − e−η. At each ϕ we have
generated 105 clusters using a version of the algorithm where
all neighbours of a sphere are visited systemetically, and found
the percentage of the clusters being size k = 2, 3, 4.

In Fig. 11 we plot the results alongside the theoretical
predictions.
For a Poisson point process on Rd with point density

ϱ, this corresponds to looking at very small volumes of
random location until the volume contains the center of
a single sphere, i.e. finding a random sphere.

2. The Poisson point process generator algorithm:
Constructing the set of points µ and the assigned set

Let κi denote the set of assigned points at step i, i.e.
the set of points that have been assigned neighbours after
step i, and define the assigned set (or assigned volume),
denoted Ai, as

Ai =
⋃
q∈κi

B̄d
q,2r.

Let µi ⊂ Ai denote the set of points (the centers of
spheres) generated by the algorithm after step i.

1. Set i := 1, start at a random point x1 ∈ Rd, which
can without loss of generality be taken to be x1 = 0,
and initiate the set of assigned points by letting
κ1 = {0}. Then A1 = B̄d

0,2r.

2. Construct a realization {y1, y2, ..., yk} of a Poisson
point process σx1

on B̄d
0,2r, where k is a number

picked from the Poisson distribution with mean
2dη. How to do this for d–balls will be explained in
sec. A 5.

3. Let µ1 = σx1
.
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4. Run any chosen dynamic in B̄d
xi,r (here a random

walk or its inherent dynamics) until a neighbouring
sphere is entered. The center of the entered neigh-
bouring sphere will be designated as xi+1. Note
that in our situation xi+1 ∈ (µi ∩ B̄d

xi,2r).

5. If xi+1 ∈ κi then points have already been assigned
to the volume B̄d

xi+1,2r defined by xi+1. Thus, we
set µi+1 = µi and κi+1 = κi, and skip to step 10.

6. Construct a realization of a Poisson point process
σxi+1

⊆ B̄d
xi+1,2r as in step 2 (e.g. the green dots

in Fig 12).

7. Remove the points of σxi+1
that are in Ai (e.g. the

crossed green dots in Fig. 12), and let σ′
xi+1

denote
the collection of remaining points:

σ′
xi+1

= σxi+1
\Ai

8. Update the assigned volume by adding xi+1 to the
set of assigned points:

κi+1 = κi ∪ {xi+1}

9. Update the set of points by adding the new points
σ′
xi+1

to the set of points in the assigned volume:

µi+1 = µi ∪ σ′
xi+1

10. Set i := i + 1 and jump to step 4 (or stop the
algorithm).

When the algorithm stops, we let A = Ai and µ = µi.
In practice, Ai is not used when running the algorithm,
since κi can be used instead to exclude points in the
assigned volume when finding σ′

xi+1
. So the only things

we really keep track of are the centers of spheres µ and
the assigned points κ.

3. Definition

The definition of a Poisson point process can be given
to varying degrees of generality, here we give one that is
suitable for our purposes, see also [52].

Let S ⊆ Rd be a measurable set and let Π denote a
random, at most countable, collection of points Π ⊆ S.
Let ξ(B) denote the random variable giving the num-

ber of points of Π in the measurable set B ⊆ S, i.e.
ξ(B) = #(Π ∩B).
Then a Poisson point process on S with density λ > 0 is

a random, at most countable, collection of points Π ⊆ S
with the following properties:

• For every measurable B ⊆ S, the probability that
ξ(B) = k is given by

P (ξ(B) = k) =
(λ|B|))k

k!
e−λ|B| (A3)

where |B| is the Lebesgue measure (d-”volume”) of
B. In other words, ξ(B) is Poisson distributed with
mean λ|B|. [53]

• For any disjoint measurable subsets B1, B2 of S,
the random variables ξ(B1) and ξ(B2) are indepen-
dent.

Since the density λ is constant, this is an example of
a homogeneous Poisson point process. In a more general
definition of a Poisson point process, the density is al-
lowed to depend on the position in space, but this is not
relevant for our application.
We need some important (derived) properties of the

Poisson point process, which in our context can be for-
mulated as follows:

a. Restriction Property

Let Π be a Poisson point process with density λ >
0 on S and let S′ be a measurable subset of S. Then
Π′ = Π∩S′ is a Poisson point process on S′ with density
λ. This property follows immediately from the definition
of a Poisson point process (see also Restriction Theorem
[52, Sect. 2.2]).

b. Superposition property

Let S1, S2 ⊆ Rd be disjoint measurable sets and let
Π1,Π2 be independent Poisson point processes, both with
density λ > 0, on S1, S2 respectively. Then the union
Π = Π1 ∪ Π2 is a Poisson point process on S1 ∪ S2

with density λ. This property follows from the additivity
property of Poisson distributions and is a special case of
the much more general Superposition theorem (see again
[52, Sect. 2.2]).

c. Conditional distributions

The distribution of neighbours for an arbitrary point
of a Poisson point process and the size of a cluster con-
taining an arbitrary sphere in the hypersphere model,
are both described using conditional distributions in the
sense of Palm distributions.
Thus, a Poisson point process with density λ, has the

property that the number of ”neighbours” to an arbi-
trary point, in a measurable B ⊂ S containing the point,
is Poisson distributed with mean λ|B|. This is given by
the so-called reduced Palm distribution, cf. [50]. In par-
ticular, the number of neighbours in a sphere of radius
2r, to an arbitrary sphere in the hypersphere model, is
Poisson distributed with mean 2dη.
More generally, the conditional distribution of a ho-

mogeneous Poisson process, given that there is a point
at a certain location, which can without loss of general-
ity be assumed to be 0, is called the Palm distribution.
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c b

Uc=Bc,2r\Ai Uc=Bc,2r\Ai 

2r
Bc,2r

Ai

FIG. 12. Figure illustrating the concepts
of the algorithm and the proof. µi =
{red dots}, κi = {b}, σc = {green dots}, σ′

c =
{green dots excluding those in Ai (i.e. the crossed ones)}.
Note that b and c are not points of the Poisson Point process
themselves, but only points for which the Poisson Point
process is generated around. It is thus not the same as when
running the algorithm.

This conditional distribution is the same as the distribu-
tion of the original process, together with a point at 0.
Adding a point at 0 thus corresponds to considering an
arbitrary point of the process, which is without loss of
generality assumed to be at 0. See f.ex. [50] and [49].

4. Proof

We want to show that the algorithm produces a realiza-
tion of a Poisson point process µ on the set A with den-
sity ϱ. We do this by induction, showing that for every
i ∈ N, µi is a Poisson point process on Ai with density ϱ
(where µi = Π, Ai = S and ϱ = λ in the notation of the
definition).

By construction µ1 = σx1
is a Poisson point process

on A1 = Bd
x1,2r with density ϱ, so the statement is

We now show that if µi is a Poisson point process on
Ai, then µi+1 is a Poisson point process on Ai+1:

1. By construction σi+1 is a Poisson point process on
Bd

xi+1,2r with density ϱ.

2. Define Uxi+1 = Bd
xi+1,2r\Ai. This is the ”new vol-

ume” to which points have been assigned in step
i+ 1.

3. By the restriction property σ′
xi+1

= σxi+1

⋂
Uxi+1

is a Poisson point process on Uxi+1 with density ϱ,
with Uxi+1 in the role of S′ and σ′

xi+1
in the role of

Π′.

4. Recall that Ai+1 = Ai ∪ Bd
xi+1,2r

so that Ai+1 is
the union of the disjoint sets Ai and Uxi+1

: Ai+1 =
Ai ∪ Uxi+1

.

5. Since µi and σ′
xi+1

are independent Poisson point
processes on Ai and Uxi+1

, respectively, both with
density ϱ, it follows from the Superposition prop-
erty that µi+1 = µi ∪ σ′

xi+1
is a Poisson point pro-

cess on Ai+1 with density ϱ. (Here with µi and
σ′
xi+1

in the roles of Π1 and Π2 and Ai and Uxi+1

in the roles of S1 and S2).

Thus the algorithm produces a set A and a realization
of a Poisson point process µ on A, with its system of
spheres.

Adding the point x1 at 0 produces the conditioned
Poisson process, given there is a point at 0. This corre-
sponds to taking as starting point for the algorithm an
arbitrary point of the Poisson point process, which we
can assume without loss of generality to lie at 0.

In particular, the algorithm produces a cluster of
spheres containing the sphere at 0, of a given size. Each
realization occurs with the same probability as in the
Poisson ”blob” model, because of the independence prop-
erty of Poisson point processes. This is illustrated in
Figure 11, which shows the probabilities that the cluster
containing 0 produced by the algorithm is of size 2, 3 and
4, together with theoretical probabilites from the Poisson
blob model, in 3 dimensions.

5. Constructing σx

The aim of this section is to construct the Poisson point
process σx on Bn

x1,2R
with point density ϱ. Note that in

the section we use n instead of d to refer to the number
of dimensions in order to avoid confusion with differen-
tials. In order to construct σx, we first find a point on
the boundary of a n-ball of radius r. We then find the
distance from the center to any random point inside a
sphere of radius R. Combining these yields the location
of a single point. Using the definition of a Poisson point
process, we then construct σx.

a. Finding a random point inside the volume of an n-ball

Let r denote the radius of an n-ball centered at x. Let
X1, X2, ..., Xn be n independent normal random variables
with mean 0 and variance 1. A random point on the
boundary of Bn

x,r is a random element Y x
r given by[54],

Y x
r = x+

r√
X2

1 +X2
2 + ...+X2

n

(X1, X2, ..., Xn) . (A4)

We thus only need to find a random variable describing
the distance from the center of the n-ball to a random
point inside of it. The probability p1(r) of finding a point
at distance r from the center of a hypersphere of radius
R is given by:

p1(r) =
Sn(r)

Vn(R)
, r ∈ [0, R] (A5)
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where Sn(r) is the surface area of a n-ball of radius r and
Vn(R) the volume of a hypersphere of radius R. These are
given by

Sn(r) =
2πn/2

Γ(n2 )
rn−1 ∧ Vn(R) =

πn/2

Γ(n2 − 1)
Rn (A6)

Inserting these into equation (A5) and integrating yields
the cumulative distribution function for p1(r):

P1(Z ≤ r) =

∫ r

0

p1(s)ds (A7)

=

∫ r

0

2Γ( 2n + 1)

Γ( 2n )

sn−1

Rn
ds (A8)

=

∫ r

0

n
sn−1

Rn
ds =

rn

Rn
(A9)

Letting S be uniformly distributed in [0,1] (that is
p2(S) = 1 for any S ∈ [0, 1]) yields the cumulative distri-
bution function:

P2(S ≤ y) =

∫ y

0

p2(s)ds = y (A10)

We thus have that y = rn/Rn when the cumulative dis-
tribution functions are equal (i.e. P1 = P2 = P ). There-
fore,

P

(
S ≤ rn

Rn

)
= P (RS1/n ≤ r) = P (Z ≤ r) (A11)

Thus, if S is a random variable uniformly distributed in
[0,1], then

Z = RS1/n (A12)

is a random variable describing the distance from the
center of the n–ball to a random point inside of it. Com-
bining Eq. (A4) and (A12) yields the following result:

Let S be a uniform random variable in [0, 1], and
X1, X2, ..., Xn be n independent normal random variables
with mean 0 and variance 1. A random point Xx

R in B̄n
x,R

is given by:

Xx
R = x+

RS1/n√
X2

1 +X2
2 + ...+X2

n

(X1, X2, ..., Xn) (A13)

b. Constructing a realization of σx

According to the definition of the Poisson point pro-
cess, the number of points in σx is naturally the Poisson
random variable ξ(Bn

x,2R) with mean

ϱ|Bn
x,2R| = ϱVn(2R) = ϱ

π
n
2

Γ(n2 + 1)
(2R)n = 2nϱVn(R) = 2nη .

(A14)
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FIG. 13. Transition rates between two unit spheres with
centers separated by Lij in 12 (red) and 18 (blue) dimensions.
Points: simulation results from random walks. Full lines: Fits
to Eq. (10) of the main text. Dashed lines: Γij ∝ hd−1

ij shown
for comparison.

Here the first three equalities follow from the volume of
an n-ball and the last equality follows from the definition
of reduced density.
Let y1, ..., yk be k = ξ(Bn

x,2R) random points on Bn
x,2R,

each given by Eq. (A13). Since y1, ..., yk are indepen-
dently distributed on Bn

x,2R

{y1, ..., yk} (A15)

is a realization of a Poisson point process σx on B̄n
x,2R.

Appendix B: Transition rates.

To apply the kinetic Monte Carlo algorithm, an expres-
sion for Γij , the transition rate between two intersecting
hyperspheres, i and j is needed. To find this rate, ran-
dom walks on a system consisting of two intersecting unit
hyperspheres were performed for d = 12 and d = 18 re-
spectively. The distance between the two spheres is de-
noted Lij and the radius of the intersection is denoted
hij , see Fig. 4 of the main text.
17000 random walkers were started in sphere i (ex-

cluding the part that is closest to the center of sphere j).
Steps in the random walk was chosen with equal prob-
ability on the surface of a d-dimensional hypersphere of
radius 0.01. The fraction of walkers being in sphere i
was monitored as a function of time. As expected, an
exponential decay from fraction 1 to 0.5 was found. The
transition rates determined from the exponential decays
are plotted as points in Fig. 13.

Since the random walk has equal probability per vol-
ume, the rates are expected to be proportional to the
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volume of the intersection relative to the volume of the
initial sphere:

Γij ∝ hd−1
ij dL (B1)

where dL is the effective width of the intersection. Set-

ting dL proportional to the inverse slope of the hyper-
sphere surface at the intersection (see Fig. 4 of the main
text), dL ∝ Lij/hij , leads to Eq. (10) of the main text,
which is found to fit the simulation results very well; see
Fig. 13.
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