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Understanding the structure and dynamics of liquids is pivotal for the study of larger spatiotempo-
ral processes, particularly for glass-forming materials at low temperatures. The so-called thermody-
namic scaling relation, validated for many molecular systems through experiments, offers an efficient
means to explore a vast range of time scales along a one-dimensional phase diagram. Isomorph the-
ory provides a theoretical framework for thermodynamic scaling based on strong virial-potential
energy correlations, but this approach is most successful for simple point particles. In particular,
isomorph theory has resisted extension to complex molecular liquids due to the existence of high-
frequency intramolecular interactions. To elucidate the microscopic origin of density scaling for
molecular systems, we employ two distinct approaches for coarse-graining in space or in time. The
former eliminates fast degrees of freedom by reducing a molecule to a center-of-mass-level descrip-
tion, while the latter involves temporally averaged fluctuations or correlation functions over the
characteristic time scale. We show that both approaches yield a consistent density scaling coeffi-
cient for ortho-terphenyl, which is moreover in agreement with the experimental value. Building
upon these findings, we derive the density scaling relationship exhibiting a single-parameter phase
diagram from fully atomistic simulations. Our results unravel the microscopic nature underlying
thermodynamic scaling and shed light on the role of coarse-graining for assessing the slow fluctua-
tions in molecular systems, ultimately enabling the extension of systematic bottom-up approaches

to larger and more complex molecular liquids that are experimentally challenging to probe.

I. INTRODUCTION

First-year courses in thermodynamics and statistical
physics teach that the phase diagram of pure substances
is two-dimensional [1, 2]. However, experimental find-
ings at elevated pressures have revealed that the ther-
modynamic phase diagram can sometimes be effectively
one-dimensional [3, 4]. This intriguing phenomenon, so-
called thermodynamic scaling, manifests itself in several
scaling relationships, including density scaling and excess
entropy scaling, as well as isochronal superposition [4-7].
Density scaling of dynamics, in particular, has been re-
ported in glass-forming liquids and various other fluids.
This scaling relationship is mathematically expressed as

pY /T = (constant), (1)

where the constant value is a function of the structural
relaxation time, p = N/V is the number density, T is the
temperature, and v is the density scaling exponent. In
other words, the relaxation time depends only on p7/T,
not on density or temperature separately. This scal-
ing law was first reported by experiments nearly two
decades ago by Téolle, Dreyfus, Alba-Simionesco, and
their coworkers, and later substantiated by the groups
of Roland, Paluch, and Niss [3, 4, 8-16]. An under-
standing of how the dynamics of liquids evolve within
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this effective one-dimensional framework is essential for
investigating the dynamics of glass-forming liquids and
the glass transition, as these systems undergo changes
across several orders of magnitudes. This is of particu-
lar importance given the exceedingly challenging nature
of achieving equilibrium in supercooled liquids during ex-
periments, primarily due to the dramatic tenfold increase
in their relaxation times with a 1% reduction in temper-
ature [17-19]. Therefore, density scaling emerges as an
invaluable tool for comprehending the low-temperature
behavior of liquids, not least when employing computer
simulations as a predictive approach.

Another important example of an effective single-
parameter phase diagram is excess entropy scaling in lig-
uids. Initially proposed by Rosenfeld in 1977 [20], excess
entropy scaling establishes a relationship between dy-
namical properties, denoted as D*, such as self-diffusion
coeflicients or viscosities, and the excess entropy of the
system, Sex:

D* = Dy exp(aSex)- (2)

Here, excess refers to the entropy in excess of the ideal
gas entropy at the same density p and temperature T'
[21, 22]: Sex(p,T) = S(p,T) — Sia(p,T). As excess en-
tropy depends on both density and temperature, excess
entropy scaling implies that these dynamical properties
are also functions of these two thermodynamic variables.
Therefore, this scaling bridges the gap between the hard-
to-predict dynamic properties and the easier-to-predict
thermodynamic properties. Rosenfeld originally investi-
gated systems such as Lennard-Jones [23], inverse power-
law (IPL) [24, 25], and hard sphere systems [26], con-
cluding that the self-diffusion coefficient is a universal
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function of excess entropy for these systems. Remark-
ably, findings from the past two decades have uncovered
that excess entropy scaling is considerably more success-
ful than initially anticipated for simple analytic inter-
actions, because it can be applied to a wide range of
molecular systems [22, 27-50]. This concept even extends
beyond the atomic level, including coarse-grained (CG)
systems [51-53], and out-of-equilibrium system, e.g., ac-
tive matter [54, 55].

Despite its experimental prevalence, understanding
thermodynamic scaling from first principles remains an
open question in the field. In the case of excess en-
tropy scaling, liquid systems can be mapped to hard
spheres [56] through thermodynamic perturbation the-
ory [21, 57, 58]. Since the hard sphere system is charac-
terized by a single parameter, i.e., the packing fraction
(n = mpd? /6, where d is an effective hard sphere diame-
ter), it can be described as an effective one-dimensional
phase diagram. Similarly, for density scaling, Hoover
earlier demonstrated that systems governed by IPL in-
teractions, i.e., described as pair potentials of the form
v(r) =e(r/o)~™, possess an exact one-dimensional phase
diagram with a density scaling exponent of v = n/3
[24, 25].

While physically sound, these early approaches are lim-
ited, and do not apply to the more realistic and experi-
mentally relevant complex molecules, which do not con-
form to hard sphere or IPL interactions. Therefore, it
is crucial to establish a systematic theory that allows
extending the current framework to complex molecules.
One such molecule is ortho-terphenyl (OTP), a simple
glass-forming liquid that offers an ideal target for this
line of research, as it has been shown to exhibit den-
sity scaling in experiments. References 5, 59-62 present
high-pressure measurements of viscosity and structural
relaxation time in liquid OTP, yielding a master curve
expressed as 1000/TV535 with V representing specific
volume in ml/g; thus v = 5.36. This finding further
establishes that the structural relaxation time can be de-
scribed by a single-variable function. In the pursuit of
understanding the density scaling exponent of OTP, the
seminal 1998 paper by T6lle and colleagues [8] initially
suggested v = 4 by conjecturing that the repulsive part
of interactions between atoms follows an IPL form »~" in
accordance with the Lennard-Jones potential (n = 12),
based on the Hoover’s argument [24, 25]. However, ex-
tensive studies by Roland and colleagues have reported
density scaling exponents for a wide range of systems,
spanning from 0.14 to 8.5 [3]. This disputes Télle’s ini-
tial reasoning. Moreover, mapping OTP to an IPL seems
unrealistic due to the complex chemical structure of OTP.
The three phenyl rings in OTP suggest that OTP can-
not be straightforwardly mapped to a hard sphere de-
scription, and thus its interaction may also deviate from
hard sphere repulsion or the IPL model. Yet, beyond
these simple analytical models, there currently exists no
systematic approach for deriving thermodynamic scaling,
particularly density scaling, from first principles.

In this paper, we aim to unravel the microscopic origins
of a single-parameter phase diagram within the frame-
work of isomorph theory. Isomorph theory provides a
physical framework for understanding the scaling expo-
nent, but has been most successful for simple atomic
models [63, 64]. Therefore, we introduce the concept of
systematic coarse-graining to address this challenge. By
systematically constructing a CG representation of com-
plex molecules (OTP), across both spatial and temporal
dimensions, we will demonstrate that isomorph theory
can be faithfully applied to the CG description for un-
derstanding density scaling. As such, our primary focus
will revolve around the development of bottom-up coarse-
graining methodologies in space and time, with the over-
arching goal of extending the range of isomorph theory
to realistic molecular liquids.

II. ISOMORPH THEORY
A. Atomic systems

Isomorph theory has emerged as a theoretical frame-
work to understand the origin of density scaling in
strongly correlating liquids [63, 64]. In this section, we
provide a brief overview of isomorph theory and delin-
eate its current limitations, particularly in the context of
molecular systems. The current formulation of isomorph
theory primarily centers on identifying invariant struc-
tures and dynamics within atomic systems, and hence
we start from the total energy of the system as a sum-
mation of kinetic and potential energies:

B(#", ") = K (&) + U(x™), (3)

where r' = (r1,r2,r3,...,r,) is the 3n-dimensional fine-
grained configurational variables for atomic positions.
The fundamental assumption of isomorph theory is that
the potential energy function U(r™) is scale-invariant in
the following generalized sense [65-71]. Consider two
configurations with the same density, r]; and r}’, where
U(r?) < U(ry). If the energy surface is scale-invariant for
these configurations, it follows that U(Ary) < U(Arp),
where A determines the magnitude of an affine scaling of
all particle positions, i.e., a change in density. This prop-
erty can be envisioned as an energy surface retaining its
shape when the length scale changes [72], similar to how
hills and valleys are indistinguishable when one zooms in
on a landscape — a hill does not become a valley, and wvice
versa.

Scale invariance is trivial if the energy surface, U(r"),
is Euler homogeneous, for example, if the potential en-
ergy is a sum of IPL interactions (r~") with the same
exponent n [3, 24, 25, 73-76]. Unlike a single-exponent
interaction, e.g., Coulombic (r~!) in a plasma, the
Lennard-Jones model is a sum of two power laws, and
hence the scaling is not trivial and exact. Nevertheless,
one can approximately obtain a scaling exponent that
varies with state points. This property of approximate



scale invariance is referred to as hidden scale invariance.
For example, Ref. 77 demonstrated that U(r™) of single-
component liquids of metallic elements possesses hidden
scale invariance to a significant degree. Metals were de-
scribed by interacting through realistic potentials, where
many-body forces were computed ab initio by density
functional theory. This success also motivates the ex-
ploration of hidden scale invariance in complex, realistic
atomistic systems beyond point particles.

In systems with hidden scale invariance, there are lines
in the phase diagram along which structure, dynamics,
and certain thermodynamics quantities are invariant to
a good approximation in so-called reduced units. These
units are state point-dependent and defined as a combi-
nation of particle mass m, number density p, and ther-
mal energy kpT [63]; thus the length unit is the average
interparticle distance, the energy unit is the thermal en-
ergy, and the time unit is the time it takes to move an
interparticle distance with thermal velocity. The lines
of invariance, known as “isomorphs,” are configurational
adiabats, i.e., characterized by Sex = (constant), thereby
connecting to excess entropy scaling.

Hidden scale invariance can be validated by quantify-
ing the correlations between the fluctuations of the virial
W and the potential energy U. In the canonical ensemble
(constant NVT) [78, 79], the correlation coefficient R is
given by [75]

(AWAU)
VIAW)?)((AT)?)

where A refers to deviations from the mean value. Here,
the virial W' is the configurational contribution to the
pressure (p), defined via pV = NkgT + W, and W =
(W (r™)) is the NVT (canonical) ensemble average of the
instantaneous virial. It can be computed for a given con-
figuration r” as the change in energy of an affine scaling,

W) = (8‘] W)Fn , (5)

R(p,T) = (4)

dlnp

where " = r"p% is the reduced coordinates (keeping
r” constant in a density change amounts to performing
a uniform scaling of all coordinates). From Eq. (4), if
W (r™) and U(r™) are perfectly correlated, then R = 1.
For an ideally scale-invariant interaction U(r™), one
has R = 1. Systems with R close to unity exhibit hid-
den scale invariance. The pragmatic criterion defining
“strong correlation” is R > 0.9 [80]. Since the corre-
lation coefficient is evaluated at a given state point, R
is a function of both density and temperature: R(p,T).
Generally, hidden scale invariance can be valid in some
parts of the phase diagram but not valid in others. In
other words, parts of the U(r™) surface may possess hid-
den scale invariance, while others may not. For Lennard-
Jones type systems, for example, it is generally found
that R(p,T) is low near the gas-liquid coexistence as well
as in the gas phase, while it is close to unity in the dense
liquid and crystalline phases [80]. It has been shown that

the phase diagram is effectively one-dimensional when
R(p,T) ~1 [80, 81].

For atomic systems, isomorphs are identified as lines
where the excess entropy Sex is constant, representing a
configurational adiabat. The “slope” of the configura-
tional adiabat in the logarithmic phase diagram is

0T
Y Su.

v(p,T) : (6)

A generally valid thermodynamic identity implies that
this can be evaluated in a canonical simulation as [63]

1(0.1) = 2WED) @
((AU)?)

The point is now that this v is identical to the density
scaling exponent [82], thus providing a method for deter-
mining this quantity from simulations at a single state
point.

As previously mentioned, the isomorph theory is
exact only when the energy surface U(r™) is Euler-
homogeneous, e.g., a sum of IPL pair potentials. In this
case, virial and potential energy fluctuations are perfectly
correlated, expressed as

AW(t) =y AU(1), (8)

with v* = n/3, resulting in a density scaling of the form
7 /T. Even though the isomorph theory only applies
rigorously in the case of IPL interactions, it serves as an
approximation for realistic U(r™) potentials. Neverthe-
less, as an approximate description, isomorph theory has
been successfully applied to various van der Waals lig-
uids, such as Lennard-Jones models [63, 64] and EXP
pair potentials [83, 84], as well as realistic potentials
of metals and noble elements at the point particle level
[77, 80, 81, 85-88].

B. DMolecular systems: Challenges

In its most used form, the isomorph theory is formu-
lated for atomic systems (i.e., point particles), and, if
naively applied to molecular systems with intramolecu-
lar interactions, it starts to break down [72, 89-92]. This
is because in molecular liquids that are covalent bonded
or hydrogen bonded, these strong intramolecular interac-
tions destroy the strong virial-potential correlation, re-
sulting in low R values when computed naively, see Fig.
1(a) and 1(b). The effect of intramolecular vibrations
becomes evident when comparing a rigid Lennard-Jones
chain [93] with a flexible Lennard-Jones chain, where
the flexible chain described by harmonic bonds manifests
the breakdown of the isomorph theory with an instan-
taneous virial-energy correlation coefficient of only 0.28
[91]. Thus, the potential energy surface of this flexible
molecule is not scale invariant per se, and one could only
understand isomorph theory for molecules in an ad hoc
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FIG. 1. Coarse-graining approach for understanding hidden
scale invariance. (a) The solid black line represents a concep-
tual sketch of the typical potential energy landscape, U(r™),
for a molecular system. The landscape exhibits two charac-
teristic length scales: (1) fast fluctuations dominated by in-
tramolecular vibrations and intermolecular roughness and (2)
slow fluctuations representing substantial molecular rotations
and translations. The slow fluctuations are indicated with a
thick red line. (b) The potential energy landscape after an
affine scaling of all coordinates by 10% (A = 1.1). The slow
fluctuations are scale-invariant, i.e., the thick red line retains
the same shape. Due to fast fluctuations, the potential energy
landscape is not intrinsically scale-invariant. This paper ad-
dresses the challenge of identifying the solid red line from the
black line in an atomistic description of a molecular system.

manner. For example, it is infeasible to directly apply
isomorph theory to alkane molecules; instead, one could
approach it using an ad hoc CG Lennard-Jones chain de-
scription. As the existing literature lacks studies that aim
to rigorously bridge the microscopic interactions and the
isomorph theory at a molecular level, the main objective
of this paper is to explore how we can apply hidden scale
invariance to molecules to expand the range of isomorph
theory.

III. SYSTEMATIC COARSE-GRAINING
APPROACHES

A. Need for Bottom-up Coarse-Graining

Due to the strong intramolecular interactions, the in-
stantaneous virial and potential energy are expected to
exhibit significant fluctuations at the atomistic level. In
order to overcome this challenge, we propose statistical
coarse-graining approaches that allow for extracting an
effective one-dimensional phase diagram for these com-
plex molecules. Our central hypothesis is that the cor-
rect coarse-graining procedure, derived from microscopic
physical principles, can effectively integrate out unneces-
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sary degrees of freedom (e.g., intramolecular vibrations)
and retain only the important intermolecular motions
that have strong correlations.

In this section, we introduce two separate coarse-
graining methodologies, namely, coarse-graining in time
and in space. Since these two approaches are derived
from different motivations and underlying assumptions,
we develop each coarse-graining scheme separately, apply
them to the atomistic OTP, and compare their perfor-
mances in Secs. IV and V, respectively. Then, combin-
ing these two coarse-graining approaches together, in Sec.
VI, we assess how systematic coarse-graining approaches
impart the one-dimensional phase diagram through den-
sity scaling.

B. Coarse-graining in time

Coarse-graining in time (or temporal coarse-graining)
mitigates the fluctuations in the fully atomistic potential
energy landscape by averaging the fluctuations within the
characteristic time scale. Hence, this approach enables
the examination of slow degrees of freedom, which can be
measured, e.g., by frequency-dependent linear response
functions.

The central idea underlying temporal coarse-graining
is motivated by a recent striking experiment on the sili-
cone diffusion pump oil DC704 (tetramethyltetraphenyl-
trisiloxane; CogH3202Si3) [82]. In contrast to atomic sim-
ulations, it is impractical to measure the correlation co-
efficient R defined by the instantaneous virial-potential
fluctuations from experiments. Instead, Ref. 82 utilized
the fluctuation-dissipation theorem [21], providing an
alternative relationship to dynamic response functions,
e.g., the frequency-dependent heat capacity. Generaliz-
ing the isomorph theory to frequency-dependent response
functions enables scaling to be applied to the slow de-
grees of freedom, i.e., molecular rotational and transla-
tional motions, which freeze at the glass transition [94—
96]. This extension also generalizes the correlation coef-
ficient of the isomorph theory for point particles, R [Eq.
(4)], to a time-dependent equivalent, R(t), through ex-
periments. In detail, experimental measurements have
demonstrated that, to the first approximation, the long-
time limit of R(t) is related to the classic Prigogine-Defay
ratio I by R ~ 1/+/TI, where II is the dimensionless num-
ber

1 AcpArr 1

- Loade 1 Q
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VT (Aay) _— R
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which involves the jumps in the thermal expansion coef-
ficient «y,, compressibility x7, and heat capacity c, at
the glass transition 7' = T, [12, 60, 82, 97-104]. II
is unity whenever the phase diagram is effectively one-
dimensional.

By establishing 11 ~ 1/R? [Eq. (21)] for DC704,
Ref. 82 further shed light on the strongly correlating



nature of OTP in experiments. Estimating the classi-
cal Prigogine-Defay ratio for 22 glass formers from lit-
erature values, including polymers, metallic alloys, inor-
ganic, and molecular liquids (both hydrogen-bond rich
and van der Waals bonded), revealed that liquid mix-
tures containing OTP have II values near 1.2, corre-
sponding to R ~ 0.9. This indicates the existence of
an effective one-dimensional phase diagram of OTP. No-
tably, this back-of-the-envelope estimation correctly pre-
dicts the behavior of hydrogen-bonding liquids, where
glucose (CgH1206) and glycerol (C3Hs03) have much
higher ratios of R ~ 0.5 each, aligning with observations
from isomorph theory.

In summary, the discoveries reported in Ref. 82 di-
rectly motivate a temporal coarse-graining approach,
where the density scaling exponent ~ can be inde-
pendently computed from frequency-dependent response
functions. Consequently, a systematic temporal coarse-
graining from first principles is expected to facilitate the
understanding of isomorph theory for complex liquids
currently accessible only through experiments.

C. Coarse-graining in space

In addition to coarse-graining in the temporal domain,
one can also consider coarse-graining in space (or spa-
tial coarse-graining) by constructing a reduced configura-
tional representation of complex molecular systems. For
OTP, this specific coarse-graining scheme is inspired by
the widely adopted Lewis-Wahnstrém model [105-109].
This model consists of three CG sites connected via fixed
bonds and interacting through a Lennard-Jones interac-
tion to represent the OTP molecules in an ad hoc reduced
form. Despite its simplicity and limitations, the Lewis-
Wahnstréom model can reasonably simulate the chemi-
cal and physical behavior of OTP at an efficient compu-
tational cost [110-112]. Notably, as expected from the
fixed bond length, the Lewis-Wahnstrom model exhibits
strong virial-potential energy correlations and obeys iso-
morph theory predictions [85, 90]. However, the interac-
tion parameters for the Lewis-Wahnstém model are not
directly parametrized from microscopic (atomistic) OTP
energetics, and hence there is no clear microscopic ev-
idence that the hidden scale invariance identified using
the ad hoc three-site model is representative of atomistic
OTP molecules.

Unlike the ad hoc representation, bottom-up spatial
coarse-graining approaches can systematically construct
a reduced model that faithfully reproduces important mi-
croscopic correlations [113-118]. Furthermore, based on
fine-grained (fully atomistic) simulations, a bottom-up
spatial CG method can answer the following questions.
Is the Lewis-Wahnstrom model a microscopically consis-
tent representation of OTP molecules? If not, to what
extent does this ad hoc model accurately capture micro-
scopic correlations at the reduced resolution? Chemical
intuition suggests that bonds between linked phenyl rings

in OTP should fluctuate, indicating that the underlying
assumption of the Lewis-Wahnstréom model might be in-
correct. In this regard, constructing a three-site spatial
CG model using the atomistic OTP trajectory can un-
ravel this ambiguity. By examining the stark differences
between the full-atomistic level and the phenomenolog-
ical CG level, introducing a systematic coarse-graining
approach to complex molecules is expected to provide
a microscopic understanding of density scaling relation-
ships.

Due to the expected flexibility of intramolecular bonds
in OTP, a single-site (center-of-mass) representation
would be the optimal resolution for tracing out a one-
dimensional phase diagram because it eliminates direc-
tional intramolecular interactions. As such, this spatial
renormalization allows us to estimate the virial-potential
correlation of the underlying molecule. Eventually, the
single-site CG representation can provide insights into
the thermodynamic scaling in the following manner: (1)
how does the scaling exponent behave at the reduced
resolution? By removing unnecessary degrees of free-
dom, one could apply ideas from the isomorph theory.
(2) The renormalized interaction profile can be examined
at a single-site resolution to understand the microscopi-
cally determined interaction. Based on the obtained CG
interaction, we will examine whether it can be approxi-
mated as analytical interactions, e.g., IPL, to establish a
systematic connection to thermodynamic scaling or effec-
tive hard sphere theory. Combined together, an overall
aim is to link both the density scaling and excess entropy
scaling of complex molecular liquids using this system-
atic spatial coarse-graining approach, as well as temporal
coarse-graining.

D. Microscopic Reference: Atomistic Simulations

In order to perform coarse-graining in space and time,
we first performed an all-atom simulation of 125 OTP
molecules [5, 59-62] using the Optimized Potentials for
Liquid Simulations (OPLS) force field with charge correc-
tions, 1.14*CM1A(-LBCC) [119]. Figure 2(a) illustrates
a snapshot of the OTP system modeled using this force
field. The molecular shape is retained by intramolecular
bonds, angles, and dihedral potential, Ujpgra(r™), while
the intermolecular interactions, Uiygra(r™), are described
by Coulomb and Lennard-Jones interactions. The overall
potential energy is represented as:

U(rn) = Uintra(rn) + Uimer(r”). (10)
where
Uintra(r") = Z K (rij — req)® + Z Ko(0i1 — Oeq)?
bonds angles
+ > Vidum) (11)
dihedrals
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FIG. 2. Microscopic MD simulation details of the OTP sys-
tem. (a) Snapshot from an atomistic simulation of 125 OTP
molecules. The blue lines indicate the periodic boundaries of
the simulation box. (b) Thermodynamic state points investi-
gated in this work. The dashed line indicates state points of
ambient pressure (p =1 atm).

with V(i) = S0 _, Vi cos(noijrr + fn)/2, and
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Uinter (r™) = Z Zr?» + leg - = (12)
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with 7;; = |r; —r;| as a pair distance. The parameters

(Kry Teqy, Ko, beq, Vi, frn, @i, Aij and Cjj) are chosen
according to Ref. 119.

In order to investigate density scaling, various thermo-
dynamic state points of OTP were investigated at the
atomistic level using Eqgs. (10)-(12). The explored state
points are depicted in Fig. 2(b), where the temperature
ranges from 380 to 700 K and the (mass) density from
0.878 to 1.115 g/cm? (corresponding to the box lengths
from 37.899 to 35 A), falling between the experimental
conditions studied for OTP. At each state point, constant
temperature molecular dynamics simulations [120, 121]
were carried out for durations between 70 and 400 ns
using the LAMMPS software package [122].

IV. COARSE-GRAINING IN TIME
A. Theory of Temporal Coarse-Graining

The central goal of coarse-graining in time is to aver-
age out fast degrees of freedom while retaining the slow
degrees of freedom. Hereafter, we assume the system is
at a sufficiently low temperature, where intramolecular
degrees of freedom, such as bond vibrations, are consid-
erably faster than molecular motions, e.g., translational
motions. We consider temporal averaging characterized
by a time scale, 7, or the inverse angular frequency, w™!,
chosen to be faster than the intermolecular dynamics but
slower than intramolecular motions. In general, the opti-
mal 7 and w depend on the specific observable from OTP
intended to be CG in time. In this section, we will in-
troduce several temporal coarse-graining methodologies
and show that these different approaches capture nearly
the same strong correlation nature for OTP.

() (b)

7 — averaged

FIG. 3. Schematic description of the proposed temporal
coarse-graining: (a) Fully atomistic simulation trajectories
give energetics with frequent fluctuations (green lines) due to
intramolecular interactions and motions (green arrows). (b)
By temporal coarse-graining the energetics over the charac-
teristic time 7, one can focus on the slow fluctuations (black
lines) due to the intermolecular interactions.

B. Time-Averaging Approach

Arguably, the most straightforward method for imple-
menting temporal coarse-graining would be to perform a
time average of the potential energy U(t) and the virial
W (t). This time-averaging approach is motivated by a
typical experimental setting, where measuring fluctua-
tions using a probe often encounters an effective “low-
pass” filter. This essentially corresponds to the temporal
CG quantity f(t;7), which can be expressed as a convo-
lution

firy = [ T HOw -, (19)

where w(t;7) is a kernel with the property
[ w(t;T)dt = 1 (not to be confused with the
angular frequency w) that describes how the averaging
is distributed in time. It is worth noting that f is
associated with slow fluctuations if the w function has
a significant width, usually quantified by a large value
of the 7 parameter. The quantity f(¢;7) is relevant to
experimental measurements, where f(¢) might not be
readily available. We implemented a discrete analog of
Eq. (13) using the SciPy Python package [123].

The w is typically an exponential decay, a Gaussian
function, or the Hann function. In this work, we adopt
the “boxcar” average, where f(t,7) is computed by av-
eraging values from f(t) to f(¢t + 7) with equal weight.
The temporal coarse-graining is then achieved by using
a rectangular window as the w function, defined as

0 for t <0,
1/7 for 0<t<t+r, (14)
0 fort >t+ .

w(t;7) =



As w(t;7) — 6(t) for 7 — 0, the direct signal, f(¢), is
recovered in the limit 7 — 0.

Figure 4(a) illustrates the boxcar average of potential
energy fluctuations with averaging lengths ranging from

=1pstorT =10mns at T = 380 K and p = 1.029
g/ml, corresponding to ambient pressure. As expected,
the fluctuations decrease as 7 increases. Figure 4(b) dis-
plays the time-averaged potential energy, the average of
the intramolecular contribution, and of the intermolec-
ular contribution with 7 = 1 ns, representing slow fluc-
tuations. Notably, using 7 = 1 ns, the kinetic energy
fluctuations have diminished, whereas the fluctuations of
intermolecular energy remain significant. The data show
that upon temporal coarse-graining, the slow fluctuations
are representative of the intermolecular contributions.

In order to systematically investigate the impact of 7,
Fig. 4(c) presents the standard deviation as a function
of 7, revealing that slow energetic fluctuations are ob-
served when the width of the average is on the order
of a nanosecond for the investigated state point. We
have noticed that for some state points, separating fast
and slow fluctuations is not possible, especially when the
structural relaxation time is significantly faster than one
nanosecond. Moreover, in scenarios of low temperatures
or high densities, obtaining good statistics for slow fluc-
tuations can be challenging as the dynamics become slug-
gish. In this study, we find that a one-nanosecond relax-
ation time is an appropriate characteristic time for tem-
poral coarse-graining in the context of OTP. Table I lists
additional 7 values that are systematically determined
across various state points through the aforementioned
coarse-graining process.

Next, we investigate whether the CG energy landscape
exhibits strong correlations and eventually scale invari-
ance, as depicted in Fig. 1. Drawing inspiration from
the formalism of the isomorph theory for point particles,
we expect strong correlations in the slow fluctuations be-
tween the potential energy and the virial: While the in-
stantaneous fluctuations of potential energy and virial
themselves are uncorrelated [Fig. 5(a)], the slow fluctua-
tion are correlated [Fig. 5(b)]. Therefore, as an analogy
to the isomorph theory, the Pearson correlation coeffi-
cient,

AWAU
Ry (1) = = > ) - (15)
VIAW)2)((AU)?)
should be close to unity. As depicted in Fig. 6(a),

Rgw (7) approaches 0.86 for 7 > 1 ns, indicating a
strongly correlating nature. This also suggests that the
slowly fluctuating part of the potential energy landscape
is scale-invariant, aligning with the illustration in Fig. 1.
Building upon this observation of strong correlations, we
proceed to compute the density scaling exponent from
temporal coarse-graining using

(AWAD)

(A0 16)

Yow (1) =

TABLE 1. State points where the density scaling exponent
could be accurately determined from the slow W (¢)-U(¢) fluc-
tuations using a boxcar average, compare Fig. 6. The struc-
tural relaxation time 7, is estimated as shown in Fig. 7(a).

T [K] p [g/mL] 7o [ns]
360 1045 1.0 6.1
380 1020 05 6.3
400 1.060 2.0 6.0
400  1.014 0.1 6.2
500 1096 1.0 7.0
500 1078 04 6.3

As demonstrated in Fig. 6, the exponent converges to
6.3(3). Extending this approach to other state points
with similar structural relaxation times, the averaged es-
timates for scaling exponents reported in Table I consis-
tently yield ~ values of 6.3 within statistical uncertainty.

In summary, we demonstrated that by directly per-
forming time averaging of fluctuating atomistic virial
and potential energies, we obtained an average value of
~v = 6.3 for atomistic OTP, confirming its strongly corre-
lating nature, which was not previously feasible. Before
examining whether this v value correctly encodes the one-
dimensional phase diagram of OTP, we will validate if
our time-averaging approach represents the correct tem-
poral CG characteristic of OTP in the remainder of this
section, using alternative approaches inspired by experi-
mental observations.

C. Time Correlation Function Approach

As we are interested in the time series of fluctuations,
an alternative approach to performing temporal coarse-
graining can be derived from the time correlation formal-
ism. The time correlation function between two signals
f and g with a lag time 7 is defined as

To
:?vmmw:hmgio flt+

To— o0 TO

Crq(7) T)g(t)dt. (17)

Efficient computation of Eq. (17) is possible through
the cross-correlation theorem combined with the Fast
Fourier Transform (FFT) algorithm, as described in Ref.
124. To brieﬂy outline the standard procedure we fol-
lowed, let Fly f _ exp —iwt)dt be the Fourier

transform, and let F1 = [7 Y (w)exp(iwt)dw
be the inverse Fourier transform Then the time corre-
lation function Cy, can be expressed through the inverse
Fourier transform of the convolution in the frequency do-
main:

Cry(7) = F U F* ()G (W), (18)
where F(w) = F[f(t)], G(w) = Flg(t)], and (...)* rep-
resents the complex conjugate. From its definition, Eq.
(17) represents slow fluctuations as 7 increases.
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FIG. 5. WU fluctuations from time-averaged CG OTP. (a)
Normalized times series, (y(t) — (y)) /oy (where oy, is the stan-
dard deviation), of potential energy (green) and viral (blue).
The correlation is weak, quantified by the Pearson correlation
coefficient R = 0.01. (b) Boxcar averaged energy (green) and
virial (blue) fluctuations. The correlation is strong, quantified
by R = 0.86. Note that the time-axis on this panel is in units
of nanoseconds, while it is in picoseconds in the first panel.

In order to assess the CG virial potential-energy corre-
lation using the time correlation formalism, Fig. 7(a)
illustrates the time correlation function of the poten-
tial energy with itself over time, Cyy(t)—the auto-
correlation function, at the same thermodynamic state
point as investigated in the previous subsection using
time-averaging (Figs. 4-6): 380 K; 1.029 g/ml; 1 atm.
The auto-correlation function depicted in Fig. 7(a)
demonstrates the multi-step relaxation nature of poten-
tial energy surfaces. As the terminal relaxation is as-
sociated with important molecular translations and ro-
tations, we estimated the structural relaxation time un-
derlying this terminal relaxation by fitting to a stretched
exponential: A - exp [—(t/7)”]. At this specific state
point, the structural relaxation time was determined to
be 7, = 0.5 ns, which is within the same order of magni-
tude as the time scale obtained from the time-averaging
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FIG. 6. Correlation coefficients from time-averaged CG
OTP. (a) The Pearson correlation coefficient of the box-
car averaged potential energy (U) and virial (W), as a
function of the length of the boxcar average, Ry (7)) =
(AW AD)

(AW)2)((AD)2)
fluctuations are evident as R — 0.86 for 7 — 7o (black dashed
line). (b) Density scaling exponent (y) estimated from U and
virial W. We find that v — 6.3 for 7 — 7, (black dashed
line).

. Strong correlations of the slow U and W

method [cf. Fig. 4(c) and Fig. 7(a)].

As we apply the time correlation formalism to other
fluctuating quantities, a strong correlation of the slow
energy-virial fluctuations becomes evident. In Fig. 7(b),
we observe that the long-time (slow) relaxation behav-
ior of Cyy(t), Cww(t), and Cyw(t) coincide near the
terminal relaxation time. This feature greatly suggests
a strong correlation between the virial and the potential
energy at this characteristic time. Based on these find-
ings, we computed the scaling exponent estimated from
the time correlation function [Fig. 7(c)]

_ Cuw (1)
Cuu(t)’

which provides a value consistent with that of the time-
averaging approach [Fig. 6(b)]: v = 6.3, highlighting the

Ye(t) (19)



validity of the two temporal CG approaches.

D. Frequency-Dependent Response Approach

Our final temporal CG approach is directly inspired
by studies on the frequency-dependent Prigogine-Defay
ratio aimed at understanding density scaling [82, 100,
101, 125].  This concept can be formally derived
from the fluctuation-dissipation theorem, which links
the power spectrum of fluctuations in equilibrium to
frequency-dependent linear response functions. Gener-
ally, a frequency-dependent response function related to
the variables f and g can be computed as a Fourier-
Laplace transform

wio) = [ et (20)

in which Cy,(t) = 4 Cy(t). Since Cy, approaches zero
when ¢ — 0, the integral in Eq. (20) can be treated as a
conventional Fourier transform when Ct,(t) is prescribed
to be zero at negative times. Consequently, this quantity
can be efficiently computed using the FFT algorithm.
For example, the frequency-dependent heat capacity can
be estimated from cy (w) = —ppy(w)/kpT? [126].

Having established the relationship between the
frequency-dependent response function and the power
spectrum of fluctuations, we now evaluate the correla-
tion between the virial and the potential energy fluctua-
tions. At low angular frequencies (w), corresponding to
long time scales, this can be done by assessing pyy(w),
pwu(w), and pww(w), as depicted in Fig. 8(a). From
these frequency-dependent response functions, the gen-
eralized correlation coefficient, which is also frequency-
dependent, between two signals can be defined in a
manner analogous to the frequency-dependent Prigogine-
Defay ratio [82, 100, 101, 125]:

Ru(w) = Jnowlw) (21)

VIuww (W) Ipou (W)
In Eq. (21), 3(...) denotes the imaginary part of the com-
plex response functions. In practice, we note that R, (w)
is rather noisy, yet it confirms the existence of strong
virial-potential energy fluctuations. From Eq. (21), the
corresponding frequency-dependent scaling exponent can
be defined as

~ Jpwu(w)

= o)’ (22)

¥(w)

which can still be estimated from the noisy response func-
tions. Figure 8(b) further confirms the validity of our
approach, consistently yielding a v = 6.3 value as with
the two previous approaches.

E. Summary

We have introduced three methods for coarse-graining
the fast intramolecular degrees of freedom in OTP
molecules over a temporal domain. By effectively retain-
ing the slow degrees of freedom through temporal coarse-
graining, we have shown that this temporal CG approach
allows for uncovering strong correlations between the
virial and potential energy of OTP, which are challenging
to assess at a fully atomistic resolution. In particular, our
temporal coarse-graining approaches include (1) direct
time-averaging of fluctuating virial and potential energy,
(2) indirect coarse-graining of the time correlation for-
malism in conjunction with the Fourier transformation,
and (3) utilization of a frequency-dependent response to
coarse-grain the power spectrum of fluctuations via the
fluctuation-dissipation theorem.

We implemented three different temporal CG ap-
proaches for OTP across various temperature and density
conditions. These three distinct approaches all remark-
ably provide a consistent scaling exponent of v = 6.3 at
various thermodynamic state points. This agreement in-
dicates that, while the approaches are derived differently,
the underlying physical picture of the strong correlation
in OTP is invariant. Nevertheless, among the differ-
ent approaches, we note that the time-averaging method
could be easily extended to other complex molecules as
it provides better statistics and is relatively easy to im-
plement compared to the other two approaches. Alto-
gether, temporal coarse-graining reveals a hidden scale
invariance from the slow fluctuations in the OTP energy
landscape [e.g., Fig. 5(b)], demonstrating that U(r") in
OTP resembles the landscape hypothesized in Fig. 1.

V. COARSE-GRAINING IN SPACE
A. Theory of Spatial Coarse-Graining

While coarse-graining in time entails convoluting the
observables over time, coarse-graining in space aims to
simplify the target molecular system itself [113-118].
In the case of OTP, the primary objective is to de-
sign a single-site CG model free of intramolecular in-
teractions. The desired spatial CG model should ac-
curately capture the effective correlations of atomistic
OTP molecules at the center-of-mass level, as depicted
in Fig. 9(a). Bottom-up (spatial) coarse-graining ap-
proaches are, therefore, the optimal strategy for perform-
ing coarse-graining in space, as the central aim of bottom-
up coarse-graining is to faithfully recapitulate the mi-
croscopic (atomistic) correlations at the spatial CG level
[116, 118].

Consider a spatial coarse-graining mapping opera-
tor, denoted as MIJRV , which transforms the fine-grained
(atomistic) configurations r” into the CG configurations
RY, ie., MY : r™ — RY. The CG model correctly ap-
proximates the fine-grained (FQG) reference when the fol-
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lowing consistency condition regarding the equilibrium
probability distributions of the FG and CG variables in
phase space is satisfied [127, 128]:

peG(RY) = / dr"s (MY (") — RY)) pra (™), (23)

where the overall delta function enforces that the mapped
FG configurations are matched to the CG configura-
tions, and it is understood as a product of delta func-
tions for each CG particle I, i.e., 6 (ME (r") —RY)) =
H;V (0 (M;(r™) —Ry)). From the thermodynamic con-
sistency relationship for configurational variables [Eq.
(23)], the effective CG interaction Ucg can be derived
as

Ucg = — k:BTln/dr"5 (ME (r™) - RY)

X exp (—uFG(rn)> + (constant), (24)

kT

where upg(r™) represents the FG interaction potential.
It is worth noting that Ucg in Eq. (24) takes the form of
the many-body potential of mean force (PMF) in terms
of CG variables [127, 128]. Therefore, Ucg(RY) can be
interpreted as a free energy-like quantity, and in general
it will vary with the thermodynamic state point. This
state point-dependent nature of the CG interactions is
referred to as the transferability issue in CG modeling
[129-131].

While Eq. (24) is formally exact such that it yields
a thermodynamically consistent CG model, the practi-
cal determination of Ucg through the many-dimensional
integration is highly prohibitive in practice. Various op-
timization schemes have been developed to overcome this
challenge. In this work, we employ a multiscale coarse-
graining (MS-CG) methodology [127, 128], which uti-
lizes force-matching to determine Ucg [132]. This is
achieved by variationally minimizing the force residual
x2[¢], which is the force difference between the micro-
scopic reference force at the CG level, f7(r™), and the un-
known CG force, F;(Mg (r"); ¢), defined using the CG
force field parameter ¢:

N
) = 5 (D IR (ME 07 0) — i) (25)
I=1

Therefore, ¢ can be determined by minimizing Eq. (25).
Noid et al. further demonstrated that the least-squares
solution to Eq. (25) satisfies the consistency relation-
ship given in Eq. (23) [127]. This thermodynamically
consistent CG model also captures important structural
correlations from the atomistic reference: Ref. 133 es-
tablished that the force-matching equation [Eq. (25)]
employing two-body basis sets is a discretized represen-
tation of the Yvon-Born-Green theory in liquid physics
[21]. This finding suggests that the MS-CG model can
effectively capture up to three-body correlations using
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FIG. 9. Schematic of the proposed spatial coarse-graining
with two different mapping schemes and the corresponding
radial distribution functions : (a) Single-site CG model at
the center-of-mass level. The single-site resolution integrates
the intramolecular degrees of freedom and thus is suitable to
investigate hidden scale invariance. (b) Three-site CG model.
This resolution is adopted by the ad hoc Lewis-Wahnstrom
model but lacks the link to microscopic physics.
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two-body basis sets, distinguishing it from other bottom-
up methodologies. Therefore, the MS-CG method stands
as a robust choice for constructing a CG model of OTP
with high structural accuracy.

B. Spatial CG Model of OTP
1. Settings and computational details

The construction of the spatially CG model for OTP
proceeded as follows. From atomistic MD trajectories, we
mapped OTP molecules to their center-of-masses. The
mapping operator M{ maps the configuration of each
molecule to its center-of-mass with the accumulated force
£1(r") = Xier, £F'G. where ff'¢ denotes the microscopic
force acting on atom 4 within the set of atoms Z; mapped
to the CG site I.

From the mapped atomistic trajectory, the effective
CG interaction of OTP was then determined by utilizing
Eq. (25) [134]. In practice, the CG force field, as seen in
Eq. (25), is expressed using pairwise basis sets ¢a(Ryy)
for the CG pair I and J, resulting in

Fr(ME (x); o) = Z ¢2(Rrs)ers, (26)

J#£I

where é;; denotes the unit vector of Ry;. To capture
the intricate profile of molecular interactions, we intro-
duced the B-spline function {uy} with coefficients ¢ to
define the pairwise basis, i.e., ¢p2(Rrs) = Y, crur(Rry).
The effective CG force field can then be expressed as
Fr(ME (r");¢2) = EJ?“ Yo ckuk(Rrg)éry, and Eq.
(25) reduces to an overdetermined system of linear equa-
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FIG. 10.  Parametrized pair interactions of the single-site

CG OTP at three state points: (a) 380 K, 1.029 g/ml, (b)
600 K, 1.025 g/ml, (¢) 700 K, 1.069 g/ml. Due to the free
energy nature of CG interactions, the OTP CG interactions
vary with temperature and density, as evident when compared

to panel (a), which is represented by green dots in panels (b)
and (c).

tions [135] of the following form:
Fo, = f. (27)

Here, the matrix F represents the CG forces expressed
through the overall CG configurations and basis func-
tions ¢o, while f denotes the mapped atomistic forces
at the CG level. For a more in-depth discussion of the
interpolation scheme and implementation details, read-
ers are referred to Ref. 132. Utilizing B-splines in the
parametrization allows for capturing complex interaction
profiles that cannot be fully resolved using analytical in-
teraction. However, this introduces a numerical challenge
when estimating the derivatives of interactions. This
drawback will be discussed in more detail in Sec. VD1,
when directly estimating the density scaling exponent y
from the CG models.

2. Parametrized Interaction

The effective pairwise CG interactions of OTP were
parametrized by solving Eq. (27) across the thermody-
namic state points investigated in Sec. IIID spanning
temperatures from 380 to 700 K and densities from 0.878
to 1.115 g/cm?. Based on the previously reported char-
acteristics of OTP interactions, we selected a spline reso-
lution of 0.2 A and sampled the interaction up to a cutoff
of 10.0 A.

In Fig. 10, the parametrized CG interactions for three
different temperature and density conditions out of 23
state points are illustrated. For clarity, the CG inter-
actions at the remaining state points are provided in
Appendix A. The CG OTP interactions are consistently
repulsive, regardless of the thermodynamic conditions.
Generally, U(R) is always positive and appears to decay
around 14-16 A with subtle variations in positions and
slopes. These changes arise from the free energy nature
of bottom-up CG interactions, as expressed in Eq. (24);
Ucg varies with temperature, pressure, and other ther-
modynamic state variables, as extensively demonstrated



in liquid systems [130, 131, 136-138].

The purely repulsive profile may signify the strongly
correlating nature of CG OTP. Furthermore, the CG
OTP interactions may be approximated as interactions
following an IPL form. Given that IPL interactions
strictly follow isomorph theory and adhere to density
scaling, this avenue could be a viable approach for as-
sessing the isomorph nature of atomistic OTP. However,
for this mapping to be effective, a comprehensive and
quantitative assessment of CG interactions is necessary.
Before delving into the density scaling of CG OTP, it is
imperative to validate whether the resulting CG interac-
tions can faithfully reproduce the important structural
correlations observed at the microscopic level.

3. Validating CG Models: Structural Correlations

To gauge the performance of the CG models of OTP,
we perform CG simulations utilizing the obtained in-
teractions and compute the radial distribution function
(RDF) of the center-of-mass configurations, i.e., the in-
termolecular RDF. For each thermodynamic state point,
we constructed a separate CG system and conducted con-
stant NVT dynamics for 5 ns, employing the same ther-
mostats as in the atomistic simulation. Using the last
snapshot from the atomistic simulation, we performed
the center-of-mass coarse-graining to generate the initial
configuration for CG runs. The CG RDFs are then cal-
culated from the CG simulations (Fig. 11). Likewise,
the CG RDFs at other thermodynamic state points are
presented in Appendix A (Fig. 17).

In spite of the purely repulsive nature of the interac-
tion profile, our observation indicates that the CG simu-
lation can faithfully reproduce the atomistic RDF across
all thermodynamic state points studied. Even though
high-resolution structural characteristics are inevitably
lost at this level of coarse-graining, we note that the
RDFs exhibit subtle structuring near 4-6 A and the first
peak around 8 A. Notably, the CG models can capture
the general shape and structure of the RDF within a
0.1 value range. Despite the approximations introduced,
such as pairwise decomposability, we conclude that the

CG model captures the essential structural correlations
of OTPs.

C. Bottom-up Connection to ad hoc
Lewis-Wahnstrom Model

1. Three-site CG Model

While Fig. 11 illustrates that the purely repulsive
CG interaction can correctly capture structural corre-
lations at the center-of-mass level, the purely positive
(repulsive) nature of this interaction may seem counter-
intuitive at first glance. This is because the commonly
adopted potential for the three-site Lewis-Wahnstrom
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FIG. 11. Center-of-mass pair correlation functions gcom(R)
for atomistic (red lines) and the single-site CG (blue dots)
simulations of OTP at three state points: (a) 380 K, 1.029
g/ml, (b) 600 K, 1.025 g/ml, (c) 700 K, 1.069 g/ml. Over
a wide range of temperatures (AT = 320 K) and densities
(AV = 11561A3), the spatial CG approach reproduces struc-
tural correlations.

model comprises nonbonded interactions of Lennard-
Jones form. Hence, understanding how coarse-graining
three-site Lennard-Jones chain to the single-site reso-
lution becomes purely repulsive, or vice versa, is not
straightforward. This mismatch perhaps implies that the
Lewis-Wahnstrom model might not be the correct rep-
resentation of microscopic OTP molecules at the three-
site resolution. To note, a systematic assessment of the
fidelity of the Lewis-Wahnstrom model in comparison
with the microscopic reference is lacking in the literature.
Therefore, we next performed bottom-up coarse-graining
of the atomistic OTP to the three-site resolution accord-
ing to the schematic designed in Fig. 9(b) by mapping
each benzene ring to the CG site.

The original OTP model by Lewis and Wahnstrom rep-
resents the OTP molecule as three particles interacting
through a Lennard-Jones potential with ¢/kp = 600 K
(i.e., 1.1923 kcal/mol) and ¢ = 4.83 A. The intramolecu-
lar interactions are constrained with a fixed bond length
of o and a fixed angle of 75°. Although these fixed in-
tramolecular bonds and angles allow for exhibiting strong
potential-virial correlations, this ad hoc description does
not align with chemical details and hence may miss mi-
croscopic details; the correct atomistic description of
chemical bonds between benzene rings should be flexible.
Additionally, in the Lewis-Wahnstrém model, all three
sites are considered equivalent with identical Lennard-
Jones interactions, but two CG particles at the end (tail)
should differ from the CG particle in the middle (center),
as the center CG site has one less hydrogen atom. This
difference implies that tail-tail, center-center, and tail-
center pairs should have distinct interaction profiles, at
least in principle.

To validate this ad hoc description and gain deeper
insight into the energetics at the single-site level, we pro-
pose a three-site CG model of OTP constructed from
the first condition presented in Fig. 10 at the follow-
ing thermodynamic state points: T = 380 K, p = 1.029
g/ml. Without loss of generality, one can readily apply
the same protocol to other thermodynamic state points
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FIG. 12. Assessing the ad hoc Lewis-Wahnstrom model (dot-
ted lines) using the bottom-up three-site spatial CG model
(solid lines). (a) Effective pair interactions. Bottom-up CG
interactions exhibit a heterogeneous nature between tail and
center CG sites with numbers indicating the zero interaction
distance Ro, where U(Ry) = 0. (b) Parametrized bond in-
teractions from atomistic statistics, exhibiting a fluctuating
nature, unlike the Lewis-Wahnstrom model with 9.1% shorter
bond length. Despite these differences, (c) and (d) show
that the purely repulsive interactions and pair correlations at
the single-site level from the Lewis-Wahnstrom model (black
dots) are qualitatively consistent with the bottom-up one-site
CG models (green lines), respectively.

illustrated in Fig. 2 that exhibit similar energetics. In
order to account for flexible topology, we also introduce
fourth-order B-splines for the bonded interactions with a
resolution of 0.20 A. From manually mapped three-site
trajectories of atomistic simulations, we observed that
the bond length fluctuates from 4.09 to 4.65 A, support-
ing the initial hypothesis. Finally, the three-site spatial
CG model was constructed by applying force-matching
[Eq. (25)] with bonded interactions.

2. Results

For the non-bonded interactions, the tail and center
CG sites depicted in Fig. 12(a) exhibit slightly dif-
ferent energetics but similar overall interaction profiles.
Thus, we observe that the ad hoc Lewis-Wahnstrom
model provides a good approximation of the site-site CG
interactions. The qualitative agreement of the Lewis-
Wahnstréom model is attributed to its ability to capture
short-range attractions. Yet, in a quantitative sense, the
ad hoc interaction is closest to the tail-tail interaction
among the three pair interactions, with a difference of up
to 0.2 kcal/mol. Due to the heterogeneity of CG sites,
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the center CG site exhibits less strong attraction, which is
missing in the ad hoc treatment. Additionally, the ad hoc
model is characterized by a single Lennard-Jones interac-
tion with a long-range decay scaling as R~%, whereas the
bottom-up derived interactions show slightly more com-
plex decaying profiles with additional long-range valleys.

In Fig. 12(b), in alignment with atomistic statis-
tics, the parametrized CG bonded interaction exhibits
a flexible, harmonic-like profile with a minimum of 4.39
A, which is shorter than the Lewis-Wahnstrom value of
o = 4.83 A. From this bond length, the mismatched
bond interaction is approximately 30 kcal/mol, which is
about 40 kpT, indicating inaccuracies in overall energet-
ics during computer simulations. Taken together, Figs.
12(a) and (b) suggest that the Lewis-Wahnstrom model
can serve as a qualitative approximation of the accurate
bottom-up CG model. Then, the next step would be to
examine whether the purely repulsive interaction profile
at the single-site resolution is consistent with the descrip-
tion given by the Lewis-Wahnstrém model.

In order to construct a single-site representation from
the Lewis-Wahnstrom model, we first generated the
Lewis-Wahnstrom system under the same temperature
and density conditions (380 K and 1.029 g/ml, respec-
tively). After placing 125 Lewis-Wahnstrém molecules
with correct bonding constraints, energy minimization
using the stochastic descent algorithm was performed to
eliminate artificial strains applied to the system. Then,
we conducted the Lewis-Wahnstrom simulation while fix-
ing the bonds and angles. Finally, from the propagated
CG trajectories, three-site OTP models were mapped
into a center-of-mass CG model, and then we used the
same protocol described above to determine the effec-
tive Lewis-Wahnstrom interaction at the single-site reso-
lution.

Figure 12 compares the obtained single-site ad hoc in-
teraction with the spatial CG interaction. Notably, we
still observe a purely repulsive interaction profile, even
from the one constructed from the Lewis-Wahnstrém
model. In other words, for both analytic and phenomeno-
logical models, the coarse-graining of three Lennard-
Jones sites at the fixed topology can cancel out short-
range attractions at the center-of-mass level. This leads
to the important conclusion that the purely repulsive
nature depicted in Fig. 10 is not merely a numerical
artifact but is indeed consistent with the phenomenolog-
ical model. This conclusion is further substantiated by
the additional analysis presented in Fig. 12(d) in terms
of center-of-mass RDF. The single-site CG RDF of the
Lewis-Wahnstrom model shows a trend consistent with
the bottom-up reference constructed from atomistic sim-
ulations, where the slight differences can be attributed
to the missing microscopic details (and transferability)
within the ad hoc treatment.

To summarize, we have demonstrated that the bottom-
up spatially CG model of OTP is consistent with the
phenomenological model widely studied in the literature.
This agreement demonstrates the suitability of our model



for rigorously studying the density scaling nature from a
microscopic perspective. Furthermore, this analysis sug-
gests room for improvement in the quantitative ad hoc
models, specifically in accounting for the heterogeneous
nature of CG sites for non-bonded interactions, as well
as for describing flexible bonded interactions to achieve
a more accurate representation of the OTP molecule.

D. Density Scaling of OTP
1. Representability Issue and Scaling Exponent

Having established that the spatial CG OTP models
are representative of microscopic correlations in a renor-
malized manner, our focus now shifts to understanding
the density scaling relationship of OTP through spatial
coarse-graining. Similar to temporal coarse-graining, at
the single-site CG resolution, we anticipate that the vi-
brational motions resulting from the intramolecular in-
teractions are integrated out by the coarse-graining pro-
cess. In Appendix B, we validate this hypothesis by
comparing the power spectrum from CG MD simulations
with that of the atomistic reference. The comparison re-
veals that high-frequency vibrational motions are effec-
tively integrated out at the CG resolution, leaving only
translational motions. Along with the purely repulsive
profile of OTP interaction, this analysis strongly suggests
that spatial coarse-graining is a highly effective strategy
for probing the density scaling of OTP from first princi-
ples.

Nevertheless, we would like to emphasize that con-
ventional approaches in isomorph theory are limited in
their application to (spatial) CG systems. This limi-
tation arises from the renormalized degrees of freedom
during the coarse-graining process, causing the thermo-
dynamic properties of CG models to deviate significantly
from the atomistic reference. This issue, known as the
representability issue, implies that one cannot use the
naively evaluated thermodynamic properties, as is done
at the atomistic level [129, 139, 140].

In particular, this challenge severely hampers the as-
sessment of virial-potential correlations in CG models.
Since the effective CG interaction is the free energy and
not the internal energy [127, 128], due to entropic con-
tributions from the eliminated degrees of freedom, the
average CG energy estimated from CG simulations cor-
responds to the overall free energy at the fully atomistic
(FG) level [130]. Hence, potential energy fluctuations at
the FG level cannot be directly assessed from the CG
simulation. The situation is exacerbated when estimat-
ing the CG pressure because the naively estimated CG
virial and pressure differ significantly from their FG ref-
erence values [141]. This necessitates a complex reevalua-
tion of the missing virial contribution throughout the CG
simulation, making it highly impractical to evaluate cor-
relations between correct virial and potential simultane-
ously during the CG simulations. Therefore, unlike with
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temporal coarse-graining, this approach cannot be used
to estimate . Furthermore, our bottom-up approach
does not yield an analytical form of the CG potential;
instead, it aims to find the closest discretized potential
values at specific spline knots defined by the spline res-
olution. Therefore, higher-order derivatives are not nu-
merically stable and reliable, and « cannot be derived
from the derivatives of analytical potentials, as with the
IPL potential.

To note, for the IPL potential following Vipr(R) =
€(R/o)~™, the density-scaling exponent is constant over
the radial domain as v = n/3. Even for analytical poten-
tials that contain IPL-like hard-core repulsion, denoted
as V(R), the effective distance-dependent exponent can
be estimated from the p-th order derivatives of the an-
alytical potential V) (R) since VPTV(R)/VP)(R) =

—(n 4+ p)/R, yielding n(P) = —p — R%I()}%%) [81]. How-
ever, this method is not applicable to bottom-up CG in-
teractions parametrized according to Sec. V B because
the CG potential is state point-dependent. Therefore,
under different coarse-graining schemes, an alternative
systematic approach is required to estimate the density
scaling exponent. To differentiate v from the temporal
coarse-graining approaches, we will henceforth denote
as v derived from CG in time and ~ as the scaling ex-
ponent derived from the spatial CG model of OTP.

2.  FEstimation of Excess Entropy in CG Systems

In this study, we propose a direct estimation of ~ for
spatial CG models using the formal definition of v along
the phase diagram, i.e.,

olnT
. (MM)SQX. (28)

Equation (28) implies that -, is the slope along the iso-
morph (configurational adiabat) through the state points
(p,T). While evaluating s strictly based on Eq. (28) is
less common than the aforementioned approach, we will
show that this method for spatial CG models provides a
viable way to estimate 7. Yet, it should be noted that
Eq. (28) needs to be evaluated at the CG level, not at
the complex atomistic level, requiring an estimation of
the excess entropy of CG models in the first place.

In order to estimate the excess entropy (Sex) based on
statistical mechanical theories, Wallace [142] as well as
Baranyai and Evans [143] showed that Sex can be ex-
pressed as a systematic expansion over n-particle distri-
bution functions, following the multiparticle correlation
function formalism [144],

Sex = 305, (29)

n>2

where ng) is the n-particle contribution to the excess
entropy. While for simple liquids, the two-body contribu-
tion is often dominant and enough to estimate the excess



entropy,
Sex ~ S5

oo
= —27p
0

dR{g(R)Ing(R) - [g(R) — 1]} R?,
(30)

we question the applicability of this approach to OTP
since many liquids exhibit higher-order contributions be-
yond the pairwise level due to their many-body correla-
tions (e.g., water [145, 146]), necessitating the addition
of higher-order contributions.

More importantly, as depicted in Fig. 11, the RDF
of the OTPs remains remarkably similar across a broad
range of temperature and density conditions. This sug-
gests that changes in thermodynamic state variables
might minimally impact the two-body correlation level,
whereas complexities may arise beyond pairwise correla-
tions. Unfortunately, the assessment of higher-order cor-
relations and the evaluation of the corresponding n-body
excess entropy require extensive sampling and approxi-
mations [147]. To note, fully evaluating Eq. (30) over
the orientational contribution for water requires more
than 107 configurations to converge [148, 149], making
it nearly impractical to compute higher-order contribu-
tions for more complex molecules. While the single-site
CG model does not suffer from orientational degrees of
freedom, the slowly decaying interaction profile of OTP
(Fig. 10) indicates that it may not be faithfully described
as the hard sphere or the generalized van der Waals model
[150-152]. A systematic understanding of this deviation
from the hard sphere will be pursued in a future arti-
cle. In turn, the distinctive interaction of OTP implies
that hierarchical approaches based on classical perturba-
tion theory and hard sphere theory may not be valid for
estimating excess entropy [153].

8. Modal Entropy of CG OTP

In this context, we adopt an alternative approach
based on the two-phase thermodynamics (2PT) method
[154-157], which has recently demonstrated its utility in
computing the excess entropy of molecular CG liquids.
The fundamental idea of this method originates from the
quasiharmonic analysis by Karplus and coworkers [158],
later formulated by Goddard et al. [154, 155]. The
original formulation of the 2PT method was derived at
the fully atomistic level, and in general, thermodynamic
properties can be estimated by constructing the partition
function Q from the density of the state (DoS) of liquid,
denoted as DoS(v), with the appropriate weighting func-
tion W (v),

InQ = /00 DoS(v)W (v)duv. (31)
0

The DoS(v) can be directly obtained from the micro-
scopic MD simulations by taking the Fourier transfor-
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mation of the velocity auto-correlation functions. How-
ever, estimating various thermodynamic properties using
Eq. (31) and assuming that the system follows a quan-
tum harmonic oscillator results in singularities at v = 0.
The 2PT method circumvents this issue by decompos-
ing the liquid DoS into a combination of two phases,
namely gas-like and liquid-like phases: DoSiiq(v) = f X
DoSgas(v) + (1 — f)DoSso1ia(v). Here, f is the “fluidic-
ity” factor introduced to account for diffusive contribu-
tions. This decomposition yields the well-defined zero-
frequency DOS as DoSgas(0) = DoS(0), which can be
computed from the Carnahan-Starling equation of state
[159], and DoSso;a(0) = 0, allowing for the estimation
of thermodynamic properties. The fluidicity factor f
is determined by the ratio between the self-diffusivity
of the system and the hard sphere diffusivity using the
Chapman-Enskog theory [160]. Combined together, the
2PT method provides an efficient and accurate way of es-
timating entropy through S = kBTag}Q + kpln Q. Fur-
thermore, various other thermodynamic properties, such
as heat capacity or Helmholtz free energy, can be calcu-
lated from the constructed DoS in a similar manner. De-
spite its approximate nature, it has been demonstrated
that the thermodynamic properties predicted for com-
mon organic liquids using the 2PT approach are in close
agreement with experimental results and more rigorous
perturbation methods [156]. In particular, for OTP, we
further substantiate the consistent performance by cal-
culating the standard molar entropy at ambient temper-
ature (360 K), S = 350.54 J/mol/K, which agrees well
with the experimental observation from calorimetric data
[161]. This agreement implies that the 2PT method can
be employed as a robust and efficient approach for esti-
mating excess entropy to understand the density scaling
of CG OTP.

A significant advantage of the 2PT method for com-
puting the excess entropy of CG systems lies in its capa-
bility of modal decomposition of entropy. This is feasible
by decomposing atomic velocities into translational, rota-
tional, and vibrational contributions for each molecule i:
v = v (7)) + v™(3) + vV1P(3). The translational velocity
v"™(4) is understood as the center-of-mass velocity, while
the rotational velocity v™* (i) can be obtained by treating
the system as a rigid rotor, i.e., v™%(i) = w(i) x v'°*(4).
The angular velocity w(i) is estimated by inverting the
L(:) = Lw(i), where L(4) is the angular momentum,
L(i) = >2;m;(r; x v;), and I, is the inertia tensor. Fi-
nally, the vibrational velocity can be computed as the
complement, i.e., vV (i) = v — (V¥ (4) 4 v (4)).

From the decomposed modal velocities, one can con-
struct the modal DoS and the corresponding entropy us-
ing the appropriate weighting functions. Detailed discus-
sions and formulas for the weighting functions are given
in the original 2PT literature [154-157] and extensively
discussed in recent applications to CG models [51, 130].
In summary, the 2PT approach enables efficient estima-
tion and decomposition of entropy as follows:

Ska = Spé + Sk + SkG- (32)




4. FExcess Entropy of CG OTP

The modal decomposition of entropy provides a prac-
tical starting point for estimating excess entropy, partic-
ularly in CG modeling, and the underlying reasoning is
twofold. First, when calculating the ideal gas entropy
of the target system to assess the excess entropy, this
decomposition allows for specifying the modal contribu-
tion to an ideal gas at the given CG resolution [162].
This advantage is more pronounced at the single-site CG
resolution chosen in this study [130]. At this single-site
level, where there are no rotational and vibrational mo-
tions, the CG entropy arises entirely from translational
motions. In this case, the ideal gas entropy can be di-
rectly estimated from the Sackur-Tetrode equation:

3
St hro\? N\ 5
trn id
o _ Pid g (0 ) (D) 42
%id = Nkp " <2wkaT> " (V) ty

(33)

and then the CG excess entropy is estimated from the
translational contribution,
SCG _ _trn CG trn

ex — Sex — S — Sid

3
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The second advantage of the single-site CG mapping lies
in the useful feature of directly deriving the missing en-
tropy from the coarse-graining procedure, i.e., orienta-
tional (rotation + vibration) entropy, as only the transla-
tional degrees of freedom remain at the CG level. There-
fore, under the limit of perfect spatial coarse-graining,
one can determine the difference of the FG and CG en-
tropy as s"C¢ — 560G = st 4 svib [130).

For atomistic systems, it is crucial to consider the two
“missing” contributions s’%" and s¥i’, where each contri-

ex ex

bution can be straightforwardly estimated using [51]

. (34)

3,3 3
59 =1In ﬁ Tie , (35)
g @A@B@C
and
3N—6
) 0,./T

vib __ v —0,./T
Sid = Z [e@vj/]T 1 —1In (1 —e v )] . (36)

j=1

In Eq. (35), ©4,p,c represents the characteristic rota-
tion temperatures along the x,y, and z axes with the
rotational symmetry number o, and ©,, in Eq. (36)
is the characteristic vibration temperature at the j-th
vibrational mode v;. These characteristic temperatures
can be estimated from the MD simulations or borrowed
from experimental observables. Combining the contribu-
tions from Egs. (33)-(36), the excess entropy of atomistic
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systems can be accurately estimated as

FG __ _trn rot vib
S = Sex + Sex + Sex
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3
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Reference 156 demonstrated that Eq. (37) yields al-
most identical entropy values for simple liquids compared
to those calculated by computationally expensive ther-
modynamic integration. Furthermore, at the CG resolu-
tion, Ref. 130 numerically confirmed that the difference
between the FG and CG entropy values corresponds to
the contribution from the missing (intramolecular) de-
grees of freedom. Relatedly, Ref. 51 recently demon-
strated that Eq. (37) can accurately compute the ex-
cess entropy of complex molecules beyond the pairwise
contribution inferred from the RDF. Since our primary
focus in this section is to assess the isomorph of the spa-
tially CG OTP model, we employ Eq. (34) for the con-
ditions studied earlier. For each CG model, we calcu-
late the translational entropy using v'™ with the 2PT
method, and then the corresponding ideal gas entropy is
estimated by the molecular weight of OTP and number
density (given as the N/V term). Nevertheless, we note
that the entropic contribution from intramolecular de-
grees of freedom can be estimated by utilizing Egs. (35)
and (36). Furthermore, by including the contribution of
Sid in addition to SEE, the performance of the approx-
imate Lewis-Wahnstrom model can be directly assessed
by the entropy values. A detailed analysis is provided in
Appendix C.

5. Results and Summary

Figure 13 illustrates the changes in the estimated ex-
cess entropy in the (p,T) phase diagram across a wide
range of simulated thermodynamic state points. Within
these state points, the (dimensionless) excess entropy val-
ues range from -8.5 to -4.5. Generally, we observe the
trend that as temperature increases at constant density,
the excess entropy decreases as the system becomes more
ideal gas-like). Likewise, at a fixed temperature, the ex-
cess entropy decreases as the density decreases (result-
ing in a longer box length). These trends are consis-
tent with expectations, and, based on the computed Sex
from our approach over the selected thermodynamic state
points, we interpolated the contour along this phase dia-
gram corresponding to the configurational adiabats, i.e.,
Sex = (constant).

While there are some fluctuations in higher-density re-
gions, the configurational adiabats at relatively higher
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FIG. 13. Excess entropy and density scaling exponent esti-
mated from the spatial coarse-graining approach by numeri-
cally estimating the 91n7T/91n p along curves of constant Sex.
The single-site CG excess entropy was estimated across var-
ious thermodynamic state points using Eq. (34). Averaging
over the illustrated state points gives vs = 6.8. The value
v+ = 6.3 from temporal coarse-graining is shown as a refer-
ence (right dashed line).

temperatures exhibit similar slopes. As observed from
the temporal coarse-graining approach, spatial coarse-
graining also exhibits a 75 that is dependent on density
and other thermodynamic state variables. Since our pri-
mary target is to derive the density scaling exponent from
the estimated v, values and considering the approxima-
tions and interpolations in Fig. 13, we are mainly inter-
ested in the general behavior of v, in CG models of OTP
near these regions of the phase diagram. This is akin to
determining the average y; from coarse-graining in time,
which, for notational convenience, we found as v, = 6.3.
In spatial coarse-graining, averaging v values along the
isomorph yields v, = 6.8, showing good agreement with
~vs. Remarkably, these two «y values determined from dif-
ferent coarse-graining approaches also agree with the ex-
perimental finding of Roland et al. [3], who measured
for an OTP-ortho-phenylphenol (OPP) mixture, which is
similar to our system, to be 6.2. This finding underscores
the fidelity of our coarse-graining approach.

VI. BOTTOM-UP DENSITY SCALING OF OTP
AND CONCLUSION

A. Density scaling of dynamics from first principles

In Secs. IV and V, we estimated the density scaling
coefficient for molecular OTP using two distinct coarse-
graining approaches in time and space. Remarkably, de-
spite originating from different CG descriptions, both ap-
proaches yield similar v values. Given its state point de-
pendence, our analysis demonstrates that v varies from
6.3 to 6.8 on average. However, it remains unclear
whether this v from our CG description in time and space
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FIG. 14. Indirect demonstration of the single-parameter

phase diagram of OTP by computing the Prigogine-Defay ra-
tio I = 1.02(10) from fully atomistic simulations at the glass
transition temperature T, = 350(10) K using the jumps of
the following response functions between the red and green
dashed lines: (a) Average volume in constant NpT simula-
tions, (b) specific isobaric heat capacity, ¢p, (c) isothermal
compressibility, k7, (d) thermal expansion coefficient, ay,.

can correctly capture a one-dimensional phase diagram
of OTP from first principles. An indirect yet effective
demonstration of density scaling can be realized by es-
timating the classical Prigogine-Defay ratio, II (Eq. 9).
As discussed in the Introduction, strongly correlated sys-
tems, i.e., exhibiting an effective single-parameter phase
diagram, typically follow II ~ 1 [12, 60, 82, 97-104].
Therefore, before assessing the density scaling relation-
ship, estimating a II value for OTP from first principles
is expected to provide an indirect demonstration of den-
sity scaling. Using the computational details outlined
in Appendix D, we calculated the II value near the glass
transition and found IT = 1.02(10) (Fig. 14). This value is
consistent with the experimental prediction using a sim-
ilar system as given in Ref. 82 and indirectly supports
the existence of the density scaling relationship based on
microscopic computer simulations.

As a final analysis, we now examine whether our ap-
proach could provide a correct density scaling using the
~v determined by the proposed CG approaches. While
the experimental success in density scaling of OTP by
Tolle motivates this line of investigation [8, 9], it is un-
clear if the molecular-level simulation would exhibit this
scaling relationship, given that there is no demonstration
of density scaling from computer simulations at the fully
atomistic level reported in the literature.

In order to perform density scaling from atomistic
OTP simulations, we first compute the self-diffusion co-
efficient from the long-time limit of the atomistic mean
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FIG. 15. Density scaling of OTP from atomistic simulation,
where the dynamical properties from fully atomistic simula-
tions are scaled using the scaling exponent v = 6.5 determined
from both coarse-graining in space and in time over a wide
range of temperatures and densities.

square displacement using Einstein’s relation

D = lim ((Ar(t))?)/6t, (38)
t—o0
where Ar(t) = |r(t) — r(0)| is the magnitude of the dis-
placement of a given atom within a time-interval ¢, and
the average (...) is taken over all the atoms and initial
times.

The density scaling was then performed by scaling
the diffusion coefficients into the inverse reduced diffu-
sion coefficient 1/D = 12/Dty (where Iy = p~'/? and
to = lon/m/kgT, thus D is dimensionless). Figure 15
illustrates the density scaling relationship of 1/ D against
1000p7 /T, where we used the average density scaling ex-
ponent v = 6.5 from both coarse-graining in space and
time. Remarkably, in Fig. 15, we see that the values
of the inverse diffusion coefficients collapse onto a mas-
ter curve, confirming that our CG approach can faith-
fully capture the density scaling relationship consistent
with the experimental findings. We would like to high-
light here again that this approach is the first systematic
demonstration of density scaling at the molecular level.

B. Summary and Conclusion

In the exploration of soft condensed matter, the ther-
modynamic scaling relationship emerges as a robust
framework capable of predicting the dynamics of a target
system across various thermodynamic conditions. While
there exist several experimental demonstrations validat-
ing this relationship for realistic liquids, a microscopic
understanding facilitated by computer simulation cur-
rently remains a major challenge. The isomorph theory
addresses this gap by tracing out invariant lines (“iso-
morphs”). However, at a fully atomistic level, the di-
rect application of isomorph theory encounters limita-
tions due to fast intramolecular motions and interactions
present in molecules beyond a point particle description.
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This work aims to bridge the divide between microscopic
mechanisms derived from computer simulations and ex-
perimental results for the representative glass-forming
liquid, OTP.

In order to efficiently explore the free energy land-
scape of atomistic OTP, we introduced two systematic
coarse-graining approaches applied to temporal and spa-
tial domains, each effectively averaging out the fast
intramolecular degrees of freedom. In the temporal
coarse-graining approach, we time averaged the instan-
taneous fluctuations of potential energy and virial us-
ing a characteristic time scale ranging from 0.1 to 1
ns, enabling the assessment of time-dependent slow fluc-
tuations of OTP molecules. Motivated by experimen-
tal successes in measuring frequency-dependent response
functions to infer the scaling exponent, we define the
frequency-dependent correlation coefficient from correla-
tions between the imaginary parts of signals. Employ-
ing the fluctuation-dissipation theorem, we computed
the frequency-dependent scaling exponent, resulting in
v = 6.3. For the spatial coarse-graining approach, unim-
portant intramolecular degrees of freedom are renormal-
ized by reducing the OTP molecule to a single-site center-
of-mass representation. The effective interaction at this
resolution is purely repulsive, but nevertheless consistent
with the ad hoc Lewis-Wahnstrom model. While the sim-
plified nature of coarse-graining limits our ability to di-
rectly evaluate the virial-potential correlations in order
to obtain the scaling coefficient, we can circumvent this
challenge by tracing out the isomorphs. Leveraging a
recent framework to compute the excess entropy of CG
molecules, this alternative approach yields a v value of
6.8.

While the two bottom-up coarse-graining approaches
stem from different assumptions and underlying micro-
scopic physical principles, a remarkable revelation un-
folds: the density scaling coeflicients obtained from these
two distinct approaches are the same within the numer-
ical uncertainty. Furthermore, utilizing the average
from these coefficients to perform density scaling for the
atomistic diffusion coefficients, we confirm that the esti-
mated v imparts the correct scaling relationship across a
broad range of temperatures and densities, aligning with
experimental observations.

To our knowledge, this work establishes the first
bottom-up correspondence to the molecular-level density
scaling relationship of realistic materials. Understanding
long-time scale dynamical properties on a microscopic
level is crucial for advancing predictable multiscale mod-
eling. While this work represents an initial step in this
direction, demonstrating the utility and applicability of
bottom-up coarse-graining approaches, we expect that
our CG framework will apply across various molecular
liquids that have been validated experimentally. More-
over, our findings hint at a potential correspondence be-
tween the two distinct CG approaches in time and space.
The underlying physical principle could be derived from
renormalized virials and energetics, and future work will



rigorously pursue the first-principles theory to link these
distinct CG approaches. Another exciting avenue is to
understand excess entropy scaling resulting from these
findings. Given that the effective CG description already
embodies a reduced interaction nature that is purely
repulsive, a systematic approach to deriving the hard
sphere-like nature of OTP is expected to extend the den-
sity scaling methodology to the excess scaling relation-
ship through a hard sphere mapping. Overall, our frame-
work is poised to facilitate microscopically-informed ex-
plorations of the dynamics in complex molecules, ulti-
mately enriching our understanding of the observables
from experiments.
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APPENDICES
A. Spatial CG Model of OTP: Single-Site Resolution
1. CG Pair Interactions

To further illustrate the complex nature of bottom-up
CG interactions and emphasize the challenges in their
inference, Fig. 16 depicts how pair interactions for the
spatial CG model of OTP vary with density and tem-
perature. The general trend aligns with our discussion
pertinent to Fig. 10, but notably, there is no underly-
ing unified potential in a reduced unit, as is the case
with simple analytical interactions. This is because the
bottom-up CG interaction includes an entropic contribu-
tion, whereas conventional interactions for point parti-
cles are purely energetic. For instance, at a fixed volume
(constant NVT), changes in pair interaction can be un-
derstood as the entropic contribution to the CG PMF,
as demonstrated by studies of CG liquids. However, the
exact forms of entropic and energetic terms for molecular
systems involve high-dimensional integrals of FG degrees
of freedom, making them challenging to determine.

2. CG Pair Correlations

Similar to Fig. 11, Fig. 17 provides a comprehen-
sive comparison of the pair correlation function between
the spatial CG models and the atomistic reference. As
discussed in the main text, interestingly, RDF's over dif-
ferent conditions do not seem to differ significantly with
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drastically different dynamics (as plotted in Fig. 15).
This confirms our assertion that higher-order contribu-
tions beyond pair excess entropy should be taken into
account when computing excess entropy. Our 2PT-based
approach was able to distinguish different excess entropy
values across these conditions.

B. Validation of Spatial Coarse-Graining

We computed the power spectrum DoS(v) from the
velocity auto-correlation functions of the atomistic and
CG models of OTP to demonstrate that the tempo-
ral CG approach can enhance the efficient exploration
of the OTP molecules. As expected from the single-
site resolution, the CG system only exhibits transla-
tional motions, i.e., vcg = Vgrans, Whereas the atomistic
molecules show both translation and vibrational motions:
VPG = Utrans + Urot + Uvib. Lhis difference is shown in
Fig. 18, where the CG model only exhibits translational
motions at low frequencies below 100 cm™!. Relatively
high-frequency motions, which can be understood as the
vibrational motions of OTP molecules, are all removed
by coarse-graining. For example, we can identify the non-
zero intensities of DoS(v) near 500-1000 cm~! as the C-H
vibrations of benzene [163]. A drastic quenching of these
vibrational motions, mainly attributed to C-H vibrations,
demonstrates the importance of spatial coarse-graining
for exploring effective molecular motions in order to iden-
tify the virial-potential correlations of OTP.

C. Assessment of Lewis-Wahnstrom Model:
Thermodynamic Entropy

In order to estimate the overall and intermolecular mo-
lar entropy of OTP, we selected the ambient temperature
of 360 K under 1 atm conditions, corresponding to a box
length of 35.80 A, as illustrated in Fig. 1(b). Employing
the same atomistic simulation protocol as in Section D,
2PT simulations were conducted to calculate the molar
entropy.

First, from a fully atomistic simulation, the overall en-
tropy was determined to be 350.54 J/mol/K. Notably,
the translational and rotational (intermolecular) contri-
butions at this state point amount to SEE + S5 = 144.55
J/K/mol. This indicates that more than half of the en-
tropy arises from the vibrational contribution, underscor-
ing the necessity for careful consideration of the missing
entropy when determining the entropy of OTP.

Subsequently, we evaluated the fidelity of the Lewis-
Wahnstréom model by constructing this approximate
model under the same system conditions (thermody-
namic state point) and conducted MD simulations for
2.5 ns. The 2PT estimation of entropy yielded 149.83
J/K/mol, almost identical to the intermolecular entropy
of the atomistic OTP model. This agreement again sub-
stantiates our finding that the Lewis-Wahnstrém model
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FIG. 16. Parametrized pair interactions of the single-site CG OTP at various temperatures and densities using force-matching
for the state points except for the one depicted in Fig. 10. Temperature and density conditions are denoted in the title of each
panel. For clarity, the CG interaction from Fig. 10(a) is plotted as a reference (green dots) against each CG interaction (red

lines).

serves as a good approximation for the fully atomistic
microscopic model of OTP. Furthermore, our estimated
entropy of the Lewis-Wahnstrém model is in the same or-
der of magnitude as reported earlier in Ref. 164 using the
inherent structure thermodynamic formalism [165, 166]
by calculating

S(T = 360K) = S(Ty) + 3R log <T:;’60K>
0
T=360K 1 3U/(T/)
/7 —_—
+/TO dTT,< o > (39)

where Ty = 5000 K, giving S(360K) approximately
188.75 J/K/mol.

D. Estimation of the Progogine-Defay Ratio

In order to compute the thermodynamic Prigogine-
Defay ratio, defined as [12, 60, 82, 97-104]

ACPAHT
VyTy(Aay,)? ,

we conducted the constant NpT simulations at 1 atm
for a 200 ns simulation, following 67 ns of equilibration,
at different temperatures as illustrated in Fig. 14. The
glass transition, identified by changes in slope in Fig.
14(a), was observed on the simulation time scale. Sys-
tems near the glass transition that showed partial relax-
ation (unfilled circles in Fig. 14) were excluded from fur-
ther analysis. The specific volume at T, was determined
as V, = 219(2) cm?/mol.

At the glass transition temperature, II was computed
from jumps in response functions, utilizing the following
equations [167]. The variance of instantaneous enthalpy
(H + pV) fluctuations

(6(H+pV)?)npr = kT cy,

= (40)

(41)
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Center-of-mass pair correlation functions gcom(R) for atomistic (red lines) and the single-site CG (blue dots)
simulations of OTP at various temperatures and densities using force-matching for the state points except for the one depicted
in Fig. 11. Temperature and density conditions are denoted in the title of each panel.
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was used to estimate the specific isobaric heat capacity

¢p. Then, the variance of volume fluctuations

<6V2>NpT = VkBTKT,

(42)

5\ i
0 1 L] 1 L
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 (cm™)

FIG. 18. Computed density of states from the velocity auto-
correlation functions of atomistic (red) and CG (blue) OTP
systems. The obtained DoS(w) = C/(w) is plotted up to 1200
cm ™!, corresponding to the fingerprint region of a benzene
ring from vibrational spectroscopy [163].

was used to estimate the isothermal compressibility xr,
and the covariance between volume and enthalpy

(VS(H + pV))npr = kpT?Vay, (43)
was used to obtain the thermal expansion coefficient a,.
From the microscopic OTP simulations, the steps in these
response functions at Ty, were found as Ac, = 86(5)
J/mol-K, Arxp = 1.75(10) x 107'% Pa~!, and Aq, =
4.42(10) x 107 K=, yielding IT = 1.02(10) near unity
using Eq. 40. Figure 14 further illustrates these jumps
in the response functions with the error (i.e., one stan-
dard deviation), estimated from Monte Carlo sampling
assuming the Gaussian noise.
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