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This article reviews arguments that glass-forming liquids are different from those of standard
liquid-state theory. The latter typically have a viscosity in the mPa·s range and relaxation times of
order picoseconds, while these numbers grow dramatically and become 1012 − 1015 times larger for
liquids cooled toward the glass transition. This translates into a qualitative difference, and below the
“solidity length” which is of order one micron at the glass transition, a glass-forming liquid behaves
much like a solid. Recent numerical evidence for the solidity of ultraviscous liquids is reviewed, and
experimental consequences are discussed in relation to dynamic heterogeneity, frequency-dependent
linear-response functions, and the temperature dependence of the average relaxation time.

I. INTRODUCTION

It is common knowledge that liquids flow and solids
do not. From a scientific point of view, however, the
distinction is not that straightforward because any solid
does flow when subjected to an external force [1–7] while,
on the other hand, an extremely viscous liquid only flows
very slowly. Should one think of the latter as an “ordi-
nary” liquid like water or a molten metal, merely with
a much higher viscosity, or more as a solid that flows?
This question is important for liquids approaching the
glass transition where the viscosity is 1012 − 1015 times
larger than that of an “ordinary” liquid (brief introduc-
tions to the glass transition are given in Refs. 8–12, more
comprehensive reviews in Refs. 13–24).

Recall the three fundamental states of matter: gas, liq-
uid, and solid. The gas and liquid phases are isotropic
and translationally invariant on the macroscopic scale,
while the solid phase is crystalline and breaks these sym-
metries. Thus gas and liquid appear to have most in
common; indeed flow of both phases is described by the
Navier-Stokes equation [25, 26]. On the other hand, it
may be argued that liquids are more like solids by hav-
ing roughly the same density and compressibility, an en-
tropy closer to that of the solid phase, etc [27–30]. This
semi-philosophical discussion relates to liquids in general,
however, not to whether liquids differ qualitatively de-
pending on their viscosity.

A glass is usually made by supercooling a liquid fast
enough to avoid crystallization. It is a solid that has in-
herited the liquid’s disorder and isotropy. While some
substances like pure metals require extremely high cool-
ing rates to form glasses, others, e.g., many organic liq-
uids, are easily supercooled and in fact often difficult to
crystallize. Because all substances can form glasses, glass
may be regarded as the fourth state of conventional mat-
ter [11].

With only few exceptions like silicates, a liquid’s vis-
cosity η at the melting temperature Tm is within one or
two orders of magnitude of that of water, η ∼ 10−3 Pa·s.
Upon cooling the viscosity increases dramatically, and for
typical cooling rates of order K/min one finds η ∼ 1012

Pa s at the glass transition temperature Tg. The glass
transition is continuous and not a genuine phase transi-
tion, although Tg is fairly well defined for a given cooling
rate (typically within 1%). At Tg the system falls out of
metastable equilibrium because the time to reach equi-
librium after an external disturbance, the so-called α re-
laxation time τα, exceeds the laboratory time scale. By
the fluctuation-dissipation theorem τα is also the charac-
teristic time of the equilibrium dynamics. This quantity
is termed the Maxwell relaxation time, and in the simple
Maxwell model of viscoelasticity [11, 31, 32] τα is given
by

τα =
η

G∞
(1)

where G∞ is the high-frequency plateau shear modulus
corresponding to MHz frequencies and above (sometimes
denoted by Gp). In this expression the temperature de-
pendence of G∞ is insignificant, so upon cooling τα in-
creases roughly in proportion to η. With G∞ ∼ 109 Pa
the typical “ordinary” liquid viscosity 10−3 Pa·s corre-
sponds to τα ∼ 10−12s, which is comparable to vibration
(phonon) times. On the other hand, equating τα to the
typical cooling time for producing a glass ∼ 103 s leads
to η ∼ 1012 Pa·s.
A note on terminology: The term “glass” is used be-

low whenever a highly viscous liquid is not in thermody-
namic equilibrium, while “liquid” is reserved to a system
in (metastable) equilibrium, i.e., one that is fully char-
acterized by pressure and temperature with no memory
of its past. The terms “glass-forming liquid” and “ultra-
viscous liquid” are used synonymously reflecting the fact
that once a liquid has been supercooled to the ultravis-
cous state by avoiding crystallization, glass formation is
inevitable upon continued, sufficiently fast cooling.

II. THE PHYSICS OF ULTRAVISCOUS
LIQUIDS

This section summarizes the relevant physics of stan-
dard liquid-state theory [33, 34] and argues that molec-
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ular motion in a glass-forming liquid proceeds via rare
“flow events” taking the system from one solid-like con-
figuration to another. It depends on the length scale
of observation, however, whether an ultraviscous liquid
behaves as a solid-that-flows , and the “solidity length”
below which this applies is identified (Sec. IID). Finally,
the role of conservation laws is briefly reflected upon.

FIG. 1. Hard-sphere liquid in two dimensions. There are fre-
quent collisions because the particles almost touch. For an
order-of-magnitude estimate of the system’s transport prop-
erties, however, one can assume that a ∼ d.

A. “Ordinary” liquids

Consider a pure substance above its melting tempera-
ture. As a crude approximation one may adopt the hard-
sphere (HS) model consisting of identical particles that
do not interact, except by never overlapping (Fig. 1). Al-
though this model is highly idealized, it is quite success-
ful in reproducing the structure and dynamics of many
liquids [33]. This applies also to systems with the attrac-
tions that are present in all real liquids. Temperature
plays no role in the HS model except for determining
the average particle velocity, i.e., the relevant time scale;
the only nontrivial thermodynamic variable is the den-
sity (packing fraction). The HS model may be regarded
as a mathematician’s idealized liquid/gas; an alternative
generic model in which temperature does play a role is
the EXP system defined by the exponential pair potential
[35–37].

In the HS liquid each particle is close to several oth-
ers (Fig. 1). The frequent particle collisions result in an
erratic motion. This is different from what happens in
the gas phase in which the mean-free path between col-
lisions is much larger than the particle diameter. It is
useful to discuss the physics of the HS liquid in terms
of three diffusion coefficients, the particle-diffusion coef-
ficient Dpar, the heat-diffusion coefficient Dheat, and the
transverse-momentum diffusion coefficient Dmom. The
latter is the so-called kinematic viscosity ν of the Navier-
Stokes equation, Dmom = ν ≡ η/ρ in which ρ is the mass
density [25]. Dpar is defined from the long-time mean-

square particle displacement via ⟨∆x2(t)⟩ = 2Dpart. The
heat-diffusion coefficient is defined as Dheat ≡ λ/cV in
which λ is the heat conductivity and cV the specific heat
per unit volume.

In the HS liquid these diffusion coefficients are of same
order of magnitude. We write A ∼ B to indicate that
A and B are within one or two decades of each other.
That Dheat ∼ Dmom reflects the fact that any particle
collision involves both a transfer of momentum and of en-
ergy. These two diffusion coefficients may be estimated
as l2/t in which l is the length involved and τα is roughly
the time between collisions, i.e., Dheat ∼ Dmom ∼ d2/τα
where d is the particle diameter. For Dpar one estimates
Dpar ∼ a2/τα where a is the average distance between
two neighboring particles. Although the HS liquid is
characterized by a < d implying that Dpar is smaller
than Dheat and Dmom, one still has Dpar ∼ Dmom. In
summary, the HS system – and by implication any “or-
dinary” liquid – is characterized by

Dpar ∼ Dheat ∼ Dmom . (2)

Typical values are of order 10−7 m2/s, which may be
arrived at from Dpar ∼ l2/τα with l ∼ 10−10 m and
τα ∼ 10−13 s or from Dmom = η/ρ with η ∼ 10−3 Pa·s
and ρ ∼ 103 kg/m3.

B. Ultraviscous liquids

In equilibrium all atoms/molecules have velocities pro-
portional to the square root of temperature, but this does
not necessarily imply lasting particle displacement. In a
crystal, for instance, all thermal motion goes into vibra-
tions around the equilibrium positions. Intuitively, one
expects the effective particle motion in an ultraviscous
liquid to be minute, because in order to move a particle
with a certain velocity, a force is required that is propor-
tional to the viscosity. This is reflected in the Stokes-
Einstein relation according to which the particle diffu-
sion coefficient is inversely proportional to the viscosity
[34, 38]. Although derived by reference to macroscopic
hydrodynamics, the Stokes-Einstein relation works rela-
tively well even on the molecular scale [39]. The rela-
tion is violated by 1-3 orders of magnitude for liquids ap-
proaching the glass transition [40–43], but this does not
change the fact that when viscosity increases upon cool-
ing,Dpar decreases roughly as much, e.g., asDpar ∝ η−0.9

[44]. Thus when the viscosity – and thereby Dmom – in-
creases by a factor of 1015 by cooling from Tm to Tg, Dpar

at the same time decreases enormously. In contrast, the
heat-diffusion coefficient changes only moderately [45].
We conclude that Eq. (2) for an ultraviscous liquid is
replaced by

Dpar ≪ Dheat ≪ Dmom . (3)
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FIG. 2. Average deviatoric strain displacement around a flow
event in simulations of a 2d polydisperse glass-forming liquid.
The observed long-range decay ∝ 1/r2 is that predicted by
solid-state elasticity theory [46]. Reproduced from Ref. 47.

C. Flow events

Since effective particle motion is exceedingly slow in
an ultraviscous liquid while the velocities are not small,
most motion must go into vibrations. Two possible sce-
narios can realize this. Either the vibrations take place
around average positions that change continuously but
very slowly. Alternatively, the vibrations are interrupted
by sudden rare localized “flow events” that rearrange a
handful of particles, with some effects also on their sur-
roundings in the form of slight position adjustments. Ex-
periments on colloidal [19], molecular [48], and metallic
[49] glass-forming liquids, as well as computer simulations
[50], favor the latter scenario.

In fact, it is an old idea that particle motion in a glass-
forming liquid proceeds via flow events. In his seminal
1948 review Kauzmann referred to flow events as “jumps
of molecular units of flow between different positions of
equilibrium in the liquid’s quasicrystalline lattice” [51].
Mooney in 1957 poetically referred to a flow event as
“a quantum of liquid flow” [31], and many subsequent
papers have embraced this picture of viscous liquid dy-
namics [52–57]. The physics, of course, lies in what deter-
mines the energy barriers for flow events and how these
events correlate in space and time.

Why are flow events rare in an ultraviscous liquid?
This was reflected upon by Goldstein in 1969 in a paper
that remains a pleasure to read [58]. He identified Kauz-
mann’s “positions of equilibrium” with minima of the
potential-energy function. Flow events are rare because
the barriers to be overcome going from one minimum
to another are much larger than kBT . Potential-energy
minima are nowadays referred to as “inherent states”
[59]. Goldstein’s picture is that the dynamics of an ul-
traviscous liquid involves numerous vibrations around an
inherent state like in a crystal. These vibrations do not
contribute to the overall dynamics and may be elimi-

nated by focusing on the “inherent dynamics” defined as
the time sequence of inherent states [50, 60].

Accepting that an ultraviscous liquid may be regarded
as a solid on a sufficiently short length scale, any flow
event leads to minor deformations in its surroundings
[61–63] as may be detected, e.g., by NMR experiments
[64]. A flow event is not a linear perturbation and its
effects are not easily predicted. Sufficiently far from the
flow event, however, linear elasticity arguments may be
referred to, and in three dimensions the induced particle
motions scale as 1/r2 for r → ∞ where r is the distance
to the flow event [46] (Fig. 2). To show this one uses
the mechanical-equilibrium requirement that the time-
averaged force on each particle is zero both before and
after a flow event, arguing as follows. Ignoring correla-
tions to, and effects of, other flow events, a single flow
event’s effects on the surroundings may be reproduced by
imagining external forces acting on a small surface sur-
rounding it [65–67]. By momentum conservation, each of
these forces leads to a momentum flow into the surround-
ings ∝ 1/r2 for r → ∞. Since the forces sum to zero, this
implies an overall momentum flow (stress tensor) that is
the spatial derivative, i.e., ∝ 1/r3. According to elastic-
ity theory [46], the stress tensor change is linearly related
to the strain field, which is formed from derivatives of the
displacement field that consequently scale as ∝ 1/r2 [68].
In two dimensions, the stress and strain fields induced by
a flow event scale as ∝ 1/r2 for r → ∞ and the particle
displacements as ∝ 1/r.

D. The solidity length

The arguments of Sec. II C suggest that the physics of
an ultraviscous liquid is reminiscent to that of a crystal.
Real-life solids are mostly crystalline with grain bound-
aries separating micrometer-sized or larger single crystals
containing point defects. In thermal equilibrium a pure-
substance solid is a single crystal with no line defects or
grain boundaries, but a few point defects like vacancies
and interstitials are always present at finite temperatures
[69]. Point defects can jump to neighboring positions by
overcoming a barrier much larger than kBT .

In regard to ultraviscous liquids, we note that the ef-
fect of one flow event on its surroundings is not instanta-
neous, but propagates with a finite velocity. After a flow
event, others will take place nearby that likewise send
out spherical “waves” of minor particle adjustments. Far
from the original flow event, the adjustments originating
from many other flow events interfere with and increas-
ingly smear out the effect of the original flow event. We
proceed to estimate the length scale below which this
does not happen, which defines the system’s “solidity
length” ls.
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Multiple flow events

Isolated flow event

FIG. 3. A single isolated flow event and its screening by
nearby subsequent flow events. The radius of the sphere in-
side which the effects of the original flow event are felt is the
solidity length ls.

As long as no other flow event has taken place within
the “adjustment sphere” of one flow event, solid-state
type arguments can be applied by reference to the inher-
ent states before and after the event. However, when
many other flow events have taken place within the
sphere, each sending out its own disturbance wave, the
effects of the original flow event are washed out (Fig. 3).
To estimate ls we assume that the average time between
two flow events involving a given molecule is τα. If a is
the average intermolecular distance, a sphere of radius
ls contains or order N ∼= (ls/a)

3 sites for potential flow
events. Flow events are not independent and uncorre-
lated (Sec. IVA), but for simplicity we ignore this and
estimate that the average time between two flow events
within the sphere is τα/N . The solidity length is deter-
mined by requiring this to be the time it takes a sound
wave to travel ls, which is ls/c where c is the sound ve-
locity [70]. This leads to

l4s
∼= c a3 τα . (4)

For an “ordinary” liquid the derivation makes little sense,
but if one nevertheless substitutes c ∼ 103 m/s, a ∼

10−10 m, and τα ∼ 10−13 s into Eq. (4) the result is ls ∼
10−10 m. For a liquid approaching the glass transition,
τα ∼ 102 s leads to ls ∼ 10−6 m. Note that this length
is much larger than those discussed in connection with
dynamic heterogeneities of glass-forming liquids [71–74].
Note also that the derivation of Eq. (4) is general and
applies also for network-forming liquids like silica.

A single crystal with point defects also has a finite
solidity length, but here the concept is not relevant be-
cause the crystal structure defines solid-like particle cor-
relations over distances stretching to infinity. For an ul-
traviscous liquid, on the other hand, rigid distance cor-
relations are only expected to apply below the solidity
length.

Furukawa has argued that the length ξ defined by
ξ4 ≡ a4τα/τ0, in which τ0 is a microscopic time, is the
characteristic length over which long-lived stress is sus-
tained [75, 76]. He proposed that the ultraviscous liquid
may be regarded as an ordinary liquid composed of clus-
ters of size ξ ≃ ls; in particular that standard hydrody-
namics only applies on length scales above ξ. Much of
the physics probed in experiments takes place below the
solidity length, however. This is the case, e.g., for dielec-
tric relaxation or NMR experiments probing a molecular
average property. Actually, measuring a macroscopic dy-
namic property like the viscosity η becomes increasingly
difficult as the glass transition is approached [77].

E. Conservation laws

Below the solidity length the laws of conservation of
the number of particles, the momentum, and the energy
play a role that is different from the case of “ordinary”
liquids where these laws form the basis of hydrodynamics
[6, 33, 39, 78, 79]. Consider first particle conservation. A
molecular dynamics simulation keeps track of the individ-
ual particles, but things look different in a coarse-grained
description based on a continuous density field ρ(r, t).
This field is constant in time until it changes due to a flow
event, a change that below the solidity length may be re-
garded as instantaneous. In general, flow events are not
spherically symmetric (Sec. III B), but this assumption
can be made for estimating the flow-event induced den-
sity changes. A spherically symmetric flow event leads to
purely radial displacements in the surroundings ∝ 1/r2

(Sec. II C). The divergence of the displacement field de-
termines the local density change [46] which is zero, com-
pare Gauss’ law for the point-charge electric field ∝ 1/r2.
On the other hand, radial displacement can only take
place if there is a density change at the flow-event center.
If the density change, coarse-grained over a few molecu-
lar distances, is denoted by ∆ρ(r), for |r− r0| > a a flow
event at r0 leads to

∆ρ(r) = 0 , ∆ρ(r0) ̸= 0 . (5)
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Comparing the situation before and after a flow event,
local particle conservation is thus apparently violated.
What happens is reminiscent of Hilbert’s hotel, the full
infinite hotel that hosts new arrivals by asking all guests
to move to a room of one higher number.

Below the solidity length flow events may as men-
tioned be regarded as instantaneous. If all flow events are
isotropic, the above leads to the following coarse-grained
description with no visible trace of particle-number con-
servation,

ρ̇(r, t) =
∑
j

bjδ(r− rj)δ(t− tj) . (6)

Here bj is a dimensionless measure of the magnitude of a
flow event at time tj and position rj . Apparent density
non-conservation holds also if the small advective density
changes and the more realistic anisotropic Eshelby-type
flow events [62, 65, 80] (see Sec. IIIA) are taken into
account.

Below the solidity length mechanical equilibrium ap-
plies in the time between flow events, i.e., the time-
averaged forces are zero. In a coarse-grained description
this is expressed as zero divergence of the stress tensor,
σµν(r, t) [46]

∂µσµν(r, t) = 0 (7)

in which ∂µ is the spatial derivative with respect to xµ

where r = (x1, x2, x3). In this description the dynamics
is regarded as a series of instantaneous transitions be-
tween states of mechanical equilibrium, each described
by Eq. (7).

Momentum conservation thus plays little role in the
dynamics below the solidity length. The situation is like
that of point-defect motion in a crystal in which case one
would never invoke momentum conservation. The same
applies for energy conservation: In an ultraviscous liquid
energy flow predominantly takes place via heat conduc-
tion, just like in a solid, and this process is irrelevant for
the rate of flow events or for explaining how these corre-
late in space and time. Note that we are not suggesting
that strict particle, momentum, or energy conservation
is violated, merely that these conservation laws are irrel-
evant for the relevant coarse-grained description.

III. LEARNING FROM GLASSES

A liquid is a priori simpler than a glass, because the
former is fully characterized by just two thermodynamic
variables while there are infinitely many glasses, the
properties of which reflect the formation history. Nev-
ertheless, much has been learned from studies of glasses
that is relevant for the liquid state. Initially, many simu-
lations of glass properties focused on 2d glasses, but later
works confirmed that the conclusions apply also in 3d.

FIG. 4. Soft spots in glasses and liquids. (a) Softness probed
as the local yield stress of a 2d binary Lennard-Jones glass in
which reddish is soft and bluish is hard. The numbered points
mark the sequence and location of plastic flow events when
the system is sheared. Clearly, these are located at the soft
spots. Reproduced from Ref. 81. (b) Analogous results for
an equilibrium ultraviscous liquid in which softness is probed
by the local yield stress of the system’s inherent states, i.e.,
potential-energy minima. The circles mark the first 50 flow
events. Like the plastic flow events of (a), these preferably
take place at the soft spots. Reproduced from Ref. 82.

A. Flow events in plastic flows of glasses

When a glass is subjected to a gradual shear deforma-
tion, it eventually yields by deforming irreversibly [83–
87]. The last 15 years has brought tremendous progress
in the understanding of zero-temperature plastic flow of
glasses [88], which proceeds as a sequence of sudden, lo-
calized flow events [89–91]. These do not take place at
random locations, but at soft spots in the glass, compare
Fig. 4(a) [92].

Different methods have been used with success for
identifying soft spots [88]. An early approach was to
look for atoms with a large vibrational mean-square dis-
placement, a simple indicator that the potential is soft at
the particle in question [93]. The mean local potential-
energy fluctuation has also been used as soft-spot identi-
fier [94]. The so-called local-yield-stress method consid-
ers a small sphere and constrains the outside system to
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deform affinely such that only the atoms inside the sphere
can relax when the system is shear deformed [81, 95].
Different sphere locations and shear-deformations are
probed in order to identify the positions of the smallest
local yield stresses. This method works well for identify-
ing the sites of plastic rearrangement but requires knowl-
edge of the interaction potentials. Methods for identify-
ing sites for plastic flow events based purely on structural
information have also been devised [96, 97] using, e.g.,
a mean-field caging potential [98] or machine-learning
techniques [99, 100]. One method [99] defines “softness”
as a weighted integral over local radial pair-correlation
functions and optimize the weights for predicting sites
of rearrangement by learning from plastic flows. The re-
sults obtained correlate well with those of the yield-stress
method.

An alternative approach utilizes the fact that soft spots
give rise to localized phonon modes, implying that the
latter are good predictors for plasticity [101–105]. Low-
energy localized vibrational modes may be identified by
an anharmonic analysis of the potential-energy function,
a clever method that avoids the hybridization with low-
frequency sound-wave modes found by merely diagonal-
izing the Hessian [106].

To summarize, plastic flow takes place via sudden flow
events. The physics is similar to what happens in an
equilibrium ultraviscous liquid (Sec. II C) because flow
events are also here located at “soft spots” (Fig. 4(b)).
One difference is that the flow-event sequence of a zero-
temperature plastic flow is deterministic, while the liq-
uid’s flow events are stochastic. Another difference is the
lack of isotropy in a plastic flow, leading to preferred ori-
entations of the Eshelby stress fields to which we now
turn.

B. Strain and stress correlations in the liquid phase

We return in Sec. IVC to the idea that flow events
are controlled by the system’s elastic properties and fo-
cus next on another property of glasses, the fact that
any flow event induces a quadrupolar stress-field change
in the surroundings [107]. This is explained by the 1957
general theory of solid “inclusions” of Eshelby [65], which
applies also to disordered solids because these are effec-
tively homogeneous on long length scales. Eshelby cal-
culated the long-ranged stress and strain changes of an
inclusion by replacing it with localized forces in an elastic
continuum. Each force gives rise to a momentum current
into the solid, and since the forces sum to zero (Sec. II C),
the result is a quadrupolar stress field [65, 80].

The obvious question is to which extent the long-
ranged stress correlations of glasses [108] are seen also
in glass-forming liquids [109–112]. One expects this to
be the case below the solidity length because here the
properties of the liquid’s inherent states – each of which
corresponds to a T = 0 glass – is inherited by the equilib-
rium liquid (Fig. 5). Thus long-ranged strain and stress

correlations a la Eshelby are expected also in an ultravis-
cous liquid [109, 113–116]; for instance the average dis-
placement probability generated by a flow event decays
as 1/r5/2 for r → ∞ [50, 70].

FIG. 5. Spatial strain and stress correlations in ultravis-
cous liquids. (a) Experimental data for the strain correla-
tions in a 2d colloidal glass-forming liquid. The lower inset
shows the spatial correlation function of the xy stain-tensor
increase over a time t ≫ τα. The curves are normalized
spherical-harmonics projections of this function at different
times, which are proportional to 1/r2 as predicted for Eshelby
patterns in 2d [65, 80]. Reproduced from Ref. 63. (b) Stress-
tensor correlations in a viscous 2d binary Lennard-Jones sys-
tem. The figure shows the correlations between the normal-
shear-stress increment correlations of a single flow event. The
observed quadrupolar Eshelby pattern is that predicted from
solid-state elasticity theory [46, 62, 65, 68, 80]. Reproduced
from Ref. 62.

Lemaitre has worked out the theory for the spa-
tial stress-tensor autocorrelation function in disordered
isotropic solids. Remarkably, the 3 × 3 × 3 × 3 tensor
⟨σαβ(r)σγδ(r

′)⟩ is determined by just two functions of
|r− r′| [62, 68]. In general, if X are space or space-time
coordinates and DX a linear differential operator of some
field theory with equation of motion “DXϕ(X) = Noise”,
one has DX′⟨ϕ(X)ϕ(X ′)⟩ = 0 whenever X ′ differs from
X in all coordinates. Thus according to the solid-that-
flows picture, as a function of r′ the autocorrelation func-
tion ⟨σαβ(r)σγδ(r

′)⟩ obeys Eq. (7). In particular, it con-
forms to the Eshelby theory [80] for |r − r′| → ∞. Inci-
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dentally, the same must apply for the ⟨σαβ(r, t)σγδ(r
′, t′)⟩

for which a theory, however, remains to be found.
Long-ranged stress and strain correlations are only ex-

pected below the solidity length. At longer length scales
the effects of one flow event are “washed away” by those
of others (Sec. IID). Thus beyond the solidity length ls,
an exponential decay of the spatial stress autocorrelation
function is expected. This means that in the liquid phase,
the Lemaitre spatial autocorrelation functions [68] are to
be multiplied by a factor ∼ exp(−|r− r′|/ls).
We finally note that stresses will modify the flow-event

energy barriers. This fact is usually not taken into ac-
count in attempts to identify likely positions of liquid flow
events from locally ordered structures [97], and this may
explain why these have only been moderately successful.

IV. EXPERIMENTAL CONSEQUENCES OF
SOLIDITY

This section gives three examples of how the solid-
that-flows viewpoint may elucidate experimental facts of
glass-forming liquids. The arguments given all refer to
what happens below the solidity length and are based
more on intuitive reasoning than on rigorous derivation.
The three subsections each deal with points on which
there is no general consensus, and the general solid-that-
flows picture is not invalidated if one or more turn out to
be misconceived.

An important discovery of the 1990s was that the dy-
namics of a glass-forming liquid is spatially inhomoge-
neous [42, 43, 117–119] in the sense that, at any given
time, there are regions of considerable molecular mo-
tion and regions of little [22, 120]. This also provides
a simple explanation of the observed violation of the
Stokes-Einstein relation between viscosity and diffusion
coefficient [41, 43, 121]: Fast particles take advantage of
rapidly relaxing regions and contribute a lot to Dpar, but
little to the overall structural relaxation rate as quanti-
fied by τα.

What controls the temperature dependence of τα? Fig-
ure 6(a) presents two fundamentally different scenarios
[122]. In one case (upper figure), the local energy barri-
ers control the dynamics in the sense that it basically de-
termines the overall relaxation rate. Alternatively, struc-
tural relaxation is considered a highly cooperative pro-
cess that involves an entire sequence of flow events (lower
figure), each of which may not be very large. The lat-
ter scenario has been used to explain dynamic hetero-
geneities and is expected, e.g., from the random first-
order transition (RFOT) theory [74, 123]. RFOT is in-
spired by the theory of spin glasses, which are systems
with no elastic interactions. In RFOT the increase of
the activation energy of τα upon cooling results from a
correlation length ξ that grows due to the decrease of en-
tropy [52, 55]. The fundamental RFOT prediction, which
has been derived rigorously in infinite dimensions [124],
is that thermodynamics control dynamics. For real-life

applications, however, this is challenged by the fact that
the clever algorithms [125, 126] can speed up computer
simulations significantly without affecting the thermody-
namics [73, 127].

A. Dynamic heterogeneity: Elastic facilitation

FIG. 6. Elastic facilitation. (a) Schematic free-energy land-
scape when the dynamics is dominated by local energy barri-
ers (upper figure) or, alternatively, by the growth of cooper-
ative effects over some distance ξ (lower figure). Reproduced
from Ref. 122. (b) Avalanche of flow events generated by
a single flow event because the induced stress-tensor changes
lower some barriers in the surroundings. Reproduced from
Ref. 128. (c) Temperature dependence of τα in a simple
model with and without elastic facilitation. Reproduced from
Ref. 129.
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The local-barrier picture is the obvious one from the
solid-that-flows point of view (Sec. IVC) in which the
situation is analogous to that of a plastic flow with
flow events occurring at soft sites (Sec. III A). That lo-
cal barriers control the relaxation was demonstrated re-
cently in simulations of a 3d polydisperse soft-repulsive-
potential model [122]. By systematically identifying the
flow events starting at a given inherent state, it was
shown that the activation energy increases and accounts
for the super-Arrhenius temperature dependence of τα
upon cooling. This means that, at least for the model
in question, the dynamics is not cooperative; in particu-
lar, no divergence of the relaxation time is expected at a
finite temperature [125, 130, 131].

If τα is controlled by the individual flow-event ac-
tivation energies, how does one explain dynamic het-
erogeneity? A promising candidate is facilitation, the
general concept that one flow event makes nearby flow
events more likely [132–134]. In our case, “elastic fa-
cilitation” reflects the fact that any flow event leads to
long-ranged stress-tensor changes within the sphere de-
fined by the solidity length, which inevitably lower the
barriers of some potential nearby flow events and raise
others [47, 62, 129, 135]. The net effect is that one flow
event makes neighboring flow events more likely. Elastic
facilitation, which was first studied in glasses [62, 136],
is illustrated in Fig. 6(b). In a simple model [129], this
has been shown to lead to a substantial reduction in the
activation energy of τα (Fig. 6(c)). In Ref. 128 it was pro-
posed that an entire avalanche of flow events in this way
may be triggered by a single one, similar to what happens
in plastic flows [87, 137, 138]. Reference 139 considered
a simple facilitated trap model [54] and showed that it
results in asymmetric loss peaks with an excess wing,
somewhat like that of the double-percolation picture we
now turn to (see also Refs. 140 and 141).

B. Non-exponential: Double-percolation scenario
for linear-response functions

Linear response properties are quantified by a com-
plex frequency-dependent response function, χ(ω) =
χ′(ω) + iχ′′(ω). It is sometimes stated that a ma-
jor mystery of glass-forming liquids is the observation
of broad loss peaks, χ′′(ω). Certainly, a Debye loss
peak, χ′′(ω) ∝ ωτ/[1 + (ωτ)2] which according to the
fluctuation-dissipation theorem [142] corresponds to an
exponential time-autocorrelation function, is rarely ob-
served. But one could also argue that the loss peaks
are, in fact, surprisingly narrow. In particular, dielec-
tric, mechanical, and specific-heat loss peaks in the vast
majority of glass-forming liquids follow the Debye pre-
diction on the low-frequency side. This striking fact im-
plies the existence of a quite sharp long-time cut-off in
the relaxation-time distribution p(τ) defined by formally
writing χ′′(ω) =

∫∞
0

ωτ/[1 + (ωτ)2]p(τ)dτ . How can one
understand this?

The disorder of a glass-forming liquid implies that flow-
event energy barriers ∆E vary throughout the system.
An ad hoc assumption is that at any given time the bar-
riers vary randomly in space according to some distribu-
tion. This is illustrated in the upper part of Fig. 7(a)
for the extreme case of a very wide, flat distribution.
Over any brief time interval, the small barriers give rise
to what Johari long time ago termed “islands of mobil-
ity” [143] in which spatially isolated rearrangements take
place. Such islands may involve just a few molecules or be
larger and do not necessarily have a well-defined contrast
to the surroundings. On a longer time scale flow events
involving larger barriers are gradually activated, which
at some point percolate the structure. On this time scale
extended motion becomes possible within the rigid struc-
ture formed by the remaining system. In three dimen-
sions the percolation threshold is roughly one quarter;
in two dimensions the threshold is 50% because a given
set or its complement must percolate – and for geometric
reasons both cannot happen.

Consider next the largest barriers. Being also spatially
isolated, these form “islands of immobility”. Including
gradually smaller barriers, at some point there is “slow-
domain percolation”, which defines a characteristic time
scale that we identify with τα: On time scales shorter
than τα the system is rigid and can sustain an externally
imposed shear stress, while on longer time scales than
τα the slow-domain percolation cluster “dissolves” in a
self-reinforcing way, allowing the system to flow in re-
sponse to an external stress [4]. Single-particle motion
is thus predicted to be spatially heterogeneous on short
time scales, but homogeneous on time scales longer than
τα [119, 144–147]. Borrowing a phrase from NMR theory,
this has been referred to as “rate exchange” [42, 121, 148].
The result is that the largest barriers are never tran-
scended because they “prefer” to wait until being lowered
by elastic facilitation and/or by the collective structural
relaxation (flow) taking place on the τα time scale. That
structural relaxation and thereby τα is controlled by the
slow particles is an old idea [119, 149–151], which has
recently been confirmed in experiments [152], as well as
in equilibrium [153, 154] and aging [155] simulations.

The above physical picture translates into a generic
frequency-dependent loss, χ′′(ω), as follows. The largest
barriers are never overcome so the corresponding long
relaxation times do not contribute to the loss. Conse-
quently, the relaxation-time distribution function p(τ)
has a long-time cutoff roughly at τα, and χ′′(ω) is Debye-
like at low frequencies: χ′′(ω) ∝ ω whenever ωτα ≪ 1
[154]. On shorter time scales, i.e., above the α loss-peak
frequency, solidity comes into effect resulting in an asym-
metric loss peak [153]. Here we predict χ′′(ω) ∝ ω−1/2,
which is based on solving a simple field theory for the
density fluctuations in the Gaussian approximation, as-
suming a wavevector-dependent density decay rate of the
form Γ(k) = Γ0+Dcohk

2 in which Γ0 ∼ 1/τα ≪ Dcoh/a
2

[156]. Conservation laws generally imply a Γ(k) ∝ k2

type dispersion relation arising from from the spatial
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Fourier transform of the ∇2 operator of the diffusion
equation [33, 78]; thus Γ0 ̸= 0 corresponds to the appar-
ent violation of density conservation discussed in Sec. II E
[156]. Note that the picture of Fig. 7(a) corresponds to
the extreme case of a wide barrier distribution, which
for many equilibrium-liquid systems may be approached
only at unreachably low temperatures.

A second loss peak is expected at the frequency cor-
responding to fast-domain percolation (Fig. 7(a)). Fol-
lowing Gao et al. [157] we identify this with the ubiqui-
tous Johari-Goldstein (JG) β process [143], thereby tak-
ing several previous works to their logical consequence
[158–169].

A double-percolation picture as the above was pro-
posed already in 1996 by Novikov et al., who discussed
percolation of liquid-like and solid-like domains defined
by, respectively, the largest and smallest vibrational
mean-square displacement [170]. A graphic descrip-
tion refers to the slow-domain percolation cluster as a
“sponge” through which fast motion is possible [171].

The experimental situation is much less clear than the
schematic picture of Fig. 7(a). Thus there are only few
data for JG β relaxation in the equilibrium liquid phase.
This is because above Tg the α and β processes usually
interfere, often to the extent that the high-frequency α
decay hides the β process, which is thereby reduced to an
excess wing of the α process [153, 172, 173]. Turning now
to the α process, an analysis of more than 300 dielectric
spectra revealed that the α high-frequency approximate
exponent – identified as the minimum slope in a log-log
plot, αmin – is predominantly found to be close to -0.5
(Fig. 7(b)); αmin moreover appears to approach -0.5 as
T → Tg [174]. Recent light-scattering data confirm this
picture [175, 176], compare Fig. 7(c); we also note that
recent extensive computer simulations find an exponent
of -0.38 [154], which is not far from -0.5.

C. Non-Arrhenius: Elastic models for the
temperature dependence of τα

Point defects in simple crystals are either vacancies or
interstitials, i.e., missing or extra atoms [69, 177]. Such
defects can jump, and the activation energy for a jump
scales with the crystal’s elastic constants [178]. In the
solid-that-flows picture it is obvious to assume that the
flow-event activation energy likewise is proportional to
the elastic constants, here those that characterize fast
deformations of the surrounding medium, i.e., the high-
frequency plateau shear and bulk moduli. This idea
defines the elastic models that exist in several versions
[11, 179] and have been linked to models based on de-
crease of free volume or growth of collective motion upon
cooling [147, 180]. In some models [181–183] elasticity
accounts for only part of the activation energy, however.

Slow domain 
percolation

Islands of 
immobility

Islands of 
mobility

Fast domain 
percolation

FIG. 7. Linear-response consequences of glass-forming liq-
uids’ solidity. (a) Schematic picture of the double-percolation
scenario proposed to control linear-response properties for the
case of a very broad activation-energy distribution. The dis-
tribution is constant in time, but the activation energy of
any single region changes over the τα time scale. The islands
of immobility do not contribute to any relaxation because
their barriers are too high and await being lowered by elastic
facilitation and/or the dissolving of the entire slow-domain
percolation cluster on the τα time scale. (b) Minimum-slope
histogram of log-log dielectric losses for 347 spectra at dif-
ferent temperatures of 53 liquids. The prevalent minimum
slopes are close to −0.5. Reproduced from Ref. 174. (c) Re-

sults from dynamic light scattering showing a χ′′(ω) ∝ ω−1/2

high-frequency decay. The black dashed line is the imag-
inary part of χ(ω) ∝ 1/

√
1 + iωτα + 1/(

√
2 +

√
1 + iωτα),

which has been derived from the density-dispersion relation
Γ(k) = Γ0 +Dcohk

2 that incorporates the apparent violation
of density conservation (Sec. II E) [184]. Reproduced from
Ref. 175.

Just as for a plastic flow (Sec. IIIA), flow events in
a glass-forming liquid preferably take place at soft spots
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[185, 186] (Fig. 4(b)). The simplest mean-field approach
ignores this and assumes that all flow-event activation
energies scale in proportion to the macroscopic moduli.
For a perfectly spherical flow event in a homogeneous ma-
terial, the surroundings experience as mentioned a radial
displacement ∝ 1/r2. This results in a pure shear de-
formation, i.e., with no density change (Sec. II C). Thus
the relevant elastic constant is the high-frequency plateau
shear modulus G∞ that – ignoring the existence of dy-
namic heterogeneities – defines the shoving model accord-
ing to which [187]

τα = τ0 e
G∞(T )Vc/kBT . (8)

Here τ0 ∼ 10−13s is a prefactor set by the phonon time
scale and Vc is a microscopic volume. G∞ of a glass-
forming liquid is usually much more temperature depen-
dent than in the corresponding crystal; in fact G∞(T ) of-
ten increases upon cooling enough to fully account for the
non-Arrhenius τα(T ). The physical picture of the shov-
ing model is given in Fig. 4(a), but many data conform
to Eq. (8) [183]; an example of this is given in Fig. 8(b).
Equation (8) does not apply for all glass-forming liquids,
though [183, 188].

In so far as the dominant contribution to the activation
energy derives from displacements around the flow event
and not at its center, G∞ controls more than 90% of
the activation energy [189]. Elastic models emphasizing
instead the bulk modulus also exist, however [183, 190].
A popular elastic model expression is log(τα) ∝ 1/⟨u2⟩
in which ⟨u2⟩ is the vibrational mean-square displace-
ment [11, 183, 191–194]. In this approach Tg is charac-
terized by a definite value of 1/⟨u2⟩, which gives rise to
a glass version of the Lindemann melting criterion [195–
197]. This prediction has been investigated for metallic
glasses by taking Vc to be a fixed fraction of the molar
volume Vm and assuming that all vibrations are phonons
controlled by G∞ and the high-frequency plateau bulk
modulus, K∞. At the glass transition these moduli freeze
into their glass values, G and K, which leads to the pre-
diction [198]

Tg ∝ GVm
K + 4G/3

2K + 11G/3
(9)

with a universal constant of proportionality. This is val-
idated in Fig. 8(c), thus connecting glass properties to
the liquid dynamics [199].

The above approaches either assume that the elastic
properties are constant throughout the sample or that
all local elastic constants [200, 201] scale proportion-
ally when temperature is changed [202]. Kapteijns et
al. studied the energy landscape of a binary Lennard-
Jones model to investigate the influence of the pairwise
elastic constants on the temperature dependence of τα
[203]. The activation energy of τα was found to be pro-
portional to the average “stiffness” between neighboring

particles of the liquid’s inherent structures. This leads
to the straight-line prediction of Fig. 8(d) that suggests
a microscopic explanation of why elastic models account
for many non-Arrhenius data [188].

FIG. 8. (a) Schematic picture of a flow event. The shoving
model ignores the “local” contribution to the activation en-
ergy [204, 205]. Reproduced from Ref. 205. (b) Log(viscosity)
of ten organic glass-forming liquids plotted as a function of
X ≡ G∞(T )Tg/(G∞(Tg)T ). Equation (8) predicts a straight
line ending at the high-temperature viscosity (10−4 Poise =
10−5 Pa·s). Reproduced from Ref. 206. (c) Test of Eq. (9)
for metallic glasses in which G and K are the glass shear and
bulk moduli and Vm the molar volume. There are no free
parameters. Reproduced from Ref. 198. (d) For a binary
Lennard-Jones model the activation energy of τα is propor-
tional to the average microscopic dipole stiffness κ, leading
to the prediction log(τα/t0) ∝ κ(T )/T in which t0 is phonon
time. Reproduced from Ref. 203.
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V. DISCUSSION

This paper has reviewed arguments that a glass-
forming liquid below the solidity length is more like a
solid-that-flows than like “ordinary” less viscous liquids.
The focus has been on the dynamics, leaving out a discus-
sion of thermodynamic properties and their correlation to
the dynamics [17, 52]. In regard to possible experimental
consequences, we note that the double-percolation pic-
ture does not apply in 2d. That is, if α and β relax-
ations as suggested derive from slow- and fast-domain
percolation, respectively, no separate (Johari-Goldstein)
β relaxation should exist in 2d because the percolation
threshold is here 50%. Interestingly, it has been argued
from simulations that the glass transition in 2d indeed
is different from in 3d in several respects [125, 207, 208].
Another prediction of the above is that all molecules con-
tribute to the β relaxation in the liquid phase, albeit only
a fraction of them at any given time, while in the glass
some molecules contribute and some do not [154, 209].

Not everything discussed in this paper can be correct
for the simple reason that there are several inconsisten-
cies. We end the paper by listing these and other issues
in order to illustrate that there is still no self-contained
picture of glass-forming liquids’ solidity and its conse-
quences:

• The derivation of the solidity length Eq. (4) as-
sumes that each place in the liquid on average gives
rise to one flow event every τα. This is inconsistent
with the double-percolation picture of Fig. 7(a) in
which a broad range of activation energies is in-
volved. This inconsistency persists even after tak-
ing into account that the “islands of immobility”
are renormalized and lowered to the “percolation”
activation energy of τα. This dilemma may be re-
solved by following Furukawa and instead define ls
as the length scale beyond which ordinary hydro-
dynamics applies [75]; as noted in Sec. IID this
leads to virtually the same expression as Eq. (4).

Incidentally, while ls ∝ τ
1/4
α has recently been con-

firmed in connection with nonlinear flow modeling

[210], other recent works predict ls ∝ τ
1/2
α [211]

and ls ∝ τ
1/3
α [5], a matter that needs to be clari-

fied. How to determine ls in experiments is another
important challenge for future work [210].

• The coarse-grained description of the apparent
violation of particle number conservation, Eq. (6),
is based on spherically symmetric flow events. In
reality the flow-event force quadrupole moment

is usually non-zero [62, 65, 80], leading to minor
long-ranged density changes. Moreover, even for a
hypothetical perfectly spherical flow event, there
will be minor “advective” density changes because
the density varies slightly in space. Both types
of density changes sum to zero, however, and do
not lead to a coarse-grained density-conserving
dynamics.

• It is not obvious that elastic facilitation (Fig. 6(b)
and (c)) is enough to eradicate the largest quar-
ter of the local energy barriers (Fig. 7(a)). After
all, the stress changes of one flow event decays in
space as ∝ 1/r3, which is rather rapid so other
facilitation mechanisms may be needed [154, 212].
We favor the above-mentioned possibility that the
whole system flows on time scales longer than τα
on which all stresses are relaxed, including those
that keep in place the solid structure defining the
energy barriers.

• Based on the double-percolation picture one would
expect an experimental signature of the percola-
tion critical exponents [153, 213], which contra-
dicts the prediction that χ′′(ω) ∝ ω−1/2 above
the α loss peak frequency. Moreover, it was re-
cently shown that the (zero-parameter) random-
barrier model provides an excellent fit to the in-
herent mean-square displacement as a function of
time for a binary ultraviscous Lennard-Jones liquid
[214]. It is not obvious how to reconcile that model
[215] with the prediction for the α high-frequency
loss, χ′′(ω) ∝ ω−1/2.

• The shoving model assumes uniform elasticity on
the short time scale. If one assumes that all flow-
event barriers scale in proportion when tempera-
ture is changed, this temperature scaling is inher-
ited by G∞(T ) [202]. Even under this assumption,
however, one would expect the flow-event sequences
not to be temperature invariant because sequences
avoiding large barriers will be increasingly impor-
tant as the temperature is lowered.

Clearly, much further work is needed before the solid-
that-flows picture has matured into a simple and coherent
one.
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