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The most commonly studied kind of parameter polydispersity is that of varying particles size.
This paper investigates by simulations the effects of introducing polydispersity in other parameters
of the two-dimensional Active Brownian Particles model with Yukawa pair interactions. Polydis-
persity is introduced separately in the translational and rotational diffusion coefficients, as well as
in the persistence speed v0. Uniform and binary parameter distributions are considered in both
the homogeneous and the motility-induced phase-separation (MIPS) phases. We find only minute
changes in the structure and dynamics upon the introduction of parameter polydispersity, even for
situations involving up to 50% polydispersity. The reason for this is not clear. An exception is
the case of v0 polydispersity for which the average radial distribution function shows significant
changes in the MIPS phase with increasing polydispersity. Even in this case, however, the dynamics
is only modestly affected. As a possible application of these findings, we suggest that the temporal
introduction of polydispersity into single-component active-matter models characterized by a very
long equilibration time, i.e., a glass-forming active system, may be used to equilibrate the system
efficiently by particle swaps.

I. INTRODUCTION

Active matter includes fluids of self-propelled particles like bacteria, birds, or insect flocks [1–7]. An example of the
intriguing features of active matter – relating to the fact that time-reversal invariance is broken – is motility-induced
phase separation (MIPS), the fact that a purely repulsive system may phase separate into high- and low-density
phases [4, 8–13].

There is currently a considerable interest in passive polydisperse systems, in particular deriving from the use of
polydispersity for SWAP-equilibrating models of supercooled liquids [14]. An obvious question in this respect is: how
different are the dynamics of the different particles [15–17]? Polydispersity is also relevant for active matter models
because for a biological system one cannot expect all constituents to be identical [18–21]. Thus Castro et al. recently
showed that the MIPS phase gets suppressed with the introduction of a spread of persistence speeds in the Active
Brownian Particles (ABP) model [22].

This paper presents a systematic study of the effects of polydispersity in the ABP model in two dimensions. The
particles interact via the Yukawa (screened Coulomb) pair potential [23, 24]; polydispersity is introduced by varying
the three activity parameters controlling the motion of the individual particles. We find a surprisingly small effect of
even quite high polydispersity (up to 50%) when the 0parameters vary under the constraint of constant average. This
applies to both continuous and binary polydispersity and is in sharp contrast to the usually observed large effects of
introducing size polydispersity (in both passive and active matter).

II. THE 2D ABP YUKAWA SYSTEM

The Yukawa pair potential [23, 25] is defined [26] by

v(r) =
Q2σ

r
exp

(
− r

λσ

)
. (1)

Here σ is a length parameter, λ is dimensionless, and the “charge” Q has dimension square root of energy. Throughout
the paper λ = 0.16 and Q = 50, while σ ≡ 1 defines the unit of length and thus the unit of particle density.

If ri is the position vector of particle i, the ABP equations of motion in two dimensions are [27]
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ṙi = µFi + ξi(t) + v0 oi(t) . (2)

Here, µ is the mobility (velocity over force), Fi(R) = −∇iU(R) is the force on particle i in which R = (r1, ...., rN )
is the configuration vector and U(R) the potential-energy function, ξi(t) is a Gaussian random white-noise vector,
and v0 is the so-called persistence speed. The vector oi(t) = (cos θi(t), sin θi(t)) is a stochastic unit vector in which
the change of the angle θi(t) is given by a Gaussian white noise term with magnitude defining the rotational diffusion
coefficient Dr, i.e.,

⟨θ̇i(t)θ̇j(t′)⟩ = 2Drδij δ(t− t′) . (3)

The magnitude of the white-noise velocity vector ξi(t) defines the translational diffusion coefficient Dt,

⟨ξαi (t)ξ
β
j (t

′)⟩ = 2Dtδijδαβδ(t− t′) (4)

in which α, β are spatial x, y, z indices and i, j are particle indices. The mobility µ is taken to be unity throughout,
i.e., is regarded as a material constant, while the remaining model parameters Dr, Dt, and v0 are allowed to vary
from particle to particle. This introduces three kinds of polydispersity. In each case the average of the parameter
in question is kept constant. For any varying parameter X the polydispersity δ is conventionally defined [28] as

δ ≡
√

⟨X2⟩ − ⟨X⟩2/⟨X⟩ in which the sharp brackets denote an average.

We simulated 10000 particles of the 2d Yukawa system with interactions cut off at 4.5σ. The time step used was
∆t = 0.0625⟨Dt⟩/⟨v0⟩2. Each simulation involved 2 · 107 time steps. The code employed was RUMD [29], modified
to deal with polydispersity in particle-activity parameters. Parameters corresponding to both the homogeneous
(Dt = 1.0, Dr = 0.8, v0 = 25) and the MIPS phase (Dt = 1.0, Dr = 0.2, v0 = 25) were simulated.
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III. PARAMETER POLYDISPERSITY IN THE HOMOGENEOUS PHASE
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FIG. 1. Structure and dynamics in the homogeneous phase for uniformly polydisperse systems (black and red curves for 10%
and 50% polydispersity) and binary systems. Green represents 10%, orange 30%, and blue 50% polydispersity. (a), (c), and (e)
show the average radial distribution functions (RDFs), g(r), for systems with polydispersity in the Dt, Dr, and v0 parameters.
(b), (d), and (f) show the corresponding results for the mean-square displacement as a function of time, ⟨∆r2(t)⟩. In all cases
there is little effect of polydispersity.

We first consider the effect of active-parameter polydispersity on the structure and dynamics in the homogeneous
phase. The left column of Fig. 1 shows the (average) radial distribution functions (RDFs) for different degrees of
polydispersity: uniform parameter distributions of 10% and 50% polydispersity and binary parameter distributions
of 10%, 30%, and 50% polydispersity in Dt (top), Dr (middle), and v0 (bottom). The right column of Fig. 1 shows
the (average) mean-square displacement (MSD) as a function of time for the same situations. In all cases we see little
effect of polydispersity. This is not trivial because the individual particles conform to different equations of motion
and indeed move differently, as is clear from the next figure.
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FIG. 2. Role of the 20% lowest (black and red) and 20% highest (green and blue) active-parameter particles in the homogeneous
phase of continuously polydisperse systems at 10% and 50% polydispersity. (a), (c), and (e) show RDFs, g(r), for polydispersity
in the Dt, Dr, and v0 parameter, respectively. (b), (d), and (f) show the corresponding results for the mean-square displacement
⟨∆r2(t)⟩. For the RDFs there is litte difference between the lowest and highest active-parameter particles, while the MSD shows
variations that are much larger than those of the overall average (Fig. 1). Interestingly, this variation is seen in the short-time
data in the case of Dt polydispersity, but in the long-time data for Dr and v0 polydispersity.

To illuminate the role of the parameter polydispersity for the individual particles we identified, for the two uniform
polydispersities, the particles with the 20% lowest activity parameters and those with the 20% highest parameters.
For each of these categories we determined the corresponding RDFs (counting only surrounding particles of the same
type) and MSDs. The results are shown in Fig. 2. For the structure (left) there is little difference although one notes
that the low Dt particles show a somewhat more pronounced first peak than that of the high Dt particles (upper left).
Since Dt in the Langevin-type equation Eq. (2) plays the role of a temperature, this is consistent with the well-known
finding for passive systems that lowering the temperature generally leads to a higher first peak of the RDF. For the
dynamics, there are clear differences: In the case of Dt polydispersity (upper right), the long-time dynamics is the
same while the short-time dynamics is fastest for the highest Dt particles. For Dr polydispersity the opposite is
observed: Here the short-time dynamics is the same for the low and high Dr particles while the long-time dynamics
is fastest for the particles with low Dr. The rotational diffusion coefficient determines a particle’s persistence time
such that low Dr corresponds to a large persistence time. In a discrete random-walk picture, this implies longer
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jumps and therefore a faster long-time diffusive motion. On the short time scale little change of direction is possible,
making the value of Dr irrelevant. Consider finally the case of v0 polydispersity (lower right). Here there is no effect
on the short-time dynamics, while the long-time dynamics is fastest for particles with large v0. That the short-time
dynamics is unaffected is a simple consequence of Eq. (2) in which the v0 term on the short time scale gives rise to
a MSD proportional to t2, which is much smaller than the short-time diffusive contribution to the MSD. The faster
long-time diffusive dynamics for the high v0 particles comes about because a higher persistence velocity means larger
displacements in one direction before the direction changes, corresponding to longer jumps in a random-walk picture.

How do the results of Fig. 2 relate to the the overall average structure and dynamics results of Fig. 1? The structure
is almost the same for low and high active parameter particles for all three types of polydispersity – and independent
of the degree of polydispersity – so the RDF findings of Fig. 1 are not surprising. In regard to the MSD, it seems
that the variations induced by parameter polydispersity average out resulting in little overall change of the average
MSD. Thus in all three cases the black and green curves in Fig. 2, which represent just 10% polydispersity, are close
to each other while the red and blue curves (50% polydispersity) move in opposite direction.

IV. PARAMETER POLYDISPERSITY IN THE MIPS PHASE

The existence of a MIPS phase is a unique feature of active matter. This phase should also be investigated in
regard to the effects of introducing active-parameter polydispersity. We did this by repeating the above simulations,
the only difference being that the average of Dr is now 0.2 instead of the above used 0.8.
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FIG. 3. Structure and dynamics in the MIPS phase for uniformly polydisperse systems (black and red curves) and binary
systems (green, blue, and orange curves). (a), (c), and (e) show the average RDFs, g(r), for systems of 10%, 30%, and 50%
polydispersity in the Dt, Dr, and v0 parameters, respectively. (b), (d), and (f) show the corresponding results for the mean-
square displacement ⟨∆r2(t)⟩. There is little effect of introducing polydispersity in the Dt and Dr parameters whereas a notable
effect of v0 polydispersity is observed for the RDF, in which case there is also a visible – though much smaller – effect on the
dynamics.

The results for the RDFs and MSDs are shown in Fig. 3. In regard to the dynamics, the picture is not much different
from that of the homogeneous phase: the MSD is virtually unaffected by the introduction of polydispersity in any of
the three parameters. The same applies for the RDF for Dt and Dr polydispersity, whereas v0 polydispersity strongly
affects the RDF (lower left). While not clearly visible, a close inspection reveals that the green RDF and MSD curves
cover a black one and that the blue curves likewise cover a red one. The former are for 10% polydispersity in the
uniform and binary cases, respectively, while the latter similarly are for 50% polydispersity. We conclude that the
introduction of v0 polydispersity strongly affects the RDF in a way that is independent of the parameter probability
distribution. Given that the entire existence of the MIPS phase reflects the active-matter feature of a temporary
persistence direction in the particle motion, it is not surprising that introducing v0 polydispersity has a strong effect
on the structure of the MIPS phase.
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FIG. 4. Role of the 20% lowest (black and red) and 20% highest (green and blue) active-parameter particles in the MIPS phase
of continuously polydisperse systems at 10% and 50% polydispersity. (a), (c), and (e) show RDFs, g(r), for polydispersity in
the Dt, Dr, and v0 parameters, respectively. (b), (d), and (f) show the corresponding results for the mean-square displacement
⟨∆r2(t)⟩. For the RDFs there is for Dt polydispersity little difference between the lowest and highest active-parameter particles
except at the first peak; Dr polydispersity shows a larger but still modest difference, which is most pronounced at 50%
polydispersity. The case of v0 polydispersity shows significant difference between 10% and 50% polydispersity, but for each of
these values there is only modest variation between the lowest and highest active-parameter particles’ RDF. For the MSD the
situation is similar to that observed in the homogeneous phase (Fig. 2): variation is observed in the short-time data for Dt

polydispersity, in the long-time data for Dr polydispersity, and (mainly) at intermediate and long times for v0 polydispersity.

To throw more light on these findings, following the procedure of the homogeneous-phase investigation we identify
in Fig. 4 the contributions to structure and dynamics from the lowest (black and red) and highest (green and blue)
parameter particles. Compared to the homogeneous case, there is more variation for all three RDFs, in particular
for Dr and v0 polydispersity. In the Dr case, the black and green curves (10% polydispersity) are close and move in
the same direction when increasing to 50% polydispersity. Interestingly, the average of black and green, as well as of
red and blue, is an almost unchanged RDF (left middle panel of Fig. 3). The v0 polydispersity case is different: here
the 10% polydispersity curves are similar (black and green), but quite different from the 50% polydispersity curves
(red and blue). This is consistent with the finding of Fig. 3 (lower left panel) and means that the actual value of v0
matters little for the structure surrounding a given particle. We believe this is an effect of the strong interparticle
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interactions within the MIPS phase that averages out the effect of the individually varying v0. At the same time
increasing the degree of v0 polydispersity leads to a considerable broadening of the width of the first peak. Because
there is little difference between the low and high v0 RDFs, the picture is very similar to the overall average picture.
In fact, at 50% v0 polydispersity we find that the system becomes almost homogeneous, which is consistent with the
findings of Ref. 30. – In regard to the MSD, the MIPS phase low and high parameter findings are similar to those of
the homogeneous phase (Fig. 2).

V. ROLE OF THE AVERAGE POTENTIAL ENERGY
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FIG. 5. Average potential energy as a function of time during a steady-state simulations. (a), (c), and (e) show data for the
homogeneous phase for systems of 10%, 30%, and 50% polydispersity in the Dt, Dr, and v0 parameters, respectively. (b), (d),
and (f) show the corresponding results for MIPS-phase simulations. Except for the MIPS-phase v0 polydispersity case, the
average potential energy is virtually unaffected by the introduction of polydispersity.

To further illuminate the effect of parameter polydispersity we evaluated the potential energy as a function of time
during the simulations (Fig. 5). In the homogeneous phase (left column) polydispersity has little effect on the average
potential energy. This is consistent with the finding that in this phase structure and dynamics are virtually unaffected
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by the degree of polydispersity (Fig. 1). The same applies for the MIPS phase in the Dt and Dr polydispersity cases.
Only in the v0 polydispersity MIPS case is the structure severely affected (Fig. 3 lower left), which is consistent with
the finding that only in this case the average potential energy changes significantly with the degree of polydispersity
(Fig. 5 lower right). At increasing v0 polydispersity the MIPS-phase average potential energy approaches that of the
homogeneous phase, which means that the average particle distance increases (the density decreases) with increasing
v0 polydispersity. Indeed, in this case the position of the first peak of the RDF was found to increase toward unity
(Fig. 3 lower left), indicating that the MIPS phase gradually fills out the sample area and, eventually, disappears.

In summary, changes in the average potential energy upon introduction of parameter polydispersity correlate with
changes of structure and dynamics. This means that the average potential energy is an easy-to-use “thermometer” of
changes to the physics.

VI. DISCUSSION

It is well known that introducing size polydispersity into active-matter models by varying the characteristic length
of the pair potential has a significant effect on both structure and dynamics [18–21, 31], just as for passive systems
[28, 32, 33]. This paper investigated the effects of introducing particle-to-particle variations of other parameters of
the 2d ABP model with Yukawa pair interactions. With the exception of v0 polydispersity in the MIPS phase, we find
surprisingly small effects on the structure and dynamics when polydispersity is introduced such that the average of
the parameter in question is kept constant. The cause of this is not obvious, but it means that a polydisperse active
system in many respects behaves like the homogeneous system of particles with average model parameters, i.e., that
a mean-field description applies to a good approximation. We note that a recent study of different Lennard-Jones
(passive) systems showed a similar insensitivity to the introduction of energy polydispersity [34], a result that is also
still not well understood.

Investigations of other active-matter models should be carried out to determine the generality of our findings. If
they are general, the introduction of polydispersity may have applications to instances of non-polydisperse active-
matter models for which the system in question is difficult to equilibrate because of extremely long relaxation times
[35, 36]. As is well known, passive glass-forming polydisperse liquids may be equilibrated by the SWAP algorithm
[14]. Even though detailed balance does not apply for active matter, SWAP may also be applied for equilibrating an
active, single-component highly viscous system [37] by proceeding as follows. First introduce polydispersity into one
of the active-model parameters. Then, carry out random particle swaps, which according to the above findings will
not significantly affect the average structure and dynamics of the system. Finally, remove the artificial polydispersity.
Inspired by Ref. 14 we conjecture that this will equilibrate the system more quickly than a long simulation.
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