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Determining the melting curves of materials up to high pressures has long been a challenge
experimentally and theoretically. A large class of materials, including most metals, has been shown
to exhibit hidden scale invariance, an approximate scale invariance of the potential-energy landscape
that is not obvious from the Hamiltonian. For these materials the isomorph theory allows the
identification of curves in the phase diagram along which structural and dynamical properties are
invariant to a good approximation when expressed in appropriately scaled form. These curves, the
isomorphs, can also be used as the basis for constructing accurate melting curves from simulations
at a single state point [U. R. Pedersen et al., Nat. Comm. 7, 12386 (2016)]. In this work we
apply the method to the metals Cu simulated using the effective medium theory and Al simulated
using density functional theory (DFT). For Cu the method works very well and is validated using
two-phase melting point simulations. For Al there are likewise good isomorphs and the method
generates the melting curve accurately as compared to previous experimental and DFT results. In
line with a recent suggestion of Hong and van de Walle [Phys. Rev. B 100, 140102 (2019)], we
finally argue that the tendency for the density-scaling exponent γ to decrease with increasing density
in metals implies that metals in general will undergo re-entrant melting, i.e., have a maximum of
melting temperature as a function of pressure.

I. INTRODUCTION

Melting is the physical process where a substance changes
phase from solid to liquid.[1–3] For a pure substance un-
der ambient pressure, the melting point is well defined
as the temperature Tm at which both solid and liquid
phase can coexist in equilibrium. In general, the melting
temperature depends on pressure and the term “melting
curve” refers to the curve given by the functional depen-
dence of the melting temperature on the pressure in the
phase diagram.

Melting of metals – especially at high temperatures and
pressures – is of particular interest for a variety of dis-
ciplines from material science to geophysics and plane-
tary science. For example, understanding the conditions
in the core of the earth has long been an intriguing en-
deavor, evidenced by the many papers on high-pressure
melting of iron and iron-rich alloys alone.[4–10] Also, de-
termining high-pressure melting curves in metals in gen-
eral is an active field, both on the experimental side [11–
14] and from theory and simulations.[15–18]

Predictions of melting curves have a long history, start-
ing with the first attempt made by Lindemann [19] in
1910. The Lindemann melting criterion, what in its well-
known form is actually an extension to Lindemann’s orig-
inal work made several years later by Gilvarry,[20] states
that melting occurs when the root-mean-square ampli-
tude of the thermal vibration exceeds the threshold value
of 10% of the nearest-neighbor distance.

In simulations, the melting point can be determined sim-
ilar to experiments by observing the phase transition

directly, such as the fast heating (Z-method) where a
small slab of initially solid particles is heated until it
melts.[21, 22] Without the nucleation sites (surface de-
fects, etc.) that are available for melting in nature, how-
ever, this procedure tends to lead to a meta-stable, super-
heated crystal phase prior to melting and thus overes-
timates the melting temperature.[23] This is sometimes
counteracted by combining with the temperature found
from observing the phase transition when freezing the
same system. The reversed process usually results in an
underestimated temperature following from the absence
of ‘seeds’ from which crystallization can start.

Accurate melting-point estimates can be given by coex-
istence methods,provided the system is large enough[24–
27] Here, solid and liquid phases are brought in direct
contact with each other. The interface between the
phases is monitored and the coexistence state point is
inferred from the interface position when the system has
stabilized. The interface-pinning method [28] is a devel-
opment of the coexistence method, where the interface is
pinned in place by an extra term in the Hamiltonian. An
advantage of this is that the system can be stabilized in a
much smaller cell and thus requires less computationally
expensive simulations while maintaining accuracy.

All these techniques only determine a single point on the
melting curve at a time. Tracing out the full melting
curve in this way using ab initio simulations can be pro-
hibitively costly computationally. Thus, predictions of
the melting curve usually involve some kind of theoret-
ical extrapolation or fitting to make a curve out of a
few initial points. Reflecting the traditional perception
of melting, i.e., higher pressure gives a higher melting
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temperature, these procedures usually lead to predictions
where the temperature monotonically rises with increas-
ing pressure. This includes, for example, the widely ac-
cepted Lindemann and Grüneisen laws [19, 29, 30] as well
as the Simon-Glatzel equation.[31]

Recent ab initio simulations have shown that a wide class
of materials, including metals, obey approximate “hid-
den scale invariance”.[32] This means that so-called iso-
morphs exist in the phase diagrams of these “R-simple”
systems, curves along which structure and dynamics are
invariant.[33–35] The isomorphs are approximately par-
allel to the melting curve and an isomorph starting from
a state point at coexistence can be regarded as a zeroth-
order approximation to the melting curve. Indeed, if the
property of structural invariance held for two-phase con-
figurations, the melting curve would indeed be an iso-
morph. Building on this, Ref. 36 gave a prescription of
how the pressure-temperature melting curve, as well as
the freezing and melting densities, can be recovered by
a first-order Taylor expansion from reference isomorphs
constructed at a single coexistence point. The method
involves sampling relatively few configurations from the
reference-point simulations and scaling them to differ-
ent densities in order to estimate thermodynamic data
at those densities and their corresponding temperatures.
This involves much less computational effort than actu-
ally simulating at the respective densities and tempera-
tures. For example, if the configurations are sampled ev-
ery 100 time steps, the computational work to calculate
the melting curve is of order 100 times smaller per point
on the melting curve. If the effort to accurately deter-
mine the initial coexistence point is counted, the factor
is even greater because such calculations are themselves
much more demanding than running two separate single-
phase simulations at a known coexistence point. This
method was recently applied to realistic potentials for
noble elements.[37]

The present paper applies the insights from isomorph
theory to melting of metals based on ab initio simu-
lations and demonstrates its computational advantage.
An interesting by-product of the analysis in terms of iso-
morphs is the insight that so-called re-entrant melting
likely is a general feature of metals. Re-entrant melting
is where the melting curve reaches a maximum temper-
ature at some high pressure before decreasing at even
higher pressure; it means that at a fixed temperature be-
low the maximum, one can go from liquid to crystal and
back to liquid again only by increasing pressure. Hong
and van de Walle have recently published a density func-
tional theory (DFT) study of melting curves of metallic
elements at high pressure,[38] suggesting that re-entrant
melting is more widespread than previously realized. Re-
entrant melting has also been seen in the EXP system
which has a pair potential consisting of a single expo-
nential function.[39] The connection between EXP and
metallic systems is that with increasing density they both
exhibit a strongly decreasing density-scaling exponent γ

(defined in Eq. (5) below). This connection can be un-
derstood by reference to the semi-empirical method for
computing metallic interactions known as the effective
medium theory.[40, 41]

The structure of the paper is as follows. In Section II
we present an overview of isomorph theory, including the
method used to generate isomorphs and the method for
determining the melting curve from two isomorphs (one
liquid and one crystal), starting at a known point on the
melting curve. Sec. III presents the melting curve method
to Cu simulated using effective medium theory (EMT).
Sec IV investigates the degree of isomorph invariance of
structural and dynamical quantities for Al along the com-
puted isomorphs using DFT and presents our results for
the melting curve of Al. A discussion of the implications
for re-entrant melting is given in Sec. V.

II. HIDDEN SCALE INVARIANCE AND
ISOMORPHS

Isomorph theory has been developed over a series of
papers.[33, 42–45] An updated, generic version of the
theory can be found in Ref. 34, and reviews in Refs.
35, 46, and 47. The following introduces briefly the
concepts of isomorph theory that are relevant for the
present paper. A key concept is hidden scale invariance,
which refers to an underlying approximate symmetry
that makes the phase diagrams of materials possessing
this symmetry particularly simple. “Simplicity” in this
sense of the word is referred to as R-simplicity.[34] Hidden
scale invariance is defined by the property that the po-
tential energies of same-density configurations maintain
their ordering under uniform volumetric scaling. This
condition can be expressed[34] as

U(Ra) < U(Rb) =⇒ U(λRa) < U(λRb), (1)

where U(Ri) is the potential energy of the configura-
tion Ri (i.e., all particle coordinates) and λ is a scaling
parameter. This condition is obeyed to a good approx-
imation in the condensed part of the phase diagram of
various systems, including both solid and liquid phases
of real as well as model systems like the Lennard-Jones
and Yukawa systems. Equation (1) is general: it does not
assume equilibrium configurations or, if these are in fact
equilibrated, does not assume the same temperature. It
has been shown in simulations that hidden scale invari-
ance is often spoiled by directional interactions as well as
by competing length scales when more than one kind of
interaction is present.[43] Thus, while most metals and
van der Waals bonded molecular systems are expected
to be R-simple, hydrogen and covalently-bonded systems
are not. Ionic and dipolar systems constitute an inter-
esting in-between case.[35, 48]
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A. Strong virial potential-energy correlations

Systems that for most of their configurations obey the
condition of Eq. (1) have previously also been referred to
as strongly correlating.[42, 43] Recall that the virial W at
a given state point is the contribution from interactions
to the pressure via PV = NkBT + W ; W is an exten-
sive quantity of dimension energy. The strong correlation
refers to the instantaneous equilibrium fluctuations of the
potential energy U and W ,

∆W ∼= γ∆U, (2)

where ∆ indicates instantaneous deviations from the
canonical constant-volume (NV T ) ensemble average. A
system is considered strongly correlating in the isomorph
sense if R > 0.9, where R is the (Pearson) correlation
coefficient

R =
⟨∆W∆U⟩√

⟨(∆W )2⟩⟨(∆U)2⟩
, (3)

with the angle brackets denoting NV T expectation val-
ues. The proportionality factor γ between virial and
potential-energy fluctuations is given as the generally
state-point dependent linear-regression slope (in which
ρ is the particle number density)

γ(ρ, T ) =
⟨∆W∆U⟩
⟨(∆U)2⟩

. (4)

The factor γ is called the density-scaling exponent.[42]
This quantity may be determined by application of the
generally valid equality, derived in Ref. 33,

γ(ρ, T ) =

(
∂ lnT

∂ ln ρ

)
Sex

, (5)

in which Sex is the excess entropy referring to the de-
viation from the ideal-gas entropy at the same temper-
ature and density. Thus, as a thermodynamic quantity,
γ gives the slope in the logarithmic density-temperature
phase diagram of curves of constant excess entropy. The
equality of Eq. (4) and Eq. (5) is a general statistical-
mechanical identity valid for any system.[33]

Curves of constant excess entropy exist for any system;
for an R-simple (strongly correlating) system such curves
are called isomorphs. Thus systems only have isomorphs
in the part of their phase diagram where they are strongly
correlating or, equivalently, where most of the physically
relevant configurations obey Eq. (1). Along isomorphs,
structure and dynamics are invariant to a good approx-
imation, and this fact effectively reduces the phase dia-
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FIG. 1. Determining the temperature T2 at a scaled den-
sity ρ2 from an EMT simulation of 2048 atoms of liquid
Cu at T1 = 2008 K, ρ1 = 0.0831 Å−3, corresponding to
P = 16.0 GPa. The unscaled potential energies are taken
from configurations of the initial simulation. The same con-
figurations are then uniformly scaled to the target density,
here ρ2 = 1.1312ρ1. The direct isomorph check finds the tem-
perature T2 for the given density ρ2 of a state point that is on
the same isomorph as the initial state point (ρ1, T1). Plotting
the potential energies of scaled versus unscaled configurations
results in a scatter plot where the slope of the best fit line is
T2/T1 (see Eq. (7)), resulting in the value 2914 K for T2.

gram by one dimension. To observe the invariance, quan-
tities must be rescaled into appropriate dimensionless
form using so-called reduced units. For example, lengths
at different densities can only be directly compared af-
ter dividing by the average interparticle spacing ∝ ρ−1/3.
Likewise, times are given in multiples of the time a par-
ticle at thermal velocity needs to pass the interparticle
spacing (apart from a numerical factor of order unity),
ρ−1/3

√
m/kBT , and energies are scaled by the thermal

energy kBT .[33]

B. Direct isomorph check

Isomorphs can be traced out in a step-wise fashion,
where γ can be found from fluctuations in simulations
at each state point via Eq. (4) and numerically integrat-
ing Eq. (5) by the Euler or the Runge-Kutta algorithm,
changing density in small increments. This is, however,
not practical for computationally intensive simulations
like those based on ab initio methods, as this method
requires simulating at every step. Instead, the present
work uses the so-called direct isomorph check (DIC).

The DIC was introduced in Ref. 33 and works as fol-
lows. For any two state points on the same isomorph
one can make a one-to-one correspondence between their
respective microscopic configurations Ri = (r

(i)
1 , ...r

(i)
N ),
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specifically between those that have the same reduced
coordinates, ρ

1/3
1 R1 = ρ

1/3
2 R2, i.e., can be scaled uni-

formly into one another. Then, according to the iso-
morph theory,[33] the corresponding configurations have
almost identical configurational NV T canonical proba-
bilities,

exp

(
−U(R1)

kBT1

)
∼= C12 exp

(
−U(R2)

kBT2

)
. (6)

Using this, Eq. (6) expressed in terms of fluctuations
around the respective means becomes

∆U(R2) = ∆U

((
ρ1
ρ2

)1/3

R1

)
∼=

T2

T1
∆U(R1) . (7)

From this the meaning of the slope when plotting the
energies as shown in Fig. 1 becomes clear: plotting the
potential energies from configurations at a state point
(ρ1, T1) against those determined from the same config-
urations scaled to another density ρ2, results in a scat-
ter plot whose slope is T2/T1, thus allowing T2 to be
determined.[33, 34] The same initial configurations can
be scaled to several different densities, so that an iso-
morph can be mapped out from simulations at only one
state point (although the quality of the linear fit gener-
ally degrades as the density change increases).

Reasonable estimates of thermal averages of quantities
– such as the potential energy, virial, pressure – at the
scaled densities can be made by averaging over the scaled
configurations. Indeed, since these quantities are not
invariant along isomorphs in reduced units, non-trivial
thermodynamic data can be obtained this way. Even
fluctuation-based quantities like γ can be estimated from
the scaled configurations. This is the key to being able
to determine thermodynamic quantities along isomorphs
without doing simulations except at the reference state
point. Calculating thermodynamic quantities such as
virial and potential energy, can still be costly, especially
using ab initio methods, but two orders of magnitude
less costly than doing simulations at the scaled densities
if configurations are sampled every 100 time steps. It
must be noted that the scaled configurations cannot tell
us how invariant structure and dynamics actually are at
any of the scaled densities. To assess the degree of in-
variance conducting simulations at the scaled densities is
unavoidable.

C. Relevance of isomorphs to the melting curve

Paper IV of the initial series of papers developing the iso-
morph theory [33] argues that the melting curve must be
parallel to liquid and solid isomorphs since an isomorph
crossing the melting curve contradicts the isomorph in-
variance of structure. Obviously, if structure is invariant,

the system cannot at the same time undergo a phase tran-
sition. This argument assumes a very strong structural
invariance applying to configurations containing a mix-
ture of two phases of different densities.

For realistic systems, the preservation of ordering of
Eq. (1) is satisfied for most, but not all, pairs of physically
relevant configurations. Isomorph theory is only exact in
systems with potential-energy functions which are Euler-
homogeneous of degree n (plus a constant). In this case
the correlation coefficient and the density-scaling expo-
nent are R = 1 and γ = n/3, respectively. Inverse power
law (IPL) potential systems[44] are an example of this
– there the isomorph starting from a point at melting
simply follows the melting curve.

In more realistic systems the strong isomorph require-
ment that structure and dynamics be invariant also for
two-phase configurations must be relaxed to the weaker
condition that isomorph invariance applies for single-
phase configurations. This is due to the fact that the
density-scaling exponent generally depends on density,
so identical density scaling of liquid and crystal phases
will scale their potential energy surfaces by different
amounts. This means that the melting and freezing
lines are not exact isomorphs, though still close to iso-
morphs. Isomorphs can be considered as excellent zeroth-
order approximations of the melting and freezing lines.
Indeed, several phenomenological melting rules, includ-
ing the Lindemann melting criterion, can be understood
as consequences of the melting curve being close to an
isomorph.[33]

The method we use for constructing accurate melting
curves was described in Ref. 36 using the standard
single-component Lennard-Jones system as an example.
The basic idea is illustrated in Figure 2. Two isomorphs,
one liquid and one solid, are generated from a state point
at coexistence. From quantities along these “reference
isomorphs”, the melting pressure as well as the freezing
and melting densities can be calculated. The resulting
expression for the melting pressure is

Pm(T ) =

[(
U I
s − T

T 0
U0
s

)
−
(
U I
l − T

T 0
U0
l

)

+NkBT ln
(
ρ̃Is/ρ̃

I
l

)
+

T

T 0

(
W 0

l −W 0
s

) ] 1(
V I
l − V I

s

) .
(8)

Here ρ̃Il,s = ρIl,s/ρ
0
l,s are the densities along the liquid (l)

and the solid (s) isomorph relative to their reference val-
ues, respectively, and U I

l,s, V
I
l,s, and W I

l,s are the poten-
tial energies, volumes, and virials along the liquid and
solid isomorphs at the temperature T . The tempera-
ture dependence of U , V , and ρ̃ has been suppressed for
compactness in Eq. (8). Knowing the deviation of the
pressure between the melting curve and the reference iso-
morph, the liquid density at freezing (f) and solid density
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FIG. 2. Figure taken from Ref. 36 illustrating the idea behind
Eq. (8) (for the Lennard-Jones system). It shows isomorphs
(blue) generated from simulations at reference points (black
dots) on the freezing/melting curve. The method then gives
a prescription to interpolate the freezing/melting curve (red
dashed) beyond the reference point as a first-order expansion
from the reference isomorphs. The present work, in contrast
to the figure, takes a low reference temperature and generates
melting curves towards higher temperatures.

at melting (m) can be found using

ρf,m(T ) ∼= ρl,s(T )

(
1 +

Pm(T )− P I
l,s

KI
T l,s

)
, (9)

respectively, where KI
T l,s are the isothermal bulk moduli

along the liquid and the solid isomorphs, respectively. In
an equilibrium simulation this quantity is calculated from
the following fluctuation formula:[49]

KT =
1

V

(
NkBT +W +X − Var [W ]

kBT

)
. (10)

Here is X is the so-called hypervirial defined by X =
∂W/∂ ln ρ for individual configurations, with the under-
standing that the derivative should be taken keeping
the reduced atomic coordinates fixed, i.e., for a uniform
scaling.[49] Together, Eqs. (8) and (9) give a prediction
for the melting curve in the pressure-temperature dia-
gram, as well as for the melting and freezing curves in
the density-temperature diagram, using quantities along
the isomorphs. Moreover, as described at the end of
Sec. II B, these quantities can be estimated without doing
additional simulations along the isomorphs. The hyper-
virial requires additional calculations at nearby densities

to calculate the numerical derivative with respect to the
density, however.

In Eqs. (8) and (9) the input quantities along the iso-
morphs are to be evaluated at the same temperature. In
Ref. 36 the method was applied to the Lennard-Jones
system where analytical expressions for thermodynamic
quantities along the isomorphs exist.[45] This is not the
case for the models employed in this work. Additionally,
the DIC finds temperature (and other thermodynamic
quantities) for a specific density. Thus, the data along
the two isomorphs are not readily available as a func-
tion of temperature, which the method requires. This
is handled by fitting the temperature dependence of all
DIC data with polynomials. This procedure is a possi-
ble source of error, and different orders of polynomials
may be needed for the different quantities. In particular,
we find that the potential-energy contribution to Eq. (8)
poses the largest source of error emerging from small dif-
ferences between large numbers. The other two terms
remain fairly constant. Fourth-order polynomials were
used to fit the potential energy as a function of temper-
ature, while third-order polynomials were used for the
other quantities.

III. ISOMORPHS AND MELTING CURVE OF
EMT COPPER

A. Effective medium theory many-body potentials

To investigate the melting curve and its associated iso-
morphs in realistic models of metals, we have first carried
out simulations using the Roskilde University Molecu-
lar Dynamics (RUMD) [50] code for molecular dynamics
simulations on GPUs using the effective medium theory
(EMT) potential.[40, 41] The EMT potential is a semi-
empirical interatomic potential that aims to combine the
accuracy of DFT with the computational efficiency and
transparency of a simple pair potential. The basis of
the EMT potential is the ansatz that the energy of an
atom inserted into an inhomogeneous electronic medium
is a function of the electron density at the atom’s lo-
cation, or more generally averaged over the volume of
the atom. This allows the calculation of atoms in in-
homogeneous environments to be determined from the
immersion energy of an atom in a uniform electron gas
(atom-in-jellium model). It has therefore been described
as a “local density approximation for atoms”. The validity
of this ansatz was backed up with extensive DFT calcu-
lations in the 1980’s.[51, 52] From these results explicit
parameterizations of the embedding energy for many el-
ements have been determined. To make an interatomic
potential based on the ansatz, the further assumption
is made that the effective electron density into which a
given atom is embedded may be calculated as a superpo-
sition of the electron density tails from the neighboring
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FIG. 3. Relevant part of the Cu phase diagram marking the
points of interest. The solid lines denote isomorphs gener-
ated from the reference state points given by the black circles
(lower left corner). Additional simulations were carried out at
the state points marked by open circles. The points connected
by the dotted/dashed line are on the same isotherm/isochore.
All iso-curves are given in blue for the liquid phase and in red
for the solid phase. The colors of the circles correspond to the
colors used in Figs. 5 and 6 for structure and dynamics data
at the respective state points.

atoms.[40, 41] Corrections to this picture may be imple-
mented using a simple pair potential, and the resulting
interatomic potential is efficient, using simple functional
forms (mostly exponentials) and relatively few parame-
ters.

This is in contrast to well-known Embedded-Atom
Method (EAM) potentials [53–56] whose overall struc-
ture and many-body nature is similar, but which tend
to be based on heavy fitting to, e.g. experimental struc-
tural data, and which do not lend themselves as much
to obtaining physical insight. One feature of the EMT
potential is that it gives reasonably accurate values for
the isomorph-theory density-scaling parameter γ when
compared to DFT calculations, a quantity to which the
potentials were not fitted in any way.[57] A practical ad-
vantage of EMT’s simplicity compared to EAM is its ease
of implementation in RUMD, but it also allows in prin-
ciple the possibility of an analytical investigation of the
dependence of γ on the potential parameters and on the
density.

B. Isomorphs in EMT-Cu

The starting point for these calculations is a known point
on the melting curve to serve as the reference state
point. This was determined using the interface pinning
method[28] at 2008 K. This method returns the pres-
sure for a given temperature on the melting curve, along
with the volumes (densities) of each phase. Single-phase
NV T simulations were then run at those densities and
that temperature to generate the two isomorphs using
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FIG. 4. DIC self-consistency check for EMT-Cu. Open
circles represent data for the isomorphs from the DIC, red
for the solid, and blue for the liquid. The dashed line
in the top panel was obtained from fitting to the DIC
points. The parameter for the fitted expression for γ(ρ)
are: a = 1.349, b = 0.0006528, n = 3.249 for the solid and
a = 1.409, b = 0.0003428, n = 3.478 for the liquid isomorph.
The resulting integrated isomorph is given by the solid line
in the middle panel. The bottom panel shows the correlation
coefficients along both isomorphs.

the DIC. Note that the interface-pinning method requires
simulations of a so-called NPzT ensemble, which main-
tains a fixed pressure in one direction (the z-direction)
and fixed area in the remaining two. The NV T sim-
ulations in RUMD were realized using the Nosé-Hoover
thermostat[58, 59] while the interface pinning simulations
employed Langevin dynamics.[49] For the solid phase a
simulation box with 2048 particles was simulated, which
corresponds to an FCC crystal with 8× 8× 8 cubic unit
cells. The same number of particles was used for the
liquid phase. The isomorphs were determined using the
DIC, increasing density by up to 23%. Figure 3 shows
the mapped liquid and crystal isomorph for Cu, as well
as the state points that were simulated on the isomorph
of each phase. For comparison, isochores, and isotherms
sharing, respectively, the density or the temperature of
the middle state point are also simulated for each phase
as indicated.
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FIG. 5. RDF and MSD along various iso-curves in the solid
phase of EMT-Cu (Fig. 3). The RDF has been plotted
against the reduced pair distance r̃ ≡ ρ1/3r, while the MSD
has been put into reduced form by multiplying with ρ2/3

and plotted against the reduced time t̃ ≡ t/(ρ−1/3
√

m/kBT ).
Each sub-figure contains multiple curves, one for each state
point on the iso-curve in question. The colors indicate the
state point according to Fig. 3. Both structure and dynamics
are invariant to a good approximation along the isomorph.

An indication of the degree of isomorphism can be ob-
tained by using the scaled configurations to estimate the
correlation coefficient R and density-scaling exponent γ
at the points along the isomorph. These, along with the
temperatures obtained from the DIC, are plotted versus
the density in Fig. 4. The density-scaling exponent γ de-
creases monotonically with increasing density and tem-
perature along the isomorph. This behaviour is consis-
tent with previous experience from the EMT metals [57]
and seems to be a general feature of metals.[60] Conse-
quences of this density dependence of γ for melting will
be discussed below. A consistency check, first used in
Ref. 57, can be done by fitting the γ values to the func-
tion γ(ρ) = a + b/ρn. This function can be integrated
analytically and gives an alternative estimate of the tem-
perature along the isomorph. The middle panel of the
figure shows that this estimate agrees well with the tem-
peratures obtained from the DIC. In the bottom panel
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FIG. 6. RDF and MSD along iso-curves in the liquid phase
of EMT-Cu. Details are as in Fig. 5. Both structure and
dynamics are invariant to a good approximation along the
isomorph.

the correlation coefficients are plotted. They all exceed
0.97, indicating a strong degree of isomorphism.

To explicitly demonstrate the quality of the isomorphs
we have run simulations at the state points determined
by the DIC along the solid and liquid isomorphs. Fig-
ures 5 and 6 show structural and dynamical data for Cu
in the solid and liquid phases, respectively. Similar data
for the solid phase were presented in Ref. 57. Each fig-
ure shows radial distribution function (RDF) and mean-
squared displacment (MSD) data expressed in reduced
units for the isomorphs and, for comparison, also for the
isotherms and isochores indicated in Fig. 3 by the cor-
responding colors. The plots for the state points on the
isomorphs are well on top of each other, while they show
noticeable variation for the state points along an isochore.
The RDFs of state points along the solid isotherm are also
very similar to each other, reflecting simply the validity
of the harmonic approximation for crystals. Thermody-
namic data for the solid and liquid Cu isomorphs are
listed in Tables II, III in Appendix A.
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FIG. 7. Comparison of the predicted (dashed) melting curves
with coexistence state points determined using interface pin-
ning (open circles) for EMT-Cu. The melting curve is pre-
dicted exclusively from simulations at the reference state
point, one in the liquid and one in the solid phase. The ref-
erence state point is marked by the full circle. (a) shows the
pressures along the solid and liquid isomorph generated from
the reference point with the melting pressure. (b) shows the
same in the (ρ, T ) diagram.

C. Melting curve for EMT-Cu

The calculated melting pressure and resulting freezing
and melting densities are shown in Fig. 7. For com-
parison, coexistence state points for the same system
determined using interface pinning are also included.
The melting pressure predicted from the isomorph-based
method agrees well with the interface points, although
not as perfectly as in the Lennard-Jones case of Ref. 36,
where analytic expressions for potential energy, virial,
and temperature along isomorphs are available. A small
systematic shift can be observed with the calculated
melting pressure being slightly below the interface pin-
ning results; the same applies also for the predicted den-
sities of liquid freezing and solid melting. Nevertheless,
Fig. 7 demonstrates that the method works well also for
systems for which no analytic expressions are available
for the isomorphs or for how thermodynamic quantities
vary along them.

All data required to produce the melting and freezing

line predictions can be obtained from simulations at only
the reference state point (T = 2008K). Combining the
isomorph-based prediction method, Eqs. (8) and (9),
with the DIC thus makes it possible to predict the melt-
ing and freezing curves in systems where conventionally
used methods are too computationally expensive. In the
following section this is tested for DFT simulations of
Aluminum.

IV. ISOMORPHS AND MELTING CURVE FOR
DFT ALUMINUM

We now apply the melting curve method expressed
through Eqs. (8) and (9) to data from density functional
theory simulations carried out using the Vienna ab-initio
simulation package (VASP) [61–63].

A. DFT simulations of isomorphs

First principles or ab initio methods try to retain mate-
rials properties directly from the electronic Schödinger
equation, involving only the physical constants as ex-
perimental input. This is very hard in practice. The
computational complexity of conventional numerical so-
lution techniques scales exponentially with system size,
making calculations of more than a handful of elec-
trons intractable even on the most powerful comput-
ing facilities. Fortunately, it is often sufficient to find
only the electronic ground state energy, which is a func-
tional of the electronic ground state density only, a much
simpler object than the ground state electronic wave
function.[64] Only approximations to this density func-
tional are known, however. Modern density functional
theory implementations employ the Kohn–Sham frame-
work to retrieve accurate kinetic energy contributions
and rely on density and density-gradient dependent fits
of the remaining so-called exchange-correlation contribu-
tion, retrieved from high accuracy calculations of only
a small number of electrons.The results of the present
work have been obtained using the standard approxima-
tion by Perdew–Burke–Ernzerhof (PBE) of the exchange-
correlation functional [65] implemented by VASP using
the projector augmented wave (PAW) method.[66] Alu-
minum has only three valence electrons, which enables an
efficient simulation using a frozen-core type pseudopoten-
tial. This means that only the outer shell electrons are
treated explicitly while the inner electrons are considered
frozen. To verify the validity of this approximation under
the extraordinarily high densities considered in this work,
energy and virial of several hundred uncorrelated config-
urations of the MD trajectories have also been computed
with eleven valence electrons per atom, freezing only the
innermost two electrons. No statistically relevant dif-
ference was found between calculations with three and
eleven valence electrons per atom. The Brillouin zone
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was sampled at the Γ point (0, 0, 0). The initial choice for
the kinetic energy cutoff for the plane-waves was 220 eV.
This value applies to the reference state point; in order to
avoid discontinuities, the number of plane waves is kept
constant when scaling configurations. This means that
for the density changes of the DIC, the energy cutoff is
scaled as

Ecut(ρ) = Ecut(ρi)

(
ρ

ρi

)2/3

(11)

where ρi and Ecut(ρi) are, respectively, the initial density
and the energy cutoff chosen for that density. The ρ2/3

dependence is due to the plane-wave energy being propor-
tional to wave number squared, while the wave number
of any given plane wave scales inversely with the linear
size of the box, and thus as ρ1/3. The simulation box for
Al contained 108 atoms for each phase. This number is
determined by the crystal phase having an FCC structure
with 108 atoms for a crystal size of 3 × 3 × 3 cubic unit
cells. The NV T molecular dynamics (MD) simulations
were carried out using a Langevin thermostat.

Each simulation run consists of 50000 MD steps with
a time step of 2 fs. The first 20000 steps ensure that
the system reaches equilibrium in the respective phase.
From the remaining 30000 steps every 100th configura-
tion is sampled for the DIC scaling procedure. The ve-
locity auto-correlation functions indicate sufficient statis-
tical independence after 100 MD steps. For determining
the isomorphs, new densities were obtained from scaling
the initial liquid and solid configurations increasing their
density by the following factors: 1.1, 1.2, . . . , 1.9, 2.0. To
obtain data on structure and dynamics for testing iso-
morph invariance, we have selected the relative densities
1.3, 1.6, and 1.9 and simulated at the temperature pre-
dicted from the DIC for the given density. These sim-
ulations also consisted of 50000 steps with a time step
of 2 fs. Configurations from the last 20000 steps of the
simulation were used to calculate the radial distribution
and the velocity auto-correlation functions. In addition
to the scaling of configurations necessary for the DIC, we
also carried out much smaller scaling around the speci-
fied densities to determine the hypervirial as a numerical
derivative (the hypervirial is necessary to determine the
isothermal bulk modulus in Eq. (10)).

B. Reference state point for Al isomorphs

As for Cu, a state point at solid-liquid coexistence is cho-
sen as reference. We use literature data for the melt-
ing curve from experiments and other DFT simulations,
both to obtain a reference point and to validate our
predictions. The reference point for Al was the exper-
imentally determined coexistence point at temperature
2265 K and pressure 27.5 GPa.[12, 67] Interface pinning

DFT calculations for Al are beyond the scope of this work
and have not been conducted. DFT calculations scale
with system size as O(N3). Thus the two-phase calcu-
lation in the interface pinning method with 216 atoms
is more than 8 times slower than the single-phase calcu-
lations with 108 atoms used in the DIC. Furthermore,
non-cubic two-phase calculations exhibit strong pressure
anisotropies due to different length scales of the peri-
odic boundary conditions, to which the conduction elec-
trons of metals are sensitive. [68, 69]. The densities of
the two phases at this reference state point were not re-
ported in Refs. 12 and 67; these are, however, needed for
the DIC calculations in the NV T ensemble. The corre-
sponding densities were estimated by simulating a series
of different box sizes to find the box size at which the
pressure matched the desired pressure. The resulting liq-
uid density was 0.0688Å−3 and the crystal density was
0.0714Å−3, see also Table I. At these densities the sim-
ulated average pressure matched the desired pressure to
within 0.5-0.6 GPa.

From the reference state point a solid and a liquid iso-
morph were generated. For comparison, points along an
isotherm and an isochore in each phase were studied as
well. The part of the phase diagram indicating these
state points is shown in Fig. 8. The lines represent the
isomorphs found from applying the DIC to data from a
simulation at the reference points marked by the solid
dots. The other points noted in the figure correspond
to state points where additional simulations were car-
ried out. Including the reference points, this means that
for each phase a total of four isomorphic state points
and three state points that are isothermal or isochoric to
state points along the isomorph were simulated. In the
figure, isomorphic state points are referred to by their
label according to the change in density relative to the
reference point. Even though the initial temperatures are
the same for the liquid and solid phases and the corre-
sponding densities were scaled by the same factors, the
obtained temperatures are different, with the solid tem-
perature being lower than the liquid temperature for the
same density-scaling factor. This is a consequence of the
scaling exponent γ decreasing with increasing density, as
seen in Fig. 9(a), and the solid having a higher initial
density.

C. Isomorph invariance in Al

Figure 9 shows the scaling exponent γ, the actual DIC-
generated isomorphs in the density-temperature dia-
gram, and the virial potential-energy correlation coef-
ficient R. We emphasize that R and γ were not ob-
tained by simulating at the isomorphic state points, but
purely by scaling sampled configurations from the ref-
erence simulation, computing their energies and virials,
and then applying Eqs. (3) and (4), respectively. As in
the case of EMT-Cu, γ decreases monotonically with in-
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FIG. 8. Relevant part of the Al phase diagram marking all
points studied by DFT. The solid lines denote isomorphs gen-
erated from the reference points (black circles). Additional
simulations were carried out at the state points marked by
filled circles. The points connected by the dotted/dashed line
are on the same isotherm/isochore, respectively. Iso-curves
on the liquid side of the phase diagram are given in blue and
in red for the solid side. State points along the isomorphs are
labeled according to the relative change with respect to the
reference point density. The colors of the filled circles corre-
spond to the colors used in Figs. 10 and 11 for structure and
dynamics data at the respective state points.

creasing pressure/temperature along the isomorph. For
all state points along the isomorph the correlation coef-
ficient is well above the R > 0.9 threshold defining an
R-simple system. This means that good isomorphs in
this part of the phase diagram can be expected. We find
the same behaviour as previously seen for other metallic
systems[57, 70] of R decreasing slightly as density and
temperature increase. Given that γ decreases substan-
tially and presumably reaches zero, R must also eventu-
ally decrease since the correlation necessarily goes to zero
when γ does, as seen from Eqs. (3) and (4). The Cu data
do not show this decrease in Fig. 4, but the density range
there is smaller; a decrease may be expected to occur for
Cu at higher densities. R begins also to decrease at low
density, where the configurational part of the pressure
approaches zero, and strong correlation typically breaks
down.[71]

We show in Fig. 9 the same consistency check used for
Cu, now applied to Al. Since the DIC is not exact and
since the reference point for the DIC and the fitting is
the lowest density-temperature state point, small devia-
tions between the fitted and the DIC state points can be
expected at the high density and high temperature end.
The deviation between the mapped and the integrated
isomorph is indeed small, again suggesting that good iso-
morph invariance can be expected. The overall similarity
in the behavior of γ and R between DFT and EMT pro-
vides further evidence that the EMT potential, although
simple compared to other many-body potentials, gives a
good overall description of metallic interactions.

A direct way to check for isomorph invariance is to look at
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FIG. 9. DIC self consistency check for Al. Open circles rep-
resent data for the isomorphs from DIC, red for the solid and
blue for the liquid. The dashed line in the top panel was ob-
tained from fitting to the DIC points. The parameter for the
fitted expression for γ(ρ) are: a = 0.3422, b = 0.04338, n =
1.498 for the solid and a = 0.8181, b = 0.02826, n = 1.551
for the liquid isomorph. The resulting integrated isomorph is
given by the solid line in the middle panel. The bottom panel
shows the correlation coefficient for both isomorphs obtained
from the DIC.

structure and dynamics studied by means of RDF and the
velocity auto-correlation function (VACF), respectively
(we chose the VACF rather than the MSD used above for
Cu due to the more limited time range accessible in ab
initio simulations). Additional simulations at the state
points from the DIC were only carried out at the selected
state points noted in Fig. 8. The resulting RDFs and
VACFs along various iso-curves are shown in Fig. 10 for
the solid side of the phase diagram and in Fig. 11 for the
liquid side.

Panels (a) and (b) of both figures show the structure and
dynamics along the respective isomorphs. For compar-
ison, structure and dynamics along an isochore and an
isotherm are included in the middle (c, d)and bottom (e,
f) panels, respectively. The curves along the isomorph
shown in the top panels are almost identical. This in-
variance is not perfect; see for example the second mini-
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ρ/ρ0 Color T [K] P [GPa] ρ [Å−3] γDIC RDIC γSim. RSim.

1.0 (l) black 2265 27.82 0.0688 2.616 0.9679
1.3 red 4090 94.92 0.0894 2.010 0.9786 1.935 0.9846
1.6 green 5912 198.7 0.1101 1.687 0.9760 1.558 0.9747
1.9 blue 7644 340.5 0.1307 1.480 0.9663 1.338 0.9653

1.0 (s) black 2265 27.67 0.0714 2.591 0.9896
1.3 red 4015 97.96 0.0934 1.851 0.9923 1.843 0.9916
1.6 green 5626 210.0 0.1150 1.458 0.9834 1.464 0.9852
1.9 blue 7022 365.3 0.1365 1.198 0.9596 1.169 0.9526

TABLE I. Temperature, pressure, and density of the isomorphic state points simulated for Al with the color names corresponding
to the colors in Figs. 10 and 11. The top half of the table is for the liquid isomorph, the bottom is for the solid isomorph.
The last four columns give the γ and R values as predicted from the DIC versus the values measured from simulation.

mum in Fig. 10(b) and the first minimum of the VACF
in Fig. 11 (b), but there is a clear contrast between the
isomorphs on one hand and the isochores and isotherms
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FIG. 10. RDF and VACF along iso-lines in the solid side
of the phase diagram of Al. Each panel shows the RDF on
the left and VACF on the right for the same state points
(values are given in Table I). The state points for the top
row are along the same isomorph. State points shown in the
middle and bottom panel are along an isochore and isotherm,
respectively.

on the other. Values for pressure, temperature, and den-
sity along the isomorphs are given Table I. Also given in
the table are γ and R values determined by actually per-
forming MD simulations at the state points in question,
which can be compared to the DIC values determined
by scaling configurations sampled at the reference state-
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the Al phase diagram, similar to the presentation of the solid
side in Figure 10. Each panel shows the RDF on the left and
VACF on the right for the same state points.
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imental points are taken from Ref. 12 which includes points
from Ref. 67, both determining melting in a diamond anvil
cell (DAC). The DFT points are taken from Refs. 38 (small
cell coexistence method) and 72 (HUM/Hysteresis).

point simulations. They show good agreement with each
other. From that and from the agreement of the RDFs
and VACFs we conclude the presence of isomorphic state
points.

D. Al melting curve

The limited simulation cell size accessible to DFT leads
to non-negligible fluctuations of thermodynamic quanti-
ties, in particular for the pressure. The predicted melting
pressure according to Eq. (8) is very sensitive to devia-
tions in the virial at the reference temperature. A signifi-
cant offset at the starting point is acquired if the average
pressures of the liquid and the solid phases do not exactly
match the coexistence pressure. Even though the NV T
simulation cells for the solid and the liquid at the refer-
ence point are chosen to be at the same pressure, devia-
tion between set and measured pressure of about 0.5 GPa
are to be expected in practice. This deviation is ampli-
fied by Eq. (8), resulting in an offset of approximately
16.5 GPa. To compensate for this we have corrected the
virial such that the pressures at the reference point both
equal the desired pressure (appendix B).

The resulting (P, T ) phase diagram is shown in Fig. 12.
The phase diagram also includes coexistence state points
determined by experimental methods [12, 67] (red, open
circles) and by other simulation techniques using DFT
[38, 72] (orange symbols). The DFT results depicted by
the orange triangles in Fig 12 are obtained from PBE
calculations.

The reference point for the isomorphs is marked by the
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FIG. 13. (ρ, T ) phase diagram of Al. Note that the axes
are switched compared to the usual textbook way of plotting
(ρ, T ) diagrams. This is because the method calculates den-
sities as a function of temperature. The calculated melting
pressure shown in Fig. 12 can be translated into the densities
at which the liquid freezes and the solid melts via Eq. (9).
The resulting densities are given by the solid black lines. The
dashed lines mark the associated isomorphs. Reference 12 re-
ported only a single volume for each temperature, not stating
for which phase. They are shown as densities here (red cir-
cles).

black circle (arrow). The points along the isomorphs
found using the DIC are marked by the colored crosses
with the dashed line given by the polynomial fitted to
the data. The DIC state points are determined by scal-
ing the initial density by the factors listed in the previous
section. The points marked by the small colored crosses
in Fig. 12 mark the isomorphic state points found from
the DIC; the associated dashed lines are poynomial fits
to the DIC data.

The solid isomorph lies to the right of the liquid in the
(P, T ) phase diagram, that is, the solid isomorph is at at
a higher pressure than the liquid at the same tempera-
ture. This was seen also in the EMT-Cu results in Fig. 7
(note that there pressure is the vertical axis), and can be
rationalized by the following argument: The solid has a
larger density and correspondingly a lower γ than the liq-
uid at the same temperature and pressure. For a given
common temperature increase the solid therefore must
undergo a larger fractional density cincrease. Assuming
the bulk modulus of the solid is at least as large as that
of the liquid, this implies a greater pressure increase.

The melting curve calculated from the two isomorphs is
given by the solid black line in Fig. 12. The calculated
melting pressure agrees well with both the experimental
and the DFT points. Our predictions are closer to the
data of Ref. 38 than to the experimental data, which is
perhaps not surprising since the former were also based
on DFT using the same functional as we did, and in-
deed the same software. The hysteresis method com-



13

bines data from the heat until it melts (HUM) method
with the opposite method, cool until it freezes, to com-
pensate for well-known overestimation by the the HUM
method alone due to super-heating effects.[73, 74] The
resulting combined melting curve is much better fit than
HUM alone, but often still somewhat too high.[72]

Figure 13 shows the densities calculated using Eq. (9) to-
gether with the densities along the reference isomorphs.
Unfortunately, there are no densities reported corre-
sponding to the pressures in the DFT calculations of
Refs. 72 and 38, shown in Fig. 12. Ref. 12 reports only a
single volume for each temperature, which was translated
to a density to obtain the red circles shown in Fig. 13 (it
is not clear from Ref. 12 whether the reported volume
is for the liquid or the solid phase, but from Fig. 13, we
presume that they correspond to the solid phase).

V. CONNECTING TO RE-ENTRANT
MELTING: A SPECULATION

In this section we discuss a potential consequence of
the fact that the melting curve approximately follows an
isomorph whose slope, given essentially by the density-
scaling exponent γ, decreases substantially. The ques-
tion of how low γ can become in the high-density limit
encourages us to speculate about what isomorph theory
can tell us about the fate of the melting curve at very
high pressures. In particular, inspired by recent results
of Hong and van de Walle[38] we discuss whether the the
phenomenon known as re-entrant melting might occur.

When the melting temperature as a function of pres-
sure has a maximum, then increasing pressure at tem-
peratures lower than the maximum causes the material
to undergo a sequences of phases liquid→crystal→liquid,
that is, the system re-enters the liquid phase. This phe-
nomenon has been speculated on since the start of the
last century[75] and has come to be termed re-entrant
melting. Re-entrant phenomena have been much studied
in liquid crystals[76] and among metals; sodium is one
case already known to undergo re-entrant melting, this
having been observed experimentally in 2005 [77] and
later also in simulation.[78, 79] Reentrant melting has
also been seen in model systems such as that based on
the Gaussian core pair potential.[80, 81]

Hong and van de Walle [38] have recently suggested re-
entrant melting to be far more common among metals
than previously thought. The reason for this not be-
ing previously recognized is simply that the temperature
maximum occurs at much higher pressures than could be
studied in the laboratory so far. Based on DFT simula-
tions of coexistence they find re-entrant melting not just
in Na but also in other metals, though typically at pres-
sures well above what can be archived in experiments.
To pinpoint the re-entrant point, they suggest a quick
method to screen materials instead of carrying out several

simulations throughout the phase diagram to determine
the melting curve an its maximum point by point. The
method is surprisingly simple and inadvertently related
to isomorph theory as shown below.

According to the Clausius-Clapeyron relation, the slope
of the melting curve is given by

dP
dTm

=
∆H

Tm∆V
(12)

in which ∆H is the specific heat of fusion and ∆V =
Vl − Vs is the difference in specific volume. The melting
slope becomes negative whenever ∆V does, i.e., when
Vs > Vl. Hong and van de Walle[38] confirmed by simu-
lations of Na and Mg that the maximum of the melting
temperature Tm coincides with the sign of ∆V chang-
ing; their proposed screening method relies on finding
the pressure at which Vs becomes larger than Vl. Their
proposed method takes one randomly selected snapshot
from the trajectories of simulation of a solid and from
a liquid. Each snapshot is used to represent the corre-
sponding phase. The snapshots are then compressed by
scaling all atomic position vectors uniformly. From this
the pressure-volume relation is estimated for each phase,
and the pressure where the sign of ∆V changes can be
found from comparison. The method provides a well-
informed guess of where a melting curve maximum can
be expected, if at all. The technique of uniformly scaling
configurations to estimate high-pressure thermodynamic
properties is similar in spirit to isomorph theory, in par-
ticular the above used direct isomorph check (DIC), and
indeed can be said to implicitly assume that the freezing
and melting lines are isomorphs of the respective phases.
Scaling a single configuration can only give a rough es-
timate of the pressure, and not of the temperature at
the higher density, while the DIC, by sampling several
configurations, enables an estimate of the corresponding
temperature as well. Actually, a recent paper proposed
a force-based method for tracing out an isomorph based
on a single configuration.[82]

A possible method for a similarly educated guess de-
rived from isomorph theory directly could be based on
the density-scaling exponent γ. The connection between
γ going to zero and the maximum of the melting is more
than a hand-waving argument of the slope flattening out.
In the Lindemann law [19, 20] for melting, the melting
curve is described by the function

dlnTm

dP
=

2
(
γG,m − 1

3

)
KT,m

, (13)

where KT,m is the isothermal bulk modulus of the solid
at melting and γG,m = αP,mKT,mVm/ρcV,m the ther-
modynamic Grüneisen parameter at melting, here given
in terms of the isothermal bulk modulus, the isobaric
thermal expansion coefficient αP , and the isochoric heat
capacity per particle cV . The law is often used to ex-
trapolate the melting curve to high pressures from low
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pressure data. Typical values values for γG in metals at
low pressure are around 2 and higher,[83] thus yielding a
melting curve with a positive slope. Writing this law in
terms of the density rather than pressure gives

dlnTm

d ln ρ
= 2

(
γG,m − 1

3

)
. (14)

A simple relation between the Grüneisen parameter γG
and the scaling exponent γ from isomorph theory was de-
rived some time ago for spherical particles.[32, 44] Using
the Dulong-Petit approximation for the specific heat, the
relation is

γ = 2

(
γG − 1

3

)
. (15)

Using this the Lindemann melting law becomes

dlnTm

d ln ρ
= γ(ρ), (16)

which is identical to the equation for an isomorph,
Eq. (5). In writing this equation we have removed the
subscript m referring explicitly to the melting line and
assumed that γ depends only on ρ. Thus under the
Dulong-Petit approximation the Lindemann melting law
is equivalent to the melting line following a (crystal) iso-
morph. From Eqs. (13) and (16) it follows that the slope
of the melting curve becomes negative when γG < 1/3
or equivalently γ < 0. This cannot be taken as a strict
criterion, however, because (1) the melting line does not
strictly follow an isomorph and (2) using the isomorph as
the basis for a perturbative approach as we have done will
probably not work as γ approaches zero, since R goes to
zero when γ does, meaning that isomorph theory is not
expected to work in this region.

What is the physical origin of re-entrant melting in met-
als? The authors of Ref. 38 explain the origin of re-
entrant melting as a faster softening of interatomic inter-
actions in the liquid phase than in the solid. The decrease
of γ also corresponds to a softening of interactions in the
sense of an effective IPL[32] whose exponent decreases
– the interactions become effectively more long ranged.
Indeed, a value of zero for γ formally implies interactions
independent of distance, which would imply that there
is no energy cost to melting: Increasing pressure of the
coexisting phases normally requires an increase in tem-
perature so that the entropic term in the free energy can
continue to balance the enthalpic term, assuming the en-
tropy of fusion does not change much. If the energy cost
of melting vanishes upon increasing pressure then this
is no longer necessary, so no increase in temperature is
needed to maintain coexistence.

The softening of the effective interatomic potential can
give rise to other complications for our isomorph-based
method, in particular a change of crystal phase, since
typically smaller IPL exponents favor more open crystal

structures such as bcc. In fact, Na, the metallic case for
which re-entrant melting has been observed experimen-
tally, has a bcc structure under ambient conditions; this
is related to a fairly low value of γ ∼ 1.9 (liquid phase
near the triple point[32]) meaning presumably that lower
pressures are required to reach γ = 0. We have made
some simulations on Na (data not shown here); the cor-
relation coefficient R is also low in the range studied, and
consequently the isomorphs are of poor quality. Nev-
ertheless, the predicted melting curve is close to some
DFT results and broadly consistent with the experimen-
tal curve.[69] For materials such as Al and Cu which have
larger γ and close-packed structures at ambient pressure,
the possibility that a phase change to bcc occurs due to
the lowering of γ and the consequent softening of effec-
tive interactions means that we cannot necessarily use the
isomorph based method to accurately predict the melting
line all the way up to γ → 0.

Nevertheless, the above suggests that locating the van-
ishing of γ could be a good indicator of the possibility
of re-entrant melting. To shed further light on this, we
consider a simple model system which exhibits similar
behavior to metallic systems regarding the density de-
pendence of γ. This is the pair potential given by a single
decaying exponential, denoted EXP:

vEXP(r) = ε e−r/σ (17)

The EXP pair-potential model describes the some as-
pects of metals surprisingly well. This can be traced
back to the fact that the low-density limit of the Yukawa
(screened Coulomb) potential, an important ingredient in
most models for metals,[84] is well described by the EXP
potential.[85] The connection can also be rationalized by
noticing that the EMT description of metals involves the
exponential function in several places.[41] What is partic-
ularly relevant in the present context is that the density
dependence of γ is similar to what we observe for metals,
exhibiting substantial decay that in fact reaches zero at
sufficiently high density.[39] This density dependence is
exhibited both by EMT and DFT metals. The EMT de-
scription seems to contain the important aspects of the
quantum-mechanical description of metals at high den-
sities, while at the same time having an analytical con-
nection to the simple EXP system. An analytic relation
between γ and the parameters of the EMT potential has
not yet been found, but it presumably inherits its density
dependence from the EXP pair-potential system, which
is thus somehow the root of the behavior in DFT (and
presumably real) metals.

Considering the EXP system as a prototype for metals is
consistent with the hypothesis of Ref. 38 that re-entrant
melting is a universal behaviour that all metals have, be-
cause the melting curve in the EXP potential indeed has
a maximum temperature.[39] In fact, γEXP goes to zero
almost exactly where the maximum of Tm is reached.
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[85] A criterion based on fitting and interpolating the
zero crossing of γ could therefore be used similarly to
the volume screening method to outline the region where
the maximum of the melting curve should be expected.
A possible advantage over the volume screening method
would be that using the γ interpolation method can be
done from scaling of only one phase rather than both –
although it uses information from more than one config-
uration.

We round off this section with some discussion of re-
lated approaches. Clearly knowing the density depen-
dence of either the density scaling exponent γ or the
Gruneisen parameter γG is relevant to determining the
melting curve. In the literature the Gruneisen parame-
ter is the more commonly studied quantity. For exam-
ple Coung and Phan[86] have used analytical expressions
based on atomistic modelling and experimental data to
estimate the melting curve of iron up to 350 GPa. An
important ingredient of their approach is an expression
for the density-dependence of the Gruneisen parameter.
They used a simple power-law form, similar to what we
have used in our consistency check of the DIC, though
they note that other forms are also found in the liter-
ature, for example a constant plus two power laws.[87]
Another recent example of work connecting the density
dependence of the Gruneisen parameter to melting curves
for metals is by Roy and Sarker,[88] who find using DFT
calculations of the crystal in the harmonic approximation
that both the vibrational and thermal Gruneisen param-
eters exhibit a density dependence described by

ρ

γG
= a+ ρ . (18)

That is, the ratio of density to the Gruneisen parameter
is a linear function of density with slope unity. Their data
covers large density changes corresponding to pressures
up to 350 GPa and the quality of their linear fits is excel-
lent. This result (at least the for the vibrational version
of γG) is equivalent to the Debye frequency also being a
linear function of density. It also implies, though the au-
thors do not discuss it, that γG levels out at value unity in
their high-density limit, which by Eq. (15) corresponds to
a limiting value of γ → 4/3. They note that experimen-
tal data seems to give a somewhat higher slope, around
1.3, corresponding to a limiting value γG →∼ 0.77 and
γ →∼ 0.87. Our data cannot be used to infer a limiting
value of γ, but it appears that it will quite likely con-
tinue to values lower than 4/3 at least (Fig. 9). Roy and
Sarkar’s result of a limiting value of γG greater than 1/3
precludes the possibility of re-entrant melting, assum-
ing that Eq. (13) describes the melting curve. There-
fore their results are at odds with those of Ref. 38. It
would be interesting to attempt to fit their data with
functional forms which do not preclude re-entrant melt-
ing; this could potentially reconcile their data with that
of Hong and van de Walle.

To summarize, the work of Hong and van de Walle[38]
has shown that computational studies of melting can pro-
vide new and unexpected insights. Our results supple-
ment this with insight from the study of isomorphs in
both realistic and model systems. It shows the utility of
the isomorph approach as a practical tool for determin-
ing melting curves and supports the conjecture of Hong
and van de Walle that re-entrant melting is much more
widespread among metals than has previously been real-
ized, possibly universal.

VI. SUMMARY

We have studied numerically an EMT model of Cu and
carried out DFT simulations of Al with a focus on freez-
ing and melting. The isomorph-theory based predictions
were largely confirmed, demonstrating the possibility of
estimating the pressure and temperature variation at
melting from a single reference state point. Our find-
ings are consistent with the conjecture of Hong and van
de Walle of possibly universal re-entrant melting at ex-
tremely high pressures.
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Appendix A: Isomorph data

Tables II, III, IV and V give thermodynamic data along
the isomorphs for all the isomorphs studied, both solid
and liquid for Cu and Al.

Appendix B: Correction to the pressure

The pressure and temperature of solid/liquid coexistence
from interface pinning are determined in NPT simula-
tions. However, in order to generate isomorphs simu-
lations need to be carried out in the NV T ensemble.
This means the pressure is no longer a fixed quantity but
one that experiences statistical fluctuations, causing the
following issue for determining the melting pressure via
Eq. (8): The starting point for the reference isomorphs
has been previously determined from interface pinning
(or any other method of choice) and should be at coexis-
tence, meaning that P 0

s = P 0
l = P 0

m. Setting T = T 0 in
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T [K] P [GPa] ρ [Å−3] γ R

2008 16.0 0.0873 3.160 0.9906
2168 20.6 0.0894 3.008 0.9915
2331 25.6 0.0917 2.876 0.9921
2499 31.1 0.0940 2.760 0.9927
2672 37.0 0.0963 2.657 0.9932
2850 43.4 0.0987 2.558 0.9935
3033 50.4 0.1012 2.469 0.9939
3221 57.9 0.1037 2.384 0.9939
3413 66.0 0.1063 2.303 0.9941
3609 74.8 0.1090 2.224 0.9942
3809 84.2 0.1117 2.148 0.9942

TABLE II. Temperature, pressure, density, as well as γ and
R of the state points found from the DIC for solid Cu.

T [K] P [GPa] ρ [Å−3] γ R

2008 16.0 0.0831 3.378 0.9730
2179 20.3 0.0852 3.210 0.9760
2356 24.9 0.0873 3.058 0.9786
2536 30.0 0.0895 2.925 0.9804
2723 35.5 0.0917 2.799 0.9817
2914 41.4 0.0940 2.690 0.9835
3111 47.9 0.0964 2.586 0.9843
3312 54.9 0.0988 2.489 0.9852
3519 62.4 0.1012 2.398 0.9858
3730 70.6 0.1038 2.316 0.9866
3946 79.4 0.1064 2.237 0.9870

TABLE III. Temperature, pressure, density, as well as γ and
R of the state points found from the DIC for liquid Cu.

ρ/ρ0 T [K] P [GPa] ρ [Å−3] γ R

0.8 1141 1.35 0.0575 3.552 0.9759
0.9 1687 12.15 0.0647 2.998 0.9849
1.0 2265 27.07 0.0719 2.591 0.9896
1.1 2854 46.27 0.0790 2.281 0.9920
1.2 3441 69.87 0.0862 2.041 0.9928
1.3 4015 97.96 0.0934 1.851 0.9923
1.4 4573 130.64 0.1006 1.696 0.9906
1.5 5111 167.97 0.1078 1.568 0.9877
1.6 5626 210.05 0.1150 1.458 0.9834
1.7 6117 256.93 0.1221 1.362 0.9775
1.8 6583 308.68 0.1293 1.276 0.9697
1.9 7022 365.34 0.1365 1.198 0.9596
2.0 7433 426.95 0.1437 1.125 0.9465

TABLE IV. Temperature, pressure, density, as well as γ and
R of the state points found from the DIC for solid Al.

ρ/ρ0 T [K] P [GPa] ρ [Å−3] γ R

0.8 1123 2.26 0.0550 3.562 0.9393
0.9 1680 13.03 0.0619 3.009 0.9632
1.0 2265 27.82 0.0688 2.616 0.9679
1.1 2865 46.23 0.0757 2.361 0.9740
1.2 3476 68.57 0.0826 2.165 0.9772
1.3 4090 94.92 0.0894 2.010 0.9786
1.4 4704 125.35 0.0963 1.883 0.9787
1.5 5312 159.93 0.1032 1.777 0.9777
1.6 5912 198.69 0.1101 1.687 0.9760
1.7 6502 241.69 0.1170 1.609 0.9734
1.8 7080 288.94 0.1238 1.541 0.9702
1.9 7644 340.48 0.1307 1.480 0.9663
2.0 8193 396.32 0.1376 1.425 0.9618

TABLE V. Temperature, pressure, density, as well as γ and
R of the state points found from the DIC for liquid Al.

Eq. (8) and then using PV = NkBT +W we find

Pm(T = T 0) =
W 0

l −W 0
s

V 0
l − V 0

s

=
P 0
l V

0
l − P 0

s V
0
s

V 0
l − V 0

s

= P 0
m

V 0
l − V 0

s

V 0
l − V 0

s

= P 0
m (B1)

in the case of the simulated pressure being exactly the
pressure found for coexistence. In reality, however, the
pressures on both the liquid and solid sides are subject
to statistical fluctuations. Assuming small deviations, σ,
from the expected melting pressure P 0

m,exp for P 0
s and

P 0
l , respectively, Eq. (B1) instead becomes

Pm =

(
(P 0

m,exp ± σ0
P,l)V

0
l − (P 0

m,exp ± σ0
P,s)V

0
s

)
(V 0

l − V 0
s )

= Pm,exp ±
σ0
P,lV

0
l

V 0
l − V 0

s

±
σ0
P,sV

0
−

V 0
l − V 0

s

(B2)

where the ratio between the volume of a phase Vs/l versus
the difference between the two phases gives a magnifying
factor of ∼ 10. This makes the contribution from the
initially small deviations σ0

P,s and σ0
P,l large.

To obtain sensible results we apply an heuristic approach
to correcting this error. It is a minimal correction which
guarantees that the consistency check of Eq. (B1) is
satisfied. First, we assume that the errors in the vol-
umes corresponding to the reference melting pressure are
small enough to be neglected. This is justified since the
pressure-volume relations for the solid and liquid phases
were determined not from single simulations but from fit-
ting the pressure for a series of NV T simulations. Thus,
taking P 0

s and P 0
l to be the value obtained from in-

terface pinning at the reference point, P 0
m, and using
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PV = NkBT + W , we know the “true” average values
of the virials for both phases (note that although pres-
sure and temperature are the same, the volumes differ
and therefore so do the virials). The difference between
the true and measured virials, which defines the correc-
tion to the virial at the reference point W 0

NV T , is given
by

∆W = Wl,s;m −W 0
l,s;NV T = (P 0

m − P 0
l,s)V

0
l,s (B3)

where all quantities on the right side are to be under-
stood as thermodynamic averages. This correction to
the reference-point virials in Eq. (8) guarantees that the
consistency check is satisfied.
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