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Viscous liquid dynamics modeled as random walks within overlapping hyperspheres
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The hypersphere model is a simple one-parameter model of the potential-energy landscape of viscous liquids,
which is defined as a percolating system of same-radius hyperspheres randomly distributed in R3N , in which N is
the number of particles. We study random walks within overlapping hyperspheres above the percolation threshold
in 12 to 45 dimensions, utilizing an algorithm for on-the-fly placement of the hyperspheres in conjunction with
the kinetic Monte Carlo method. We find behavior typical of viscous liquids; decreasing the hypersphere density
(corresponding to decreasing the temperature) leads to a slowing down of the dynamics by many orders of
magnitude. The shape of the mean-square displacement as a function of time is found to be similar to that
of the Kob-Andersen binary Lennard-Jones mixture and the random barrier model, which predicts well the
frequency-dependent fluidity of nine glass-forming liquids of different chemistry [Bierwirth et al., Phys. Rev.
Lett. 119, 248001 (2017)].
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I. INTRODUCTION

Experimental studies [1–7] of the dynamics of glass-
forming liquids suggest that there might exist a generic α

relaxation in viscous liquids sufficiently close to the glass
transition. Specifically, one has searched for universalities
[8] in the linear-response properties probed, e.g., by the
frequency-dependent dielectric loss [9], shear or bulk moduli
[10–12], or specific heat [13,14]. One suggested such univer-
sality is the conjecture that the high-frequency loss varies with
frequency ω as ω−1/2 [1,2,15–21].

Another more recently suggested possible universality
refers to the random barrier model (RBM). Using ex-
perimental frequency-dependent shear-modulus data it was
demonstrated [7] that the real part of the frequency-dependent
fluidity (inverse dynamic viscosity) for nine glass-forming liq-
uids of different chemistry is well described by the RBM. For
a crystallization-resistant version of the Kob-Andersen binary
Lennard-Jones mixture, long molecular dynamics simulations
demonstrated [22] that the master curve for the mean-square
displacement (MSD) at low temperatures is also well fitted by
the RBM prediction.

The RBM was originally proposed for ac conduction in
disordered solids modeled as a random walk on a cubic lat-
tice with identical site energies and random energy barriers
for nearest-neighbor jumps [23,24]. Thus the RBM is based
on a three-dimensional potential-energy landscape that is a
lot simpler than the high-dimensional landscapes of viscous
liquids. In such liquids, the potential energies of the inherent
structures (local potential-energy minima, corresponding to
the lattice sites of the RBM) are known to have a broad
distribution [25–27]. This makes it puzzling that the RBM
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describes the data so well, since it is characterized by identical
site energies.

In this paper we study a simple model of the constant-
potential-energy hypersurface � defined in configuration
space as follows:

� = {(r1, ..., rN ) ∈ R3N | U (r1, ..., rN ) = U0}. (1)

Here U0 denotes the constant potential energy, N the number
of particles, and U (r1, ..., rN ) the potential energy as a func-
tion of particle coordinates r1, ..., rN .

Samuelsen et al. [28] have proposed a simple one-
parameter toy model of �, which we refer to as the
“hypersphere model.” The hypersphere model is defined [28]
as the surface of a percolating system of equally sized hyper-
spheres centered on independently and randomly distributed
points in a d-dimensional hypercube with periodic boundary
conditions. Note that this model has no reference to the phys-
ical spatial dimension d = 3.

One motivation for studying this model is that Samuelsen
et al. found dynamics very similar to the RBM and the
Kob-Andersen mixture when applying NVU dynamics on
the hypersphere model. NVU dynamics is defined [29] by
geodesic motion on � and has been shown [30] to be equiva-
lent to NVE dynamics in the thermodynamic limit.

A second motivation for studying the hypersphere model
originates in the theory of strongly correlating liquids. It
has been shown [31] that the reduced-unit constant-potential-
energy hypersurface (denoted �̃) of a strongly correlating
system is invariant along the so-called isomorphs in the
density-temperature thermodynamic phase diagram, which
are defined as curves of constant excess entropy (the config-
urational adiabats). Along these curves, static and dynamic
correlation functions are invariant when expressed in reduced
units [31]. In a strongly correlating system (an “R-simple”
system), the virial and the potential energy correlate better
than 90% in their thermal-equilibrium fluctuations in the NVT
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ensemble [32]. Generally, van der Waal bonded and metallic
liquids are strongly correlating [14,33].

As shown in Ref. [31], all strongly correlating liquids
have isomorphs to a good approximation. There it is also
shown that the existence of isomorphs in the phase diagram,
along which the �̃ hypersurface is (almost) invariant, implies
that for any strongly correlating liquid there exists a single-
parameter family of �̃ hypersurfaces. It has, moreover, been
argued [34] that the family of �̃ hypersurfaces is approxi-
mately the same for all strongly correlating simple liquids.
Thus, there might exist a one-parameter model of a constant-
potential-energy hypersurface, from which the dynamics of
most or all R-simple liquids can be derived. Our conjecture is
that the hypersphere model might approximate such a surface.

We use a slightly modified version of the hypersphere
model proposed by Samuelsen et al. by letting the dynamics
be defined by a random walk on the inside of the hypersphere
model. Thus we redefine � to be the part of configuration
space considered:

� = {(r1, ..., rN ) ∈ R3N | U (r1, ..., rN ) � U0}. (2)

This is similar to that of the potential-energy landscape
ensemble in Refs. [35,36] (with a different dynamics). In-
creasing the number of dimensions of the hypersphere system
forces the random walk towards the surface of the hyper-
spheres, thus approximating a random walk on the surface of
the hypersphere model. Using an upper limit makes things
much simpler computationally since no additional calcula-
tions are needed to guarantee the random walker actually
being on the surface.

Through theoretical considerations of an ordinary
potential-energy landscape, we construct in Sec. II the
hypersphere model. As the number of dimensions increases,
the ratio between the volume of a hypersphere of radius r
and a hypercube with sidelength 2r decreases at such a pace
that too many spheres are needed in order to fill a hypercube
to the required densities, thus rendering it impossible to
simulate in high dimensions. In order to circumvent this
problem, to a certain degree, we will in Sec. III present an
algorithm for generating spheres on the fly. The algorithm is
similar to that of Ref. [37] by generating spheres only when
and where they are needed for the random walks. This also
means that we avoid the use of periodic boundary conditions
and thus any finite-size effects caused by these. Using this
algorithm, we performed random walks in the 12-, 18-, and
30-dimensional hypersphere model. Details about the random
walks and its inherent dynamics are described in Sec. IV.
Since the aim is to study diffusion at timescales way beyond
what is possible using random walks, we in Sec. V implement
inherent dynamics using the kinetic Monte Carlo method
[38]. We also implement two other optimization methods and
show that the resulting inherent dynamics simulations provide
similar results to those of the random walks in the 18- and
30-dimensional hypersphere model. In Sec. VI we present
the results of the kinetic inherent dynamics simulations.
Here, we study the diffusion coefficients in the 18-, 21-,
24-, 27-, and 30-dimensional hypersphere model. It is also
shown that time-temperature superposition is satisfied at
low densities (corresponding to low temperatures) in the
33-, 42-, and 45-dimensional hypersphere model and that

these are also well fitted by the RBM [24] and thus also to
the experimental data highlighted in Ref. [7]. Finally, we
discuss some problems of the model and why, even given
those problems, the hypersphere model and the RBM provide
similar results at low densities.

II. THE HYPERSPHERE MODEL

Local minima of the potential-energy function are called
inherent structures [39]. The set of configurations in the
potential-energy landscape that maps to a given inherent struc-
ture under a steepest gradient descent is called the basin of
attraction [39]. It was stipulated by Goldstein [40] that below
a certain crossover temperature, liquid dynamics is mainly
governed by vibrations interspersed by transitions between
basins of the potential-energy landscape. Numerical evidence
of this was later found by Schrøder et al. [41] by the use of
Newtonian molecular dynamics.

At low temperatures, it has been observed [42] that the
mean-squared distance between a typical liquid configuration
and its corresponding inherent structure to a good approxima-
tion is consistent with harmonic vibrations around the inherent
structure. The potential energy at a typical low-temperature
liquid configuration can therefore be approximated by a har-
monic potential:

U (x1, x2, ..., x3N ) ≈ Uq +
3N∑

i, j=1

1

2
cq,i j (xi − qi )(x j − q j ), (3)

in which q = (q1, q2, ..., q3N ) are the coordinates of the in-
herent structure and Uq its potential energy. Inserting the
harmonic potential U into Eq. (2) yields a hyperellipsoid
centered at q in configuration space.

In order to arrive at the hypersphere model, we impose
three properties on the system, which all are significant sim-
plifications compared to the potential-energy landscape of, for
example, the Kob-Andersen binary Lennard-Jones liquid:

(1) The potential energy around the inherent structures is
assumed to be isotropic [cq,i j in Eq. (3) proportional to the
identity matrix, for each q]. Thus, the hyperellipsoids become
hyperspheres.

(2) The curvature (determined by the cq,i j
′s) and the po-

tential energy at the inherent structures are assumed to be the
same for all the inherent structures across the potential-energy
landscape. That is, Uq and cq,i j each have identical values at
all inherent structures. This means that all spheres have the
same radius.

(3) Inherent structures are assumed to be randomly dis-
tributed in configuration space, without any correlations.

By imposing these properties, the model becomes a one-
parameter model, since the only parameter is the reduced
density of hyperspheres. The reduced density is defined ac-
cording to Ref. [43]: If Vd (r) is the volume of a d-dimensional
sphere of radius r, the reduced density η is given by

η = �Vd (r), (4)

with � being the number density of spheres in Rd . Physically,
the reduced density is the sum of all sphere volumes divided
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FIG. 1. Sphere-generating algorithm. Spheres are represented by dark gray circles, and random walks are represented by the yellow line.
(a) Since the random walk starts from a random point in sphere a, all its neighbors have already been determined (spheres b, c, and d). The
centers of these were all randomly distributed in a sphere of radius 2r (the red area). (b) The random walk has just entered sphere b for the
first time. Random neighboring spheres are now determined for sphere b, leading to points e, f , and g. (c) Since sphere a already has had all
its neighbors determined, the point g is removed. The spheres e and f are then added to the system of spheres, and the random walk is allowed
to continue until it reaches a previously unvisited sphere (sphere d), at which point the procedure is repeated.

by the total configuration-space volume. Note that due to
overlaps this is not the volume fraction, φ, of the hypersphere
system. These two numbers are related by

φ = 1 − e−η (5)

in any number of dimensions [44]. Notice that η � 1 implies
φ ≈ η. Since we mainly simulate at very low densities (η <

0.012 21), the difference between φ and η becomes negligible.
We avoid simulating too low densities, i.e., near the percola-
tion threshold, since diffusion requires a percolating cluster of
hyperspheres.

III. SPHERE-GENERATING ALGORITHM

The simplest way to generate a system of hyperspheres
is to randomly distribute spheres inside a hypercube with
periodic boundary conditions. If the hypercube is too small,
however, the random walk might be able to enter the same
neighboring sphere from two or more different places of the
current sphere. To avoid this problem, a cube length greater
than 4r is needed (r is the radius of the spheres). Thus, just
to reach the percolation threshold ηc (which approaches 2−d

from above as the number of dimensions increases [43]), a
minimum of H spheres are required:

ηc ≈ 1

2d
= HVd (r)

(4r)d
⇔ H = 4d �

(
d
2 + 1

)
π

d
2

1

2d
. (6)

Here, � denotes the Gamma function. In 30 dimensions this
amounts to more than 1013 spheres, which is computationally
impossible to achieve. In order to circumvent this, we use an
algorithm similar to that of Ref. [37] that generates spheres
on the fly. Appendix A demonstrates that the algorithm works
as intended, i.e., it generates a system of spheres centered
on randomly and independently distributed points of point
density � within the desired volume (a Poisson point process).

The algorithm works by only adding spheres to the subset
of Rd that is relevant for the random walk (the red and light-
gray areas in Fig. 1). The only spheres that are relevant are

those that have been visited during the random walk and all of
their neighbors. Since the centers of overlapping spheres can
be no more than 2r apart, the relevant subset of Rd must be
a union of spheres of radius 2r. Each time the random walk
enters a new sphere that has not previously been visited, the
set of neighbors to this sphere is determined once and for all,
all being in the spheres of radius 2r centered at the newly
visited sphere. This means that spheres can neither be added
nor removed to/from this volume after the first visit (the read
area in Fig. 1). Since all spheres have been assigned to this
volume, we call this volume the assigned volume.

In order to add neighbors to a new sphere, we utilize the
fact that the number of neighbors to any given sphere is
Poisson distributed with mean 2dη (see Appendix A 5 b). Pick
a number k from this distribution and place k random points
in a spheres of radius 2r [Fig. 1(b)]. By removing the points,
e.g., point g in Fig. 1(b) that lies in the assigned volume, we
can ensure that the number of neighbors to each sphere is
still Poisson distributed with mean 2dη. That this is the case
is shown in Appendix A. A more detailed description of the
algorithm is also given in the Appendix. Using this algorithm,
the relevant subset of Rd expands each time the random walk
enters a sphere that has not been visited before.

IV. RANDOM WALKS

The random walks were initiated from a random point
inside a hypersphere (that already had its neighbors gener-
ated). If a walker tried to exit the boundary of the current
sphere, it was checked whether the random walker entered
a neighboring sphere. If so, neighbors were generated to the
new sphere as described above before allowing the random
walk to continue (Fig. 1). If not, the step was not performed
but the time counter was still increased. In order to equilibrate
the systems, equilibration runs were performed for the same
amount of time as the production runs.

The results of the random walk should be independent of
step length and only depend on time. In order to achieve this,
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FIG. 2. The MSD for random walks in the 12-dimensional hy-
persphere model at five different reduced densities. Each curve is
averaged over 1000 random walks of step length a = 0.02. It can be
seen that the dynamics get slower as the reduced density is decreased,
which is a general behavior for the model. The black dashed lines
have slope unity, corresponding to diffusive behavior.

we note that the MSD for a random walk in Rd is given by

〈(
r)2〉 = Na2, (7)

where N is the number of steps and a is the step length.
By defining the time of the random walk as being propor-

tional to the number L defined by N = L/a2, the random walk
as a function of time becomes independent of the step length.
For a random walk in a system of hyperspheres, at short
timescales one expects behavior similar to that of a random
walk in Rd . It therefore seems reasonable that the time after i
random walk steps should be given,

t (i) = ka2i, (8)

where k is the constant of proportionality between the time
and L. For all random walks we put k = 1.

In Fig. 2 we show the MSD for a random walk in the
12-dimensional hypersphere model at five reduced densities.
The dynamics slow down in a manner similar to what is
typically observed for supercooled liquids: at long times there
is a diffusive regime, separated from the short-time dynamics
by a plateau that grows in extent with decreasing reduced hy-
persphere density, corresponding to decreasing temperature.
The relationship between reduced density and temperature is
discussed in Sec. VI.

Figure 3 shows results from the same simulations as in
Fig. 2, adding the so-called inherent dynamics [41]. This is a
mapping, where configurations are mapped to the correspond-
ing inherent structure before computing dynamical properties,
here the MSD. Note that this is only done when calculating the
MSD, not when performing the random walks. The effect of
this procedure is to remove the effect of the vibrations around
inherent states, and the MSD of the inherent dynamics will
therefore only relay information about transitions between
basins. Since the center points of the spheres correspond to
the inherent structures, the inherent dynamics of the random
walk is easily found in the hypersphere system.

FIG. 3. Comparison between the MSD for the random walk and
its corresponding inherent dynamics in the 12-dimensional hyper-
sphere model. The black dashed lines have slope unity.

V. KINETIC MONTE CARLO INHERENT DYNAMICS

A given sphere has a finite number of neighbors. This gives
us the possibility of simulating the inherent dynamics directly,
using the kinetic Monte Carlo simulation method [38]. Instead
of waiting for a transition to happen during a random walk,
the kinetic Monte Carlo method draws a time to transition

t using the probability per time unit Wi of jumping from
sphere i to one of its neighbors. To determine Wi, we let Li j

denote the distance between two neighboring d-dimensional
spheres, i and j. The radius hi j of the “intersecting” (d − 1)-
dimensional sphere is given by (Fig. 4)

hi j = (
r2 − L2

i j/4
)1/2

. (9)

As shown in Appendix B, for the relevant values of hi j ,
the probability per time unit of transitioning from sphere i to
sphere j is given by

�i j = �0Li j (hi j/r)d−2 . (10)

The constant of proportionality �0, which only depends on the
number of dimensions, can be found by comparing the MSD
for the inherent dynamics of the random walk and the kinetic
method at a single reduced density; Wi is then defined by

Wi =
∑

k

�ik, (11)

FIG. 4. Illustration of the radius hi j of the intersecting (d − 1)-
dimensional sphere between the two neighboring spheres i and j.
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FIG. 5. Comparing the MSD of the inherent dynamics using the random walk (pluses) and the kinetic Monte Carlo method (full lines) in
the 18-dimensional hypersphere model. The dashed blue line represent the random walk itself at the highest simulated density.

where k are the neighbors of sphere i. It should be noted that
this probability does not take overlap between intersecting
(d − 1)-dimensional spheres of neighbors into account. How-
ever, due to the low densities [see the relation between reduced
density η and volume fraction φ in Eq. (5)] and high number
of dimensions, we assume that these overlaps are few and have
minimal effect on the results.

The time to transition 
t is given by


t = − 1

Wi
ln ζ , (12)

where ζ is randomly uniformly distributed between 0 and 1
[38].

The following further optimizations were implemented.
First, the previously visited spheres and their neighbors are
deleted along the way. Unless otherwise mentioned, only the
last 1000 unique previously visited spheres are stored. Their
neighbors are also stored in a corresponding neighbor list. The
neighbor list of the last 999 unique previously visited spheres
can then be used to create a complete list of spheres when
a new sphere is entered. Combining this with the spheres
generated by the sphere-generating algorithm completes the
neighbors for the newly visited sphere and ensures that the
neighbors for all of the 1000 stored unique visited spheres
remain constant. Secondly, due to the increasing amount of
jumping back and forth between the spheres when lowering
the density toward the percolation threshold, we recall (in-
stead of recalculating) the jump probabilities, Wi, etc., when
reentering a previously visited sphere. These optimizations
are only important at low densities. In fact, the recalling
optimization results in longer simulation times at the higher
densities, since the same spheres are rarely visited many
times.

In Fig. 5 we show that the MSD of the inherent dynamics
of the random walk and the fully optimized kinetic Monte
Carlo inherent dynamics provide similar results in the 18-
dimensional hypersphere model [45]. The reduced densities
are determined in terms of the average number of neighbors
〈Nb〉 to a single sphere [see Eq. (A14)]:

〈Nb〉 = 2dη ⇔ η = 〈Nb〉2−d ≈ 〈Nb〉ηc. (13)

Recall that ηc also denotes the percolation threshold.

In Fig. 6 we show the MSD as a function of time for the
inherent dynamics of the 30-dimensional hypersphere model
at low reduced densities, corresponding to low temperatures in
a real system [46]. It is possible to run simulations in higher
dimensions, but here it becomes harder to attribute a timescale
to the simulations. This is due to the lack of knowledge of
how �0 scales with the number of dimensions. The average
number of neighbors to a single sphere creates a practical
upper bound on the reduced density, depending on the number
of dimensions. Likewise, the lower the reduced density, the
longer a random walk is needed in order to compare the results
with the kinetic Monte Carlo method. Thus, there exists a
natural limitation to the number of dimensions at which we
can compare diffusion coefficients for the random walks.

VI. RESULTS

A. Diffusion coefficients

In Fig. 7 we plot the diffusion coefficient D as a func-
tion of the average number of neighbors 〈Nb〉 for d =
18, 21, 24, 27, 30.

An upper bound of the diffusion coefficient can be estab-
lished by finding the average transition rate from a random
sphere in the system. We do this by noticing that the distance
between the centers of any two neighboring spheres is given
by Li j = 2rS1/d [see Eq. (A12)], where S is a random variable
that is uniformly distributed in [0,1]. Combining this with
Eqs. (9) and (10) yields

�(S)

�0
= 2rS1/d (1 − S2/d )

d−2
2 . (14)

Given that a sphere has Nb neighbors, the probability of
transitioning from the sphere into any of its neighbors is
given by

W =
Nb∑

i=1

�(Si )

�0
. (15)

Thus, the average probability of transitioning from a
sphere with Nb neighbors into any of its neighbors is
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FIG. 6. Comparing the MSD of the inherent dynamics using the random walk and the kinetic Monte Carlo method in the 30-dimensional
hypersphere model. Comparing with Fig. 5, the average number of neighbors are the same for the same colored lines.

given by

〈W 〉Nb =
∫ 1

0
...

∫ 1

0

Nb∑
i=1

�(Si )

�0
dS1, ...dSNb

= Nb

�0

∫ 1

0
2rS1/d (1 − S2/d )

d−2
2 dS. (16)

Since the number of neighbors is Poisson distributed and the
integral is independent of the number of neighbors, this is
also the average transition rate from any sphere in the system.
Plotting 〈W 〉Nb/d alongside the diffusion coefficients yields
Fig. 7. In order to achieve the results for the first diffusive
regime of the inherent dynamics, we averaged over one mil-
lion short-time simulations; 〈W 〉Nb/d is indeed the diffusion
coefficient for the first diffusive regime, and thus also a upper
bound for the diffusion coefficient.

We now proceed to discuss how to relate the reduced den-
sity, η, to the temperature, T , considering the potential-energy
surface of an atomic glass-forming liquid as the starting point.
For a given state point, the hypersphere model is arrived at by
assuming the potential energy in the basin of attraction of the

FIG. 7. Diffusion coefficients and the average transition rate
from any sphere in the system with Nb average neighbors vs average
number of neighboring spheres in the 18- (purple), 21- (red), 24-
(green), 27- (orange), and 30-dimensional (blue) hypersphere model.

relevant inherent states is given by d-dimensional harmonic
oscillators with identical spring constants k. From the equipar-
tition theorem, it then follows that r2 = dkBT/k. Combining
this with Eq. (4), and using that Vd (r) = Vd (1)rd , yields

kBT = k

d

(
η

�Vd (1)

)2/d

. (17)

From this we define a reduced temperature, T̃ , which is pro-
portional to the real temperature for a fixed energy landscape
in the sense that � and k are independent of state point:

T̃ = 1

d

(
η

Vd (1)

)2/d

= �2/d

k
kBT . (18)

In Fig. 8 the diffusion coefficients are plotted in an “Arrhe-
nius” plot in terms of the reduced temperature. The applied
scaling parameters are found from fitting the high-temperature
results to Arrhenius behavior D(T̃ ) = D0e−Ed /T̃ . We observe
an apparent approach to Arrhenius behavior as the number of
dimensions increases. Expressing this in terms of the nonre-
duced temperature [see Eq. (17)] leads to

D(T ) = D0e
− kEd

�2/d kBT . (19)

We stress that the observed (apparent) Arrhenius behav-
ior is found when varying temperature in a fixed energy

FIG. 8. “Arrhenius” plot of the scaled diffusion coefficients.
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FIG. 9. (a) The MSD of the kinetic Monte Carlo inherent dynamics at reduced densities nearing the percolation threshold. (b) Data from
(a) scaled to fit the RBM prediction [24]. In addition to these data, we have also plotted the MSD from simulations [22] of a crystallization-
resistant version of the Kob-Andersen binary Lennard-Jones mixture at T = 0.37.

landscape, i.e., for constant k and �. We leave a detailed
analysis of how to map the model back to real systems to
future investigations, but note that both k and � in general
depend on state point. In particular, when a liquid is cooled,
lower parts of the potential-energy landscape is explored [42],
and the number of relevant inherent states decreases [25], i.e.,
the number density � decreases. Via Eq. (17), this results in an
apparent activation energy that increases with decreasing tem-
perature, i.e., the non-Arrhenius behavior that is a hallmark of
viscous liquids.

B. The random barrier model

When the actual time is not needed, such as when scaling
onto a master curve, we can ignore �0 and thus simulate at a
higher number of dimensions than 30. We have therefore run
simulations of the 33-, 42-, and 45-dimensional hypersphere
model. In Fig. 9 we fitted the data to the MSD of the RBM
[22]. The figure shows that these give similar results to those
achieved by molecular dynamics simulations [22]. It can be
seen that increasing the number of dimensions and/or decreas-
ing the density brings the results closer to the prediction of
the RBM. Due to the similarities between the models, this
should not come as a surprise. The RBM is a cubic lattice
model with identical site energies and random energy barriers
for nearest-neighbor jumps [23,24]. The latter two properties
are also present in the hypersphere model. The conjecture that
lattice and continuum percolation are in the same universality
class [44,47,48] could thus explain why the MSD as a function
of time for the inherent dynamics in the hypersphere model
approaches that of the RBM prediction at low densities.

VII. DISCUSSION

In this paper a method is presented that makes it possible
to generate simple models of NVU surfaces on the fly (or
surfaces capped by a potential energy) with randomly

distributed inherent structures. In order to do this, only knowl-
edge of the shape of the basins in configuration space is
needed. Knowing the transition rates between the basins (us-
ing any type of dynamics) allows fast simulations of inherent
dynamics, since vibrational motion is ignored and no energy
minimization is required.

For the 30-dimensional hypersphere model, we performed
inherent dynamics simulations of random walks up to 5 ×
1015 MD time units. This corresponds to hundreds of seconds
in argon units. We also showed that the average behavior
of a random walk several decades prior to diffusion is de-
scribed by the RBM. This encapsulates the behavior of real
glass-forming liquids; compare the experimental results of
Bierwirth et al. [7].

Although the agreement with the typical viscous liquid
behavior is striking in view of the simplicity of the model,
there are outstanding issues that deserve further investigation.
In particular, we point out the following: Consider the results
for the 30-dimensional hypersphere model with η = 12ηc in
Fig. 9. These results are in good agreement with the RBM for
about the same range of reduced times as the Kob-Andersen
model. However, the duration of the plateau in MSD for the
Kob-Andersen model is approximately 4 decades. Referring
to Fig. 6, we see that for the 30-dimensional hypersphere
model, a similar duration of the MSD plateau is found for
η = 3200ηc (blue curve), where there is hardly any hint of
RBM behavior; the inherent dynamics is close to simply being
an extrapolation of the diffusive behavior. We conclude from
this that much of the slowing down is due to the system being
localized in a single hypersphere, which gives a plateau in
the MSD but no contribution to the inherent MSD. Whether
this is due to all inherent structures having the same potential
energy, the shape of their basins (hyperspheres, instead of the
more general hyperellipsoids), their completely random and
independent distribution, or simply the random walk dynam-
ics itself is an interesting open question for future research.
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APPENDIX A: VALIDATING THE
SPHERE-GENERATING ALGORITHM

Let μ denote a countable set of independently and ran-
domly distributed points in Rd of point density �, which is by
definition a homogeneous Poisson point process on Rd with
density �.

Let B̄d
q,r denote a closed d ball of radius r centered at q,

i.e.,

B̄d
q,r = {x ∈ Rd ||q − x| � r}. (A1)

Then the d-dimensional hypersphere model defined by μ is
defined as the surface of the union⋃

q∈μ

B̄d
q,r . (A2)

A model consisting of a system of hyperspheres, whose
centers constitute a homogeneous Poisson point process on
Rd , is referred to in the mathematical literature as the Pois-
son “blob” model (among other names); it is also one of
the simplest examples of a Boolean model, cf. [49,50]. For
a given realization of the model, the connected components
of the union of hyperspheres are called clusters. The num-
ber of spheres in a given cluster is called the size of the
cluster.

We start this section by presenting two numerical tests that
show that the method presented in Sec. III works as intended.
First we show that the number of neighbors to an arbitrary
point in μ (equivalently an arbitrary sphere in the model)
is Poisson distributed with the correct mean, followed by
showing that the algorithm grows clusters of the correct size
distribution according to theory; see also Appendices A 3 c
and A 4.

The algorithm generates a realization of a Poisson point
process of point density � on the fly, i.e., the algorithm gen-
erates the points, and hence the spheres in the hypersphere
model, step by step, as they are needed.

A more precise definition of a Poisson point process will
follow after a more detailed description of the algorithm. We
will thereafter show by induction that, indeed, a realization of
a Poisson point process is formed when using this algorithm.

1. Testing the algorithm numerically

In order to show that the method of Sec. III provides a
Poisson-distributed number of neighbors with mean 2dη, we
performed tests where we ensure that the entire volume of a
d-dimensional cube is assigned by placing spheres using lat-
tice points (not regarded as spheres themselves). These lattice
points are along each axis separated by distance 1. Spheres
are then added for each lattice point, according to the method
described in Sec. III.

In order to ensure that the entire volume is assigned, we
need to guarantee that the spheres have a large enough radius.
Since we place the actual spheres using “fictional spheres” of
radius 2r, we need to ensure that these “fictional spheres” fill

FIG. 10. For each (η, d), 1000 d-dimensional cubes with peri-
odic boundary conditions were made. The cube length was decided
such that there would be on average 200 spheres of radius 1 inside the
cube. A d-dimensional integer lattice of points were generated, and
spheres were placed around these using the assigned volume princi-
ple of the algorithm. The dashed lines mark the Poisson distribution
with mean 2dη, whereas the bar lines show the neighbor count.

out the entire volume. We do this by noticing that the distance
from any lattice point to the center of a hypercube of side
length 1 is given by (0.52d )1/2. Thus, we require that 2r >

(0.52d )1/2. For the results in Fig. 10 we used r = 1.
For each of the spheres placed, the number of neighbors

was counted. It can indeed be seen that the number of neigh-
bors is Poisson distributed with mean 2dη.

In order to check that the distribution of cluster sizes
matches the theoretical prediction by Refs. [49,51], the al-
gorithm is run until either a cluster of size 1 � k < 5
has formed or the cluster contains five or more spheres.
In Fig. 11 we plot the results alongside the theoretical
predictions.

For a Poisson point process on Rd with point density �, this
corresponds to looking at very small volumes of random lo-
cation until the volume contains the center of a single sphere,
i.e., finding a random sphere.

2. The Poisson point process generator algorithm:
Constructing the set of points μ and the assigned set

Let κi denote the set of assigned points at step i, i.e., the
set of points that have been assigned neighbors after step i,
and define the assigned set (or assigned volume), denoted
Ai, as

Ai =
⋃
q∈κi

B̄d
q,2r .

Let μi ⊂ Ai denote the set of points (the centers of spheres)
generated by the algorithm after step i.

(1) Set i := 1, start at a random point x1 ∈ Rd , which
can without loss of generality be taken to be x1 = 0, and
initiate the set of assigned points by letting κ1 = {x1}. Then
A1 = B̄d

x1,2r .
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FIG. 11. The curves show the theoretical probabilities pk of a
cluster being of size k when picking a random sphere in a system
of spheres in three dimensions. These are plotted as a function of
volume fraction φ = 1 − e−η. At each φ we have generated 105

clusters using a version of the algorithm where all neighbors of a
sphere are visited systematically and found the percentage of clusters
of size k = 2, 3, 4.

(2) Construct a realization {y1, y2, ..., yk} of a Poisson
point process σx1 on B̄d

x1,2r , where k is a number picked from
the Poisson distribution with mean 2dη. How to do this for d
balls will be explained in Appendix A 5.

(3) Let μ1 = σx1 .
(4) Run any chosen dynamic in B̄d

xi,r (here a random walk
or its inherent dynamics) until a neighboring sphere is entered.
The center of the entered neighboring sphere will be desig-
nated as xi+1. Note that in our situation xi+1 ∈ (μi ∩ B̄d

xi,2r ).
(5) If xi+1 ∈ κi, then points have already been assigned to

the volume B̄d
xi+1,2r defined by xi+1. Thus, we set μi+1 = μi

and κi+1 = κi, and skip to step 10.
(6) Construct a realization of a Poisson point process

σxi+1 ⊆ B̄d
xi+1,2r as in step 2 (e.g., the green dots in Fig. 12).

FIG. 12. Figure illustrating the concepts of the algorithm and
the proof. μi = {red dots}, κi = {b}, σc = {green dots}, σ ′

c =
{green dots excluding those in Ai (i.e., the crossed ones)}. Note that b
and c are not points of the Poisson point process itself but only points
for which the Poisson point process is generated around.

(7) Remove the points of σxi+1 that are in Ai (e.g., the
crossed green dot in Fig. 12), and let σ ′

xi+1
denote the collection

of remaining points:

σ ′
xi+1

= σxi+1\Ai.

(8) Update the assigned volume by adding xi+1 to the set
of assigned points:

κi+1 = κi ∪ {xi+1}.
(9) Update the set of points by adding the new points σ ′

xi+1

to the set of points in the assigned volume:

μi+1 = μi ∪ σ ′
xi+1

.

(10) Set i := i + 1 and jump to step 4 (or stop the algo-
rithm).

When the algorithm stops, we let A = Ai and μ = μi. In
practice, Ai is not used when running the algorithm, since κi

can be used instead to exclude points in the assigned volume
when finding σ ′

xi+1
. So the only things we really keep track of

are the centers of spheres μ and the assigned points κ.

3. Definition

The definition of a Poisson point process can be given to
varying degrees of generality; here we give one that is suitable
for our purposes, see also [52].

Let S ⊆ Rd be a measurable set and let � denote a random,
at most countable collection of points � ⊆ S.

Let ξ (B) denote the random variable giving the number
of points of � in the measurable set B ⊆ S, i.e., ξ (B) =
#(� ∩ B).

Then a Poisson point process on S with density λ > 0 is
a random, at most countable collection of points � ⊆ S with
the following properties:

(1) For every measurable B ⊆ S, the probability that
ξ (B) = k is given by

P(ξ (B) = k) = (λ|B|)k

k!
e−λ|B| (A3)

where |B| is the Lebesgue measure (d “volume”) of B. In other
words, ξ (B) is Poisson distributed with mean λ|B| [53].

(2) For any disjoint measurable subsets B1, B2 of S, the
random variables ξ (B1) and ξ (B2) are independent.

Since the density λ is constant, this is an example of a
homogeneous Poisson point process. In a more general def-
inition of a Poisson point process, the density is allowed to
depend on the position in space, but this is not relevant for our
application.

We need some important (derived) properties of the Pois-
son point process, which in our context can be formulated as
follows:

a. Restriction property

Let � be a Poisson point process with density λ > 0 on S
and let S′ be a measurable subset of S. Then �′ = � ∩ S′ is
a Poisson point process on S′ with density λ. This property
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follows immediately from the definition of a Poisson point
process (see also Restriction Theorem [52], Sec. 2.2).

b. Superposition property

Let S1, S2 ⊆ Rd be disjoint measurable sets and let �1,�2

be independent Poisson point processes, both with density
λ > 0, on S1, S2 respectively. Then the union � = �1 ∪ �2

is a Poisson point process on S1 ∪ S2 with density λ. This
property follows from the additivity property of Poisson dis-
tributions and is a special case of the much more general
superposition theorem (see again [52], Sec. 2.2).

c. Conditional distributions

The distribution of neighbors for an arbitrary point of a
Poisson point process and the size of a cluster containing an
arbitrary sphere in the hypersphere model are both described
using conditional distributions in the sense of Palm distribu-
tions.

Thus, a Poisson point process with density λ has the prop-
erty that the number of “neighbors” of an arbitrary point, in a
measurable B ⊂ S containing the point, is Poisson distributed
with mean λ|B|. This is given by the so-called reduced Palm
distribution, cf. [50]. In particular, the number of neighbors
(that is, sphere centers) of an arbitrary sphere in the hyper-
sphere model, in a sphere of radius 2r, is Poisson distributed
with mean 2dη.

More generally, the conditional distribution of a homoge-
neous Poisson process, given that there is a point at a certain
location that can without loss of generality be assumed to be 0,
is called the Palm distribution. This conditional distribution is
the same as the distribution of the original process, together
with a point at 0. Adding a point at 0 thus corresponds to
considering an arbitrary point of the process, which is without
loss of generality assumed to be at 0; see, for example, Refs.
[50] and [49].

4. Proof

We want to show that the algorithm produces a realization
of a Poisson point process μ on the set A with density �. We
do this by induction, showing that for every i ∈ N, μi is a
Poisson point process on Ai with density � (where μi = �,
Ai = S, and � = λ in the notation of the definition).

By construction, μ1 = σx1 is a Poisson point process on
A1 = B̄d

x1,2r with density �, so the statement is true for i = 1.
We now show that if μi is a Poisson point process on Ai,

then μi+1 is a Poisson point process on Ai+1:

(1) By construction, σi+1 is a Poisson point process on
B̄d

xi+1,2r with density �.
(2) Define Uxi+1 = B̄d

xi+1,2r\Ai. This is the “new volume” to
which points have been assigned in step i + 1.

(3) By the restriction property, σ ′
xi+1

= σxi+1

⋂
Uxi+1 is a

Poisson point process on Uxi+1 with density �, with Uxi+1 in
the role of S′ and σ ′

xi+1
in the role of �′.

(4) Recall that Ai+1 = Ai ∪ B̄d
xi+1,2r

so that Ai+1 is the union
of the disjoint sets Ai and Uxi+1 : Ai+1 = Ai ∪ Uxi+1 .

(5) Since μi and σ ′
xi+1

are independent Poisson point pro-
cesses on Ai and Uxi+1 , respectively, both with density �, it

follows from the superposition property that μi+1 = μi ∪ σ ′
xi+1

is a Poisson point process on Ai+1 with density � (here with
μi and σ ′

xi+1
in the roles of �1 and �2 and Ai and Uxi+1 in the

roles of S1 and S2).

Thus the algorithm produces a set A and a realization of a
Poisson point process μ on A, with its system of spheres.

Adding the point x1 at 0 produces the conditioned Poisson
process, given there is a point at 0. This corresponds to taking
as a starting point for the algorithm an arbitrary point of the
Poisson point process, which we can assume without loss of
generality to lie at 0.

In particular, the algorithm produces a cluster of spheres
containing the sphere at 0, of a given size. Each realization
occurs with the same probability as in the Poisson “blob”
model, because of the independence property of Poisson
point processes. This is illustrated in Fig. 11, which shows
the probabilities that the cluster containing 0 produced by
the algorithm is of size 2, 3, and 4, together with theo-
retical probabilities from the Poisson blob model, in three
dimensions.

5. Constructing σx

The aim of this section is to construct the Poisson point
process σx on B̄n

x1,2R with point density �. Note that in this
section we use n instead of d to refer to the number of
dimensions in order to avoid confusion with differentials. In
order to construct σx, we first find a point on the boundary
of an n ball of radius r. We then find the distance from the
center of a sphere of radius R to any random point inside the
sphere. Using the found random point on the boundary of a
sphere of the radius given by the found distance then yields the
location of a single random point inside the sphere of radius
R. Using the definition of a Poisson point process, we then
construct σx.

a. Finding a random point inside the volume of an n ball

Let r denote the radius of an n ball centered at x. Let
X1, X2, . . . , Xn be n independent normal random variables
with mean 0 and variance 1. A random point on the boundary
of B̄n

x,r is a random element Y x
r given by [54]

Y x
r = x + r√

X 2
1 + X 2

2 + · · · + X 2
n

(X1, X2, ..., Xn). (A4)

We thus only need to find a random variable describ-
ing the distance from the center of the n ball to a random
point inside of it. The probability p1(r) of finding a point
at distance r from the center of a hypersphere of radius R is
given by

p1(r) = Sn(r)

Vn(R)
, r ∈ [0, R], (A5)

where Sn(r) is the surface area of an n ball of radius r and
Vn(R) the volume of a hypersphere of radius R. These are
given by

Sn(r) = 2πn/2

�
(

n
2

) rn−1 ∧ Vn(R) = πn/2

�
(

n
2 + 1

)Rn, (A6)
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with � being the gamma function. Inserting these into
Eq. (A5) and integrating yields the cumulative distribution
function for p1(r):

P1(Z � r) =
∫ r

0
p1(s)ds (A7)

=
∫ r

0

2�
(

2
n + 1

)
�

(
2
n

) sn−1

Rn
ds (A8)

=
∫ r

0
n

sn−1

Rn
ds = rn

Rn
. (A9)

Letting S be uniformly distributed in [0,1] (that is, p2(S) = 1
for any S ∈ [0, 1]) yields the cumulative distribution function:

P2(S � y) =
∫ y

0
p2(s)ds = y. (A10)

We thus have that y = rn/Rn when the cumulative distribution
functions are equal (i.e., P1 = P2 = P). Therefore,

P

(
S � rn

Rn

)
= P(RS1/n � r) = P(Z � r). (A11)

Thus, if S is a random variable uniformly distributed in [0,1],
then

Z = RS1/n (A12)

is a random variable describing the distance from the center of
the n ball to a random point inside of it. Combining Eqs. (A4)
and (A12) yields the following result:

Let S be a uniform random variable in [0, 1], and
X1, X2, . . . , Xn be n independent normal random variables
with mean 0 and variance 1. A random point X x

R in B̄n
x,R is

given by

X x
R = x + RS1/n√

X 2
1 + X 2

2 + · · · + X 2
n

(X1, X2, . . . , Xn). (A13)

b. Constructing a realization of σx

According to the definition of the Poisson point process,
the number of points in σx is naturally the Poisson random
variable ξ (B̄n

x,2R) with mean

�
∣∣B̄n

x,2R

∣∣ = �Vn(2R) = �
π

n
2

�
(

n
2 + 1

) (2R)n = 2n�Vn(R) = 2nη .

(A14)

Here the first three equalities follow from the volume of an
n ball and the last equality follows from the definition of
reduced density.

Let y1, . . . , yk be k = ξ (B̄n
x,2R) random points on B̄n

x,2R,
each given by Eq. (A13). Since y1, . . . , yk are independently
distributed on B̄n

x,2R,

{y1, ..., yk} (A15)

FIG. 13. Transition rates between two unit spheres with centers
separated by Li j in 12 (red) and 18 (blue) dimensions. Points: sim-
ulation results from random walks. Full lines: fits to Eq. (10) of the
main text. Dashed lines: �i j ∝ hd−1

i j shown for comparison.

is a realization of a Poisson point process σx on B̄n
x,2R.

APPENDIX B: TRANSITION RATES

To apply the kinetic Monte Carlo algorithm, an expression
for �i j , the transition rate between two intersecting hyper-
spheres, i and j, is needed. To find this rate, random walks on
a system consisting of two intersecting unit hyperspheres were
performed for d = 12 and d = 18, respectively. The distance
between the two spheres is denoted Li j and the radius of the
intersection is denoted hi j ; see Fig. 4 of the main text.

17 000 random walkers were started in sphere i (excluding
the part that is closest to the center of sphere j). Steps in
the random walk were chosen with equal probability on the
surface of a d-dimensional hypersphere of radius 0.01. The
fraction of walkers being in sphere i was monitored as a
function of time. As expected, an exponential decay from
fraction 1 to 0.5 was found. The transition rates determined
from the exponential decays are plotted as points in Fig. 13.

Since the random walk has equal probability per volume,
the rates are expected to be proportional to the volume of the
intersection relative to the volume of the initial sphere:

�i j ∝ hd−1
i j dL, (B1)

where dL is the effective width of the intersection. Setting dL
proportional to the inverse slope of the hypersphere surface
at the intersection (see Fig. 4 of the main text), dL ∝ Li j/hi j ,
leads to Eq. (10) of the main text, which is found to fit the
simulation results very well (see Fig. 13).
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