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Unified percolation scenario for the α and β 
processes in simple glass formers
 

Liang Gao     1, Hai-Bin Yu     1  , Thomas B. Schrøder 2 & Jeppe C. Dyre     2 

Given the vast differences in interaction details, describing the dynamics 
of structurally disordered materials in a unified theoretical framework 
presents a fundamental challenge to condensed-matter physics and 
materials science. Here we numerically investigate a double-percolation 
scenario for the two most important relaxation processes of supercooled 
liquids and glasses, the so-called α and β relaxations. For several simple 
glass formers, we find that when monitoring the dynamic shear modulus 
as temperature is lowered from the liquid state, percolation of immobile 
particles takes place at the temperature locating the α process. Mirroring 
this, upon continued cooling into the glass state, the mobile-particle 
percolation transition pinpoints a β process whenever the latter is well 
separated from the main (α) process. For two-dimensional systems under 
the same conditions, percolation of mobile and immobile particles occurs 
nearly simultaneously, and no β relaxation can be identified. Our findings 
suggest that a general description of glassy dynamics should be based on a 
percolation perspective.

A liquid close to the glass transition relaxes extremely slowly towards 
equilibrium when subjected to an external disturbance1–10. Depending 
on the temperature, the main so-called α relaxation time, τα, can be 
seconds, hours or even months, with no other limit than the patience 
of the experimentalist2–5,9–11. In the Maxwell model of viscoelasticity5,12, 
a glass-forming liquid behaves like a solid on time scales shorter than 
τα and flows on longer time scales. Interestingly, most liquids exhibit 
additional, faster relaxations. The most prominent one is the Johari–
Goldstein β process, which is observed in virtually all glass-forming 
organic liquids, polymers, metallic glasses and so on13–18.

It was known by the 1960s that polymers exhibit relaxation pro-
cesses above the α relaxation frequency 1/τα, which were attributed 
to side-chain motion13. It was a surprise, however, when Johari and 
Goldstein reported in 1970 that fast processes also occur in glasses of 
small rigid molecules19. To explain this, they proposed the existence 
of ‘islands of mobility’19,20; this constituted an early example of the 
dynamic heterogeneities subsequently identified as a universal feature 
of glass-forming liquids6,21–23. Nowadays, the term ‘β relaxation’ is used 
for the first relaxation process at frequencies higher than those of 
the main (α) process, independent of its origin. A further relaxation 

process worth mentioning is the β′ (or γ) process, which has been 
observed in both experiments and molecular dynamics simulations. 
It originates from high-frequency particle diffusion in glass-forming 
liquids and is considered an extension of the dynamics observed in 
high-temperature liquids24,25.

Research in recent decades has demonstrated that β relaxation 
plays a crucial role in the mechanical and thermal properties of amor-
phous materials26–30. Ngai has suggested that the β process is a pre-
cursor of the main α relaxation: before the onset of β relaxation, one 
finds a regime in which molecules are confined to cages defined by 
the anharmonic intermolecular potential31–33. A related proposal was 
discussed in 1999 by Kudlik et al., who suggested that the β process in 
molecular liquids is a local, spatially restricted reorientation process 
preceding the α relaxation34, an idea that is reminiscent of the fun-
damental prediction of mode-coupling theory35. Experiments have 
confirmed the caged-molecule picture of the β process by detecting 
small-angle jumps36, but interestingly, large-angle jumps are some-
times also involved in β relaxation37.

Although most papers on the β process report results for the glass 
phase, β relaxation is present also in the equilibrium (metastable) 
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it approaches zero. The threshold is 0.25 for link percolation on a 
three-dimensional (3D) simple cubic lattice and 0.31 for site percola-
tion on the same lattice45–47.

Recently, a double-percolation picture was proposed, linking the 
α and β processes in the liquid phase above Tg to the percolation of 
immobile and mobile regions, respectively48. Associating a given 
energy barrier, ΔE, with a relaxation time proportional to exp(ΔE/kBT ) 
where T is the temperature and kB is the Boltzmann constant, the von 
Neumann type ‘minimax’ idea is that τα is controlled by the lowest 
energy barriers on the percolation cluster formed by the most immo-
bile regions: that is, those of largest barriers. On time scales longer than 
τα, this cluster breaks up and flow becomes possible. As a consequence, 
the solid-like structure maintaining the energy barriers throughout 
the sample by keeping surrounding molecules in place disappears on 
time scales longer than τα (refs. 49–53). This means that the largest 
energy barriers are never overcome; hence their light colour in Fig. 1a 
illustrating double percolation. Borrowing a term from nuclear mag-
netic resonance54,55, this phenomenon was long ago referred to as 
‘exchange’, whereas nowadays the term ‘facilitation’ is preferred56–62. 
Considering next the opposite limit of very short times, only the 
lowest-barrier regions are relevant, and these are spatially separated. 
Extended fast motion becomes possible when these regions percolate 

liquid phase above the glass transition temperature Tg. In most cases, 
however, the β process is here partly merged with the α process and 
observed only as a wing of the latter38–41. Lengthy annealing of a glass to 
approach the liquid phase may in some cases separate the β relaxation 
wing from the α peak and establish it as an independent, well-defined 
process39, but in other cases annealing annihilates the β process by 
decreasing its magnitude to below the resolution limit14.

Because a glass-forming liquid is disordered, it must be expected 
that the energy barriers of flow events vary in space. The existence of a 
wide barrier distribution was recently documented in simulations by 
Pica Ciamarra and co-workers42. Assuming the barriers vary randomly 
in space amounts to replacing complexity with randomness, which is 
an old and venerated strategy of simplification43. Once spatial random-
ness is introduced into the modelling, the phenomenon of percola-
tion comes to mind by connecting randomness and geometry44–47: if 
finite-size domains in space are marked randomly one after the other, 
at some point the marked domains will percolate throughout the sam-
ple. The value of the percolation threshold depends on the spatial 
dimension and the model in question. In one dimension, the percola-
tion threshold is unity. On a two-dimensional (2D) cubic lattice, the 
link-percolation threshold is 50% by self-duality45–47. The percolation 
threshold decreases with increasing spatial dimension D, and for D → ∞ 
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Fig. 1 | Main concepts. a, Generic double-percolation scenario for a glass-
forming system’s linear-response properties when cooled through the glass 
transition. The loss χ′′(ω) is probed at a fixed frequency during the cooling 
(lower panel), corresponding to activation energies that decrease with 
decreasing temperature (upper panel). Assuming that the activation-energy 
distribution is much wider than kBT, at a certain temperature the high-activation-
energy ̀ islands of immobility' corresponding to times longer than the probe 
frequency will percolate. This locates the α process. At a lower temperature well 
within the glass phase, the low-activation-energy ̀ islands of mobility' stop 
percolating, which pinpoints the β relaxation48,63,64. b, Molecular dynamics 
simulations mimicking experimental DMS for a Ni80P20 mixture. At selected times 

during the cooling, the sample is deformed to determine the dynamic shear 
modulus G(ω). c, Definition of particles that are mobile on the time scale 
Δt = 2π/ω. The upper panel shows the distribution of all-particle displacements, 
the van Hove function p(u, Δt). Particles with displacement larger than the 
minimum (dashed line) are designated as ‘mobile’ and the remaining particles as 
`immobile'. The lower panel shows the all-particle radial distribution function 
g(r). Whenever two mobile/immobile particles are closer than the first minimum 
of g(r), they are defined to belong to the same cluster91. d, Example of the LC (red) 
and SLC (yellow), concepts that are defined for the mobile and the immobile 
particles separately. e,f, Examples of mobile (e) and immobile (f) particle clusters 
(insets) and their size (S) histograms.
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on longer time scales. This gives rise to a new relaxation channel that 
we propose is the β process48,63,64.

The idea that percolation is important for understanding relaxa-
tions in viscous liquids and glasses has a long history24,48,50,51,53,63–75. A 
double-percolation picture was proposed in 1996 by Novikov et al. in 
the context of percolation of liquid-like and solid-like domains defined 
by the largest and smallest vibrational mean-square displacement, 
respectively76, but no relation to the α and β processes was proposed 
at the time.

Figure 1 illustrates our main idea and how it is tested in simula-
tions. With current computers, it is not possible to test numerically 
the double-percolation scenario in the equilibrium-liquid phase in the 
way this scenario was discussed in ref. 48; it would require extremely 
long low-temperature simulations to separate the α and β processes, 

which as mentioned is a challenge even in experiments lasting a long 
time. As an alternative, we proceed as follows. Figure 1a presents the 
double-percolation scenario for a linear-response loss at the fixed 
(angular) frequency ω, χ′′(ω), monitored as a function of temperature 
when the system is cooled from the equilibrium-liquid state into the 
glass phase. This procedure allows one to monitor the 
activation-energy distribution in much the same way as a 
constant-temperature equilibrium-liquid frequency scan. The largest 
activation energies are probed at high temperatures, with gradually 
smaller ones becoming relevant as the system is cooled. Two ‘percola-
tion temperatures’ are conjectured to pinpoint the α and β processes, 
respectively. At any given time, all particles are marked as either 
mobile or immobile. The immobile particles percolate below the upper 
percolation temperature, and the mobile particles percolate above 
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Fig. 2 | Double-percolation studies. a–i, Results at three frequencies for Ni80P20 
(a–c), Al90Am10 (d–f) and Al85Sm15 (g–i). For each panel, the upper graph displays 
the shear-mechanical loss modulus G′′(ω) at a fixed frequency monitored when 
cooling at 0.1 K ns−1. The loss modulus is fitted to a sum of Gaussian peaks, 
corresponding to α (blue), α2 reflecting the α process asymmetry48 (pink, not 
needed in all spectra) and β (yellow) processes. The lower panels show the 
fraction of particles belonging to the LC (pink/green) and SLC (yellow/blue) of 

mobile (left) and immobile (right) particles, respectively. The dashed lines mark 
the mobile- and immobile-particle percolation temperatures defined from the 
criterion that the LC is 100 times larger than the SLC. h and i do not show separate 
α and α2 processes because of the uncertainty of their relative positions 
(Supplementary Figs. 5–7 give more details on the α2 process and the fitting 
procedure).
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the lower percolation temperature. Thus both species percolate 
between these two temperatures. Because this is not possible in two 
dimensions, we predict that separate α and β relaxations should not 
be observed here. Note that the system is assumed to have an 
activation-energy distribution much wider than kBT, an assumption 
that may not always be realistic.

Our simulations follow the strategy of ref. 64, which mimicked 
experimental dynamic mechanical spectroscopy (DMS) by occasion-
ally, during a slow cooling through the glass transition, subjecting the 
sample to a periodic deformation to probe the dynamic shear modu-
lus. The numerical study of α and β processes in realistic molecular 
models is extremely challenging because it requires both specially 
designed models and lengthy computations41,71,77,78. For this reason, the 

present paper tests the double-percolation scenario with simulations 
of point-particle models.

We find that whenever the α and β processes are well separated, 
they correspond to the percolation transition of immobile and mobile 
particles, respectively. This confirms the double-percolation sce-
nario. There are also cases where the two processes are not well 
separated, however; in particular, this is always the situation in two 
dimensions. Most of the models studied are binary metallic glass 
formers. Our investigation also includes data on a binary Lennard–
Jones system, the metalloid NiP and a ternary metallic glass, but 
relaxations of ionic or covalent glasses involving mobile cations 
remain to be explored from the double-percolation perspective, as 
do relaxations in molecular models.
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Fig. 3 | Double-percolation studies of systems with close percolation 
temperatures. a–i, Results at three frequencies for 65:35 Kob–Andersen (K–A) 
(a–c), Ni65Nb35 (d–f) and Cu50Zr50 (g–i) (similar data for the ternary system 
La50Ni35Al15 are given in Supplementary Fig. 9). The upper panels display  
G′′(ω) for samples cooled at the rates 2 × 10−7 (K–A, Lennard–Jones (LJ) units)  

and 0.1 K ns−1 (Ni65Nb35 and Cu50Zr50). As in Fig. 2, all α processes are found at  
the immobile-particle percolation temperature, but in contrast to Fig. 2,  
these three samples have no well-defined β process at the mobile-particle 
percolation threshold.
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Results
In DMS, the glass transition is seen as a maximum in a plot of the tem-
perature dependence of the fixed-frequency mechanical loss moni-
tored during cooling, and the β process manifests itself as a smaller 
peak below Tg. Figure 1b illustrates our simulation procedure. At 
selected times during the cooling, a binary 32,000-particle sample is 
subjected to a small periodic elongation while the two transverse 
dimensions simultaneously are decreased to keep the volume fixed. 
This results in a periodic shear stress on a constant-volume sample, 
the magnitude and phase of which determine the complex 
frequency-dependent shear modulus G(ω) (more details are given in 
the Methods section and the Supplementary Information). The right 
side of Fig. 1b shows an example of G(ω) = G′(ω) + iG′′(ω) at three fre-
quencies, plotted as a function of temperature where squares and 
circles give the real and imaginary parts of G(ω). The β process is most 
clearly visible at the lowest frequency (upper panel).

There is considerable freedom in how to define mobile and 
immobile particles. In order not to introduce arbitrary parameters, 
we adopted the simple approach of treating all particles on an equal 
footing by proceeding as follows (Fig. 1c). For a given time interval, 
Δt, mobile particles are defined via the all-particle van Hove function 
p(u, Δt), which in all cases simulated has a well-defined first minimum 
or transition from peak to a long tail (Supplementary Figs. 3 and 4). 
Particles with a displacement larger than this length are designated 
as ‘mobile’ and all other particles as ‘immobile’. This depends on Δt, of 
course, which is put equal to 2π/ω of the mechanical deformation. Note 
that in this approach, any particle is either mobile or immobile. This is 
different from what is usually done; in ref. 69, for instance, fewer than 
one-fifth of the particles were classified as either mobile or immobile.

Having defined mobile and immobile particles at any given time, 
two particles of same class are designated to belong to the same cluster 
if their distance is smaller than the minimum of the all-particle radial 
distribution function, g(r); compare the lower panel of Fig. 1c. In this 
way, at any time during the cooling, one identifies the largest cluster 
(LC) and the second-largest cluster (SLC) of mobile and immobile 
particles, respectively (Fig. 1d–f). In summary, the probe frequency 
defines the time scale used to classify the particles as either mobile 
or immobile, and each of these two classes is subsequently divided 
into clusters.

Figure 2a–c shows our results for Ni80P20 cooled through the glass 
transition and monitored at the three frequencies in Fig. 1b. Figure 2a 
gives results for the lowest frequency where the α and β processes are 
best separated, and Fig. 2b,c give results for higher frequencies. The 
upper panels show the shear-mechanical loss modulus as a function 
of temperature during the cooling. The lower panels show the fraction 
of particles belonging to the LC (orange and green diamonds) and SLC 
(yellow and blue circles) of mobile and immobile particles, respectively 
(left and right). The two dashed vertical lines mark the mobile- and 
immobile-particle percolation temperatures, TPm and TPim, defined by 
the criterion that the LC is 100 times larger than the SLC.

Focusing first on the immobile particles, for all three frequencies 
we find that during cooling, the LC and SLC fractions are virtually identi-
cal down to the temperature TPim close to that of the α peak, below which 
LC completely dominates. Upon continued cooling into the glass phase, 
an almost-mirror behaviour is found for the β peak: here, the LC and 
SLC fractions are different down to a temperature, TPm, close to that of 
the β peak, at which all the mobile-particle clusters become small (~1%). 
Thus the α peak is found where the immobile particles percolate, and 
the β peak is found where the mobile particles percolate.

To investigate the generality of these findings, we carried out 
simulations of five other metallic glasses, Al90Sm10, Al85Sm15, Ni65Nb35, 
Cu50Zr50 and La50Ni35Al15, as well as of a Kob–Andersen-type binary 
Lennard–Jones mixture79 (Figs. 2 and 3 and Supplementary Fig. 9). 
The results can be summarized as follows: (1) the α process is in all 
cases characterized by immobile-particle percolation; (2) whenever 

there is a well-defined β process in the form of a peak or a shoulder, 
it is characterized by mobile-particle percolation (Fig. 2); (3) for the 
Kob–Andersen, Ni65Nb35, Cu50Zr50 and La50Ni35Al15 systems, the β process 
is not well separated from the α process and is merely visible as a wing 
of the latter (Fig. 3 and Supplementary Fig. 9).

What is the difference between the systems with a clearly visible β 
relaxation (Fig. 2) and those with only a wing (Fig. 3)? Whenever the 
mobile- and immobile-particle percolation temperatures are close, one 
cannot expect to find well-separated α and β relaxations, and the β 
process will be at most a wing of the α process. The percolation tem-
peratures are reported in Table 1; recall that these depend on the  
frequency/time scale in question. The table reveals a threshold of 
TPm /TPim ≅ 0.85 below which the mobile- and immobile-particle percola-
tion transitions are well enough separated for a β relaxation to be iden-
tifiable, which is not the case above the 0.85 threshold. A genuine β peak 
is seen for the systems with the lowest percolation-temperature ratios.

Table 1 | Data for all simulations in 3D, showing that the β 
process manifestation is predicted by the ratio between the 
mobile- and immobile-particle percolation temperatures

ω (rad ps−1) TPm (K) TPim (K) TPm /TPim
β manifestation

Ni80P20
(EAM)

2.09 × 10−5 425 520 0.82 Shoulder

6.28 × 10−5 450 540 0.83 Shoulder

2.09 × 10−4 485 550 0.88 Wing

6.28 × 10−4 505 562 0.90 Wing

2.09 × 10−3 538 578 0.93 Wing

6.28 × 10−3 558 600 0.93 Wing

Al90Sm10
(EAM)

6.28 × 10−6 365 595 0.61 Peak

2.09 × 10−5 395 615 0.64 Peak

6.28 × 10−5 422 633 0.67 Peak

2.09 × 10−4 460 660 0.70 Peak

6.28 × 10−4 495 665 0.74 Peak

6.28 × 10−3 585 708 0.83 Shoulder

Al85Sm15
(EAM)

6.28 × 10−5 505 710 0.71 Peak

6.28 × 10−4 590 755 0.79 Shoulder

6.28 × 10−3 710 795 0.89 Wing

Ni65Nb35
(EAM)

6.28 × 10−6 750 860 0.87 Wing

6.28 × 10−5 827 900 0.92 Wing

6.28 × 10−4 875 948 0.92 Wing

6.28 × 10−3 950 1,010 0.94 Wing

Cu50Zr50
(EAM)

6.28 × 10−6 610 673 0.91 Wing

6.28 × 10−5 640 703 0.91 Wing

2.09 × 10−4 662 717 0.92 Wing

6.28 × 10−4 680 735 0.93 Wing

2.09 × 10−3 700 755 0.93 Wing

6.28 × 10−3 720 780 0.92 Wing

La50Ni35Al15
(DNN)

6.28 × 10−5 527 590 0.89 Wing

6.28 × 10−4 570 620 0.92 Wing

6.28 × 10−3 610 672 0.91 Wing

K–A
(LJ units)

6.28 × 10−6 0.40 0.46 0.87 Wing

6.28 × 10−5 0.44 0.50 0.88 Wing

6.28 × 10−4 0.48 0.54 0.89 Wing

6.28 × 10−3 0.52 0.60 0.87 Wing

The β process classification into ‘shoulder’, ‘wing’ or ‘peak’ is detailed in Supplementary 
Fig. 8. DNN, deep neural network.
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Figure 4a illustrates our results by showing representative loss 
spectra in a plot where the x coordinate is the ratio of the two percola-
tion temperatures and the y coordinate is the probe frequency. There 
is a pronounced β process at low ratios of the percolation temperatures. 
When the two percolation temperatures are close (TPm /TPim > 0.85), 
on the other hand, the β process is at most manifested as a wing. 
Figure 4b summarizes our findings by reporting the percolation- 
temperature ratios for all simulations.

We also simulated systems in 2D where one cannot at the same time 
have percolation of both the mobile and the immobile particles: if one 
type of particles percolates, their percolation cluster will necessarily 
sever any infinite cluster of the opposite type of particles (think of the 
paths and walls of a labyrinth: if the walls percolate, the paths do not, 
and vice versa). Thus, according to the double-percolation scenario, 
no separate α and β processes should exist in two dimensions, and the 
ratio of the two percolation temperatures should be close to unity. This 
is tested for five systems in Fig. 5 and Supplementary Figs. 16–20 (the 
2D versions of the remaining two systems simulated in 3D, Ni80P20 and 
Ni65Nb35, could not be included in this analysis because they crystallized 

upon cooling). In no cases do we find a β process, and the ratio of the 
two percolation temperatures is always significantly above 0.85 (actu-
ally, it is slightly above unity; compare Fig. 4b).

Because the two percolation temperatures are defined by refer-
ence to the specific time scale Δt = 2π/ω, repeating the simulations 
for different frequencies allows one to identify the two time scales’ 
temperature dependencies. Results are shown for four systems in Fig. 6 
for frequencies covering more than 3 decades. The figure also plots the 
α and β loss-maximum temperatures at the corresponding frequen-
cies. Within the numerical uncertainty, the latter coincide with the 
immobile- and mobile-particle percolation temperatures, respectively, 
confirming the connection between double percolation and mechani-
cal response. The lower panels of Fig. 6 show that the same picture is 
seen if one uses an alternative percolation-temperature definition 
based on the observed percolation thresholds, 10% and 25% of the 
mobile and immobile particles, respectively (compare Supplementary 
Figs. 22–24; the different percolation thresholds reflect the interest-
ing fact that the geometries of the immobile- and mobile-percolation 
clusters differ).
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Fig. 4 | The ratio between mobile and immobile percolation temperatures 
determines the β process manifestation. a, Selected loss spectra of 3D mixtures 
at different frequencies. When the percolation-temperature ratio is below 
roughly 0.85 (marked in grey), the β process is a ‘shoulder’ or a ‘peak’, whereas the 
β process is absent or at most a ‘wing’ for percolation-temperature ratios larger 
than 0.85. The placement of each loss spectrum is determined by its maximum, 

as indicated by the two dashed lines. b, Summary of all data for the percolation-
temperature ratio and its correlation with the β process manifestation. The data 
behind the box plots are shown nearby. Each box includes the middle 50% of the 
data: that is, the edges of each box mark the first and third quartiles. The lines 
inside the boxes are the medians, and the whiskers mark the smallest and largest 
data values.

100

10–2

10–4

100

10–2

10–4

Fr
ac

tio
n

G
” no

rm

390 510 630 750

Fr
ac

tio
n

T (K)
460 640 820 1,000

T (K)
350 490 630 770

T (K)
0.10 0.20 0.40 0.55

T

0 0

0.5

1.0

AI90Sm10

Pm

Pim

ω = 6.28 × 10–5 rad ps−1 AI85Sm15 ω = 6.28 × 10–5 rad ps−1 Cu50Zr15 ω = 6.28 × 10–5 rad ps−1K–A (LJ units) ω = 6.28 × 10–5

100

10–2

10–4

100

10–2

10–4

Fr
ac

tio
n

G
” no

rm
Fr

ac
tio

n

0.5

1.0

0

100

10–2

10–4

100

10–2

10–4

Fr
ac

tio
n

G
” no

rm
Fr

ac
tio

n

0.5

1.0

0

100

10–2

10–4

100

10–2

10–4

Fr
ac

tio
n

G
” no

rm
Fr

ac
tio

n

0.5

1.0

b c

LCm

SLCm

LCim

SLCim

da

Fig. 5 | Double-percolation studies of 2D models. a, Data for Al90Sm10.  
b, Data for Al85Sm15. c, Data for the Kob–Andersen mixture. d, Data for Cu50Zr50. 
(Supplementary Fig. 20 gives data for the 2D La50Ni35Al15 mixture.) Unlike in 3D, 
the two percolation temperatures are close; compare Fig. 4b. This is consistent 

with the finding that there are no separate α and β processes (upper panels), 
reflecting the fact that in two dimensions, mobile- and immobile-particle 
percolation cannot occur at the same time.
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Discussion and outlook
Percolation is important in many contexts involving disordered solids80 
by determining, for example, thermodynamics, fragility and stability of 
chalcogenide glasses81,82, ac conduction at extreme disorder83, spatial 
heterogeneity of soft modes84, vibrational anomalies85, yielding86 and 
so on. This Article has investigated numerically a scenario according to 
which percolation also controls the two main relaxation processes of 
glass-forming liquids. The starting point is the assumption of extreme 
dynamic heterogeneity in the form of a wide barrier distribution for 
flow events (Fig. 1a). From this, one arrives at a picture characterized 
by percolation of the mobile and of the immobile particles. The former 
percolation transition is linked to the β process and the latter to the 
main (α) relaxation. Note that the proposed scenario does not take into 
account local facilitation: that is, the recently discussed mechanisms 
according to which one flow event makes nearby flow events more 
likely by lowering their barriers—for example, by long-ranged elastic 
interactions41,48,61,87–89.

To summarize our findings, extensive computer simulations of 
systems in three and two dimensions establish the following. Two 
temperatures can be identified marking the percolation of mobile 
and immobile particles, respectively, defined by reference to the 
particle displacements on a specific time scale. One percolation 
temperature marks the immobile-particle percolation threshold, 
which is found above the glass transition temperature; the second 
percolation temperature marks mobile-particle percolation taking 
place in the glass. Whenever the two percolation temperatures are 
well separated, they pinpoint the α and β shear-modulus loss-peak 

temperatures for the frequency corresponding to the time scale in 
question. A ratio of approximately 0.85 of the two percolation tem-
peratures separates two cases; whenever the ratio is below 0.85, the 
α and β processes are well separated, and whenever this ratio is above 
0.85, the processes are partly or fully merged. In two dimensions, 
where one cannot have percolation of both mobile and immobile 
particles at the same time, there are no separate α and β processes—
here the ratio of the two percolation temperatures is close to unity 
(in fact, slightly above).

Although we have found no exceptions to this connection 
between percolation and the mechanical linear-response proper-
ties, it should be emphasized that one cannot yet conclude that a 
general, causal relation exists between the percolation of mobile and 
immobile particles and the α and β processes. More work is needed 
before generality of the double-percolation picture can be concluded. 
It would be interesting to relate double percolation to well-known 
features of the α and β relaxations, in the hope that the scenario may 
help provide answers to questions like these: Why is the β relaxation 
Arrhenius but the α usually is not? How do the α and β relaxations 
merge at high temperatures? Why is the β process usually symmetric 
in log(frequency)? Our conclusions are based on numerical studies 
of metallic glasses90, confirmed by data on the Kob–Andersen model 
and the metalloid NiP. To investigate whether double percolation 
always controls the α and β processes of glass formers, for future 
work it will be important to simulate other inorganic/non-metallic 
systems, as well as more complex systems like molecular and poly-
meric glass formers.
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is the same as that of immobile-particle percolation (green pentagon). Likewise, 
the β process (yellow diamond) has the same temperature dependence of its 
average relaxation time as that of mobile-particle percolation (orange circle). The 
dashed lines are guides to the eye illustrating that the two processes merge at 
high temperatures. The lower panels demonstrate the same picture if one instead 
uses the percolation thresholds derived from a detailed analysis of the 
percolation-cluster geometry (see Supplementary Fig. 22): Pm = 0.10 and 
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Methods
Molecular dynamics simulations and DMS
Twelve different mixtures were simulated using LAMMPS92. The 3D 
mixtures are Ni80P20 (32,000 particles), Al90Sm10 (32,000/10,976/2,916 
particles), Al85Sm15 (9,088 particles), Ni65Nb35 (9,088 particles), 
Cu50Zr50 (32,000 particles), La50Ni35Al15 (8,788 particles) and 65:35 
Kob–Andersen (70,304 particles). The 2D mixtures are Al90Sm10 
(7,200 particles), Al85Sm15 (7,200 particles), Cu50Zr50 (7,200 particles), 
La50Ni35Al15 (7,200 particles) and 65:35 Kob–Andersen (7,200 particles). 
It is demonstrated by example in Supplementary Fig. 21 that these 
samples are large enough to represent the genuine bulk response93, 
with the correct percolation temperatures. With the exception of the 
Kob–Andersen and La50Ni35Al15 mixtures, which use Lennard–Jones and 
deep neural network potentials94, respectively, all mixtures employ 
embedded-atom-method (EAM) potentials95.

Simulations were initiated using the melt–quench method that 
involves the following two steps: (1) annealing the mixture at a high 
temperature above the melting point until its energy stabilizes, thereby 
producing a high-temperature equilibrium liquid; (2) cooling this 
liquid to below room temperature (the final temperature of the Kob–
Andersen mixtures is below 0.2). The time step of the annealing is 1 fs, 
and it is 2 fs for cooling (0.001 and 0.002 for Kob–Andersen mixtures, 
respectively). The simulations employed periodic boundary condi-
tions and used a Nose–Hoover thermostat, and most were performed 
at constant pressure and temperature; the 2D mixtures and the 3D 
Kob–Andersen mixture were simulated at constant volume and tem-
perature, however.

The simulations were designed to numerically mimic the protocol 
of real DMS experiments. Thus a sinusoidal volume-preserving strain 
ε(t) = ε0 sin(ωt)  is applied at selected times, with strain amplitude ε  
along the x or x–y direction of the simulation box (leading to the same 
results). The resulting shear stress σ is fitted by σ(t) = σ0 sin(ωt + δ) .  
The storage and loss moduli are calculated from G′ = σ0/ε0 cos(δ) and 
G′′ = σ0/ε0 sin(δ) , respectively. The deformation amplitude must be 
small enough to be within the linear-response regime. To ensure this, 
we used a deformation of 1.4%; the two transverse dimensions were 
simultaneously decreased by 0.7% to maintain the volume. To strike a 
balance between system stability and simulation duration, a time step 
of 10 fs is utilized when probing the shear-mechanical properties. Sup-
plementary Table 1 summarizes the details of the molecular dynamics 
simulations.

Cluster and percolation analysis
Our percolation analysis involves all particles by dividing them into 
two classes, mobile and immobile. The division is controlled by the 
magnitude of the displacement, u, of each particle over one molecular 
dynamics DMS cycle. To identify a suitable critical displacement to 
distinguish between mobile and immobile particles, uc, the van Hove 
function p(u) ≡ [P(u + Δu) − P(u)]/Δu is used, in which P(u) is the cumula-
tive distribution giving the probability of finding the value X ≤ u, nor-
malized according to ∫∞

0 p(u)du = P(∞) = 1. The threshold displacement 
uc is defined from the first minimum (or transition to long tail) of p(u); 
by definition, all mobile particles have a displacement greater than uc 
and all immobile particles a displacement smaller than uc. A cluster 
consists of particles ‘close’ to neighbours of the same class (mobile or 
immobile), defined by reference to the all-particle radial distribution 
function g(r): when the distance between two particles is below that of 
the first minimum of g(r), rc, the particles by definition belong to the 
same cluster. The values of uc and rc depend on the frequency, thermo-
dynamic state point and system in question, but for all systems these 

values are almost identical at different temperatures and frequencies 
(compare Supplementary Fig. 4). Supplementary Table 2 reports uc 
and rc for all mixtures.

Data availability
All of the data used to generate Figs. 1–6 are available via Zenodo at 
https://doi.org/10.5281/zenodo.13925660 (ref. 96).

Code availability
The simulation package LAMMPS (https://www.lammps.org) was 
used for all molecular dynamics simulations. The code and scripts 
of the analysis are available via Zenodo at https://doi.org/10.5281/
zenodo.13925660 (ref. 96).
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