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According to excess-entropy scaling, dynamic properties of liquids like viscosity and diffusion
coefficient are determined by the entropy. This link between dynamics and thermodynamics is increasingly
studied and of interest also for industrial applications, but hampered by the challenge of calculating entropy
efficiently. Utilizing the fact that entropy is basically the Kolmogorov complexity, which can be estimated
from optimal compression algorithms [Avinery et al., Phys. Rev. Lett. 123, 178102 (2019); Martiniani
et al., Phys. Rev. X 9, 011031 (2019)], we here demonstrate that the diffusion coefficients of four simple
liquids follow a quasiuniversal exponential function of the optimal compression length of a single
equilibrium configuration. We conclude that “complexity scaling” has the potential to become a useful tool
for estimating dynamic properties of any liquid from a single configuration.
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Entropy defines the direction of time, a fundamental
property that makes it an essential ingredient in the Gibbs
and Helmholtz free energies determining whether or not
a given process can take place [1–3]. Half a century ago,
Rosenfeld identified an entirely different property of
entropy [4]: Transport coefficients of simple liquids appear
to be controlled by the excess entropy per particle, Sex,
which is defined as the entropy in excess of an ideal gas at
the same density and temperature (Sex < 0 because any
system is more ordered than an ideal gas). For a few simple
liquids including the Lennard-Jones system, Rosenfeld
demonstrated that D̃ ∝ expðaSexÞ in which a is a numerical
constant and D̃ is the diffusion coefficient in macroscopi-
cally reduced units [4,5]. Since then “excess-entropy scal-
ing” has been shown to work also for many more complex
systems, though often in a nonexponential form [5].
This regularity is used, e.g., for estimating the viscosity
and thermal conductivity of refrigerants and lubricating
oils [6–8], the dynamics of electrolytes and silica melts
[9,10], methane and hydrogen absorption in metal-organic
frameworks [11,12], the viscosity of the Earth’s iron-nickel
liquid core [13], separation of carbon isotopes in methane
using nanoporous materials [14,15], etc.
Excess-entropy scaling implies that the lines of constant

excess entropy in the two-dimensional thermodynamic
phase diagram are identical to the lines of constant reduced
diffusion coefficient, reduced viscosity, etc. The isomorph
theory predicts this for systems that obey hidden scale

invariance [5,16–18], which, however, does not cover all
known cases of excess-entropy scaling [19,20].
It is textbook knowledge that entropy is an ensemble

concept [2,3,21]. To determine a liquid’s entropy S in a
simulation one typically, just as in experiments, employs
thermodynamic integration starting from a state of
well-known entropy, e.g., the dilute gas [22]. By involving
several equilibrium simulations this method is tedious
and computationally expensive, however, and the obvious
question arises whether a more direct method exists for
calculating a liquid’s entropy. For a simple liquid defined as
a system of particles interacting via pair potentials [23], a
single snapshot allows for estimating the radial distribution
function from which an important contribution to the excess
entropy, the so-called two-body entropy S2, can be deter-
mined [24,25]. There are also higher-order contributions to S
[25,26], however, making the use of just S2 an uncontrolled
approximation. A method which in principle allows for
determining the entropy from a single equilibrium configu-
ration calculates first the chemical potential by Widom’s
random particle insertion method [27], but in practice this
involves significant computation to avoid noisy data in the
high-density (liquid) region of main focus here.
Excess-entropy scaling would be much more useful if

entropy—like pressure and temperature—could be calcu-
lated easily from a single equilibrium configuration. Since
this is not possible with current methods, one may ask
whether some entropy proxy exists that can do the job well
enough to be useful in practice. In other words: Does a
quantity exist that is straightforward to evaluate for a single
equilibrium configuration and which is, to a good approxi-
mation, in a one-to-one correspondence with the excess
entropy? In 2019 two publications appeared answering this
question to the affirmative, even for non-equilibrium states,
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by focusing on the Kolmogorov complexity K [28,29].
Recall that for any set of data,K is the length of the smallest
algorithm that generates the data in question and sub-
sequently terminates [30,31]. The connection to S is that
entropy is basically the logarithm of the number of states N
at a given energy (proportional to the density of states).
An algorithm describing a typical one of these N states to
any given accuracy cannot be much shorter than lnðNÞ
because generating different states requires different algo-
rithms. On the other hand, specifying the Hamiltonian
requires just a fixed length algorithm, and subsequently
identifying the state in question to the given accuracy
requires an added length of the algorithm varying as the
logarithm of N. Consequently, K ∼ lnðNÞ ∼ S.
Unfortunately, no algorithm exists that computes K

for an arbitrary string and then halts. This undecidability
of the halting problem is a consequence of Gödel’s
incompleteness theorem [30,31]. It thus might appear that
Refs. [28,29] replaced the difficult task of estimating the
entropy from a single configuration by the impossible one
of calculating K. Physicists are pragmatic, however, and
Refs. [28,29] suggested using compression algorithms to
estimate K by providing an upper bound, in this way
estimating the entropy from a single configuration.
We show below that compression algorithms are indeed

good proxies for the excess entropy of simple liquids. This
is done from simulations of several such systems, making it
straightforward to predict the diffusion coefficient at a
given thermodynamic state point from a single equilibrium
configuration. First some details about the simulations and
the compression of configuration files are given. Then the
excess Kolmogorov complexity per particle, Kex, is defined
and a quasiuniversal correlation between Kex and the
reduced diffusion coefficient D̃ is demonstrated. Finally,
it is shown that there is a strong correlation between Sex
and Kex, thus validating complexity scaling via optimal
data compression as useful whenever excess-entropy scal-
ing applies. We here and henceforth use the term “optimal
data compression” for the best method identified from the
handful of tested compression algorithms.
The model liquids considered are the standard Lennard-

Jones (LJ) model [32], the inverse-power-law model with
exponent 10 (IPL10), the Morse model [33], and the
Yukawa model [34]. The characteristic length and energy
scales of the pair potentials are set to unity. The Lennard-
Jones potential is thus given by vðrÞ ¼ 4ðr−12 − r−6Þ,
IPL10 by vðrÞ ¼ r−10, the Morse potential by vðrÞ ¼
e−2αðr−1Þ − e−αðr−1Þ, in which α between 4 and 9 were
simulated, and the Yukawa potential by vðrÞ¼e−r=r
[Fig. 1(a)]. All simulations were performed in the NVT
ensemble using a Nosé-Hoover thermostat and carried out
using Roskilde University Molecular Dynamics (RUMD)
[35] on RTX 2080 Ti GPUs. For the LJ, Yukawa, and
IPL10 systems a wide region of the phase diagram was
simulated, while for the Morse system isochores starting at

the triple point were studied for several values of α. As an
example, Fig. 1(b) shows the state points simulated for the
LJ systems. System sizes N, reduced time steps Δt̃, sample
intervals, and cutoffs rcut are given in Table I.
Before a compression algorithm can be applied to a

configuration, it is crucial to find a data representation that
is independent from the state point in question and from
how the simulation was performed. Different compression
algorithms will result in different final file sizes, and the
Kolmorogov complexity K is defined from the minimal-
length algorithm. An upper bound forK is determined by the
compression algorithm resulting in the best compression.
These individual steps have various implementations, with

(a)

(b)

FIG. 1. (a) Pair potentials studied. In this figure the Lennard-
Jones potential is scaled for easy comparison with the Morse
potential, while the IPL10 and Yukawa parameters are chosen to
have a similar scale as they have no minimum to match.
(b) Lennard-Jones phase diagram showing the state points
simulated where T is the temperature and ρ is the (number)
density. The solid lines indicate phase boundaries.

TABLE I. Simulation parameters for the four potentials con-
sidered. The columns report system size N, reduced time step Δt̃,
sample interval, and cutoff radius rcut. The time step at a state
point is calculated as Δt ¼ Δt̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=kBT
p

=ρ1=3 from the reduced
time step (kB ¼ 1 and the particle mass m is unity for all
systems).

System N Δt̃ Sample interval rcut

LJ 32 000 0.001–0.005 215Δt̃ 2.5
IPL10 32 000 0.001 221Δt̃ 2.5
Morse 32 000 0.001–0.005 215Δt̃ 2.5
Yukawa 32 000 0.001 215Δt̃ 4.3
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effects on the final compressed size as discussed later. The
first step in the data preparation is to make the configurations
easily comparable for the compression algorithms. This is
done by scaling all configurations to unity density. At the
same timewe introduce a particle ordering using the locality-
preserving 3D Hilbert curve [36]. Particles are mapped to the
nearest point on the curve such that all particles have a
unique index; subsequently, they are sorted so that consecu-
tive particles are near to each other in 3D space.
The second step is to transform absolute positioning—

the ðx; y; zÞ positions within the simulation cell—to relative
positioning, i.e., the displacement from particle i to iþ 1.
In this way we remove any dependence from the simulation
box used and improve the compression. We do this by
using internal coordinates transforming the displacement
from ðx; y; zÞ to ðr; θ;ϕÞ, where r is the radial displacement
from the previous particle, θ is the angle formed by the
current and two previous particles, and ϕ is the four-particle
torsion angle formed by the current particles and the three
previous particles; this definition of ðr; θ;ϕÞ, which is
standard in simulations of molecules, is illustrated in Fig. 2
of the Supplemental Material [37]. Since the Hilbert-curve
ordering is locality preserving, the distance between two
particles with adjacent indices is almost always within the
first or second coordination shell. This means that the
distance is largely constrained to the interparticle distance,
which reduces the information needed to describe it. This
transformation also exploits some of the ordering found
in the simulated configuration, e.g., “steric hindrance”
effects in θ (particles are unlikely to be folded back on
themselves) and ϕ. The transformations done to the initial
coordinates in the two steps just described are lossless
(reversible) and translate the simulation data into a series
of displacement vectors.
Following previous studies [38,39] we evaluate the

difference between the optimal compression of a random
configuration, i.e., an ideal gas configuration, and that of
the configuration under study. Analogous to the definition
of Sex we thus define the excess Kolmogorov complexity
Kex as the difference between the Kolmogorov complexity
of the configuration in question and that of a random
configuration. The idea is that, what is physically relevant
is how different the compressed configuration is from a
random one of same density and temperature (and number
of particles). This removes the issue of constant size
components such as the compressor, any constants intro-
duced, e.g., density scaling, and some dictionary length.
The most pivotal choice in the compression scheme is

obviously that of the compression algorithm. The one used
in this Letter was selected imposing the following five
requirements: (i) the results should be quantitatively rea-
sonable, e.g., a lower entropy value should result in smaller
sizes; (ii) the variance between different configurations of a
given equilibrium simulation should be small enough to
allow for accurate prediction from a single configuration;

(iii) changing various parameters in the method (quantiza-
tion size, etc.) should result in understandable changes;
(iv) the algorithm should have optimal compression,
compatible with the criteria defining the Kolmogorov
complexity itself; (v) it should have a good time efficiency
because choosing a method that takes several orders of
magnitude longer obviates any potential benefit.
Figure 2 compares results for several compression

methods. For simplicity of presentation only data regarding
the LJ system are shown here, but similar results apply for
the other systems studied. The four compression methods
compared in the figure are two version of Brotli (LEB128
and F32) [40,41] and two versions of zpaq (F16 and F32)
[42,43]. These versions of Brotli and zpaq utilize different
representation for the data (integer quantization or not,
and different choices of the float precision); details about
the compression algorithms studied are given in the
Supplemental Material [37]. In (a) we show per-particle
size in bits of the compressed data along the ρ ¼ 0.84
isochore of the LJ system, while (b) shows the difference to
a random or ideal-gas configuration.
Figure 2(b) shows that the general shape of Kex remains

the same even after changes in the numerical representation
and the compression method used, showing a robustness
to the approach taken. The compression results have a
monotonic dependence upon temperature at fixed density,
as expected for the thermodynamic excess entropy. For the

(a)

(b)

FIG. 2. Comparison of compression methods along the
Lennard-Jones ρ ¼ 0.84 isochore as a function of temperature.
In (a) the absolute bits or particle size, denoted as KConf , are
shown for four compression methods, while (b) shows data for
the same methods plotting the difference between a simulated
configuration and a random one.
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results presented below, zpaqF32 is used because it obeys
all above five requirements. Importantly, while the standard
deviation of a single sampling of a configuration is
approximately 2% of the mean, we can resample a single
configuration using different starting points of the Hilbert
curve to recover the same distribution as sampling once
from multiple configurations (Fig. 1 of the Supplemental
Material [37]). This means that only a single configuration
is needed to reliably estimate Kex.
The use of a 32-bit floating-point value provides an

excess of resolution—at least as accurate as the simulation
(run at 32-bit precision on GPUs) itself—to dispel any
doubts as to under-representing the data. This compres-
sion provides a better raw compression over Brotli
(in concordance with the upper-bound concept of
Kolmogorov complexity), as well as better handling of
the 16-bit floating point representation. The downside to
this choice is that this compression method is more of a
black box compared to others.
To test the predictive power of Kex we determined the

diffusion coefficient D at several state points for each of
the four pair potentials. Figures 3(a) and 3(b) show the
diffusion coefficients versus temperature for all state points
simulated, while (c) plots the reduced diffusion coefficient
defined by D̃≡ ρ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=kBT
p

D [4,16] (m is the particle

mass set to unity in the simulations and kB is the Boltzmann
constant) versus Kex estimated from zpaqF32. We find an
exponential quasiuniversal functional dependence. This is
our main result, demonstrating that the diffusion coefficient
can be reliably estimated from the compression of a single
equilibrium configuration.
Assuming that optimal data compression provides a

good estimate of Kex and thereby of the excess entropy
Sex, the finding of Fig. 3(c) is consistent with excess-
entropy scaling as well as the quasiuniversality of simple
liquids (the fact that structure and dynamics are very similar
in reduced units) [45,46]. A strong correlation between Kex
and Sex is confirmed in Fig. 4 in which Kex is obtained as
above and Sex is obtained from the Thol et al. equation of
state [47,48] for the LJ system and by thermodynamic
integration in the other cases (Sex data are not given for the
Yukawa system because the simulation points in this
system do not lie on standard integration paths). The
correlation between Kex and Sex is very good; in fact it
is linear over most of the range investigated in this Letter,
meaning that Kex ¼ αSex þ β. Here, β represents any
constant overhead of the compression—encoding diction-
aries, block boundaries, etc.—that arises from the
difference between the nearly incompressible random
configuration and the simulated configuration. The scaling
factor α ≅ 0.425 represents imperfections in the compres-
sion algorithm and any other factors—e.g., a factor of ln 2
due to choice of base. The linear relation holds in the
region where there is most interest in these systems, i.e.,
in the dense liquid region corresponding to values of
excess entropy lower than about −1. While the focus of
this Letter has been on such typical liquid state points, we
note that the entropy of solids should also be straightfor-
ward to estimate from optimal data compression.
To summarize, we have shown that the diffusion coef-

ficient of simple liquids can be estimated reliably from the
optimal compression of a single equilibrium configuration
as a proxy for the excess entropy. This should also work for
extremely viscous liquids, which can only be equilibrated
by SWAP methods and for which thermodynamic integra-
tion therefore is not an option to determine the excess

(a) (b)

(c)

FIG. 3. Diffusion coefficients D. (a) D for the Yukawa system
as a function of the temperature along three lines in the
thermodynamic phase diagram (one of constant density, one of
constant inverse average interparticle distance over temperature,
and one isomorph [44]). (b) Similar data for the LJ, IPL10, and
Morse potentials, along isotherms and isochores. (c) All data in a
plot of the reduced diffusion coefficient D̃ versus Kex estimated
from the zpaqF32 compression algorithm, demonstrating a
quasiuniversal exponential functional dependence [black dashed
line: D̃ ∝ expðcKexÞ].

FIG. 4. Correlation between Kex estimated from the zpaqF32
compression algorithm and the excess entropy Sex. The dashed
line represents idealized scaling (see the text).
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entropy. If our findings can be extended to realistic
molecular models, estimating dynamic properties of liquids
like the diffusion coefficient or viscosity will become much
easier than at present.
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