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Configurational temperature in active matter. I. Lines of invariant physics in the phase diagram
of the Ornstein-Uhlenbeck model
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This paper shows that the configurational temperature of liquid-state theory, Tconf , defines an energy scale,
which can be used for adjusting model parameters of active Ornstein-Uhlenbeck particle (AOUP) models in
order to achieve approximately invariant structure and dynamics upon a density change. The required parameter
changes are calculated from the variation of a single configuration’s Tconf for a uniform scaling of all particle
coordinates. The resulting equations are justified theoretically for models involving a potential-energy function
with hidden scale invariance. The validity of the procedure is illustrated by computer simulations of the Kob-
Andersen binary Lennard-Jones AOUP model, showing the existence of lines of approximate invariance of the
reduced-unit radial distribution function and time-dependent mean-square displacement.

DOI: 10.1103/PhysRevE.107.024609

I. INTRODUCTION

Any system in thermal equilibrium has a well-defined
temperature, and the temperature concept is fundamental
for understanding and quantifying a system’s thermody-
namic and statistical-mechanical properties. In view of this
it is obvious to try to generalize temperature to character-
ize also nonequilibrium systems. Excellent reviews of such
proposed temperatures are given in Refs. [1–5]. Examples
are the effective temperature quantifying deviations from
the fluctuation-dissipation theorem [6–8] and the fictive tem-
perature characterizing a glass’s structure in terms of the
temperature at which the liquid solidified [9,10]. Nonequilib-
rium temperatures are generally motivated by the prospect of
connecting properties of the nonequilibrium system to those
of the same system in thermal equilibrium. That is not the
background, however, of the below proposed application of
liquid-state theory’s configurational temperature [2,11–13] to
active-matter models.

Active matter is an umbrella term used to describe physical
systems whose building blocks can autonomously perform
mechanical work. This includes fluids consisting of self-
propelled particles, e.g., suspensions of swimming bacteria or
animal groups, mutually propelled particles like cytoskeletal
filaments or motor proteins, cells in various contexts, bird or
insect flock dynamics, etc. [14–21]. Active matter is usually
not time reversible. This means that a multitude of different
dynamics may come into play [22], making this a much richer
field of study than that of ordinary time-reversible dynamics
[23]. A noted feature of active matter is motility-induced
phase separation (MIPS), the intriguing finding that even a
purely repulsive system may phase separate into high- and
low-density phases [17,19,24–28].
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Active matter does not have states of ordinary thermal
equilibrium, but there have been suggestions for mapping
active-matter states to equilibrium, implying the existence
of an active-matter temperature. For instance, Szamel pro-
posed an effective temperature for a single self-propelled
particle [29], and Fodor et al. showed [30] that for active
Ornstein-Uhlenbeck particles with a small persistence time
one can identify an effective temperature from the analog of
the fluctuation-dissipation theorem (see also Refs. [31–33]).
In a parallel development, Takatori and Brady formulated a
thermodynamic-type temperature for active matter based on
the swim-pressure concept [34].

For an ordinary nonactive system in thermal equilibrium,
the temperature T equals Tconf defined as follows [2,12].
For a system of N particles with collective coordinate vec-
tor R ≡ (r1, . . . , rN ) and potential-energy function U (R),
kBTconf ≡ 〈(∇U )2〉/〈∇2U 〉 in which kB is the Boltzmann
constant, ∇ is the gradient operator in the 3N-dimensional
configuration space, and the sharp brackets denote canonical-
ensemble averages. The proof that Tconf = T in equilibrium
is so simple that it deserves to be repeated here [11]: If Z is
the configuration-space partition function integral, a partial
integration of 〈∇2U 〉 = ∫ ∇2U (R) exp[−U (R)/kBT ] dR/Z
leads to 〈∇2U 〉 = − ∫ ∇U (R) · ∇ exp[−U (R)/kBT ]dR/Z =
〈(∇U )2〉/kBT from which Tconf = T follows.

Approaching the thermodynamic limit, the relative fluc-
tuations of both the numerator and the denominator of Tconf

vanish. This means that if one defines an R-dependent config-
urational temperature by

kBTconf (R) ≡ [∇U (R)]2

∇2U (R)
, (1)

the identity Tconf (R) ∼= T applies in the sense that deviations
go to zero as N → ∞. We have this limit in mind through-
out and shall (mostly) ignore that Tconf (R) fluctuates for any
finite system. Note that the configurational temperature is not
defined for a system of free particles. Note also that configu-
rations with ∇2U (R) = 0 become less likely as N → ∞, so
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the fact that Eq. (1) is not defined for such configurations is
irrelevant; by the same reasoning one can ignore the existence
of configurations for which ∇2U (R) < 0. We return briefly to
a discussion of Tconf fluctuations in simulations (Sec. II).

Since the derivation of the configurational temperature
Tconf is based on the fact that the probability in the
canonical ensemble of configuration R is proportional to
exp[−U (R)/kBT ], it would appear that Tconf cannot be rel-
evant for systems that are far from thermal equilibrium. We
show in this paper, however, that Tconf (R) may be used for
tracing out lines of invariant structure and dynamics in the
phase diagram of active-matter models with hidden scale
invariance. This is the symmetry that the ordering of config-
urations according to their potential energy at a given density
is maintained if these are scaled uniformly to a different
density [Eq. (6) below], a property that applies to a good
approximation for the liquid and solid phases of a number
of well-known potentials, including the Lennard-Jones and
Yukawa pair potentials [35–38], as well as for more com-
plicated nonpair interactions [39–41]. The companion paper
(Paper II) [42] presents a different application of Tconf to active
matter by proposing that the ratio of the so-called systemic
temperature [43] to Tconf quantifies the deviation from ordi-
nary thermal equilibrium. Both papers focus on active-matter
models without orientational interactions, i.e., models based
on point particles.

II. LINES OF APPROXIMATELY INVARIANT PHYSICS
IN THE PHASE DIAGRAM OF THE KOB-ANDERSEN

AOUP MODEL

This section studies active Ornstein-Uhlenbeck particle
(AOUP) dynamics, which has no momentum conservation
and for which hydrodynamics is not taken into account. All
information about the particle interactions is contained in the
potential-energy function U (R) [15,20,44]. In configuration
space the AOUP equation of motion [30,45–47] is

Ṙ = μF(R) + η(t ). (2)

Here μ is the mobility (velocity over force) and the force
vector is given by F(R) = −∇U (R). The noise vector η(t )
is colored according to an Ornstein-Uhlenbeck process, i.e., is
a Gaussian stochastic process characterized by

〈
ηα

i (t )ηβ
j (t ′)

〉 = δi jδαβ

D

τ
e−|t−t ′|/τ (3)

in which i and j are particle indices, α and β are spatial xyz
indices, and D and τ are constants. We are interested in how
the physics is affected if the density is changed, in particular
whether approximately invariant physics can be obtained by
adjusting D and τ (regarding μ as a system-specific constant).

The dimension of μ is length squared over energy times
time. Thus, if l0 is a length unit, t0 a time unit, and e0 an
energy unit, the quantity μt0e0/l2

0 is dimensionless. Likewise,
Dt0/l2

0 and τ/t0 are dimensionless because D has dimension
of a diffusion coefficient and τ of a time. It is reasonable to
expect that when the density is changed, invariant physics
can come about only if these three dimensionless quantities
do not change—although this criterion of course depends
on the choice of units. As length unit we take the average

interparticle spacing, l0 = ρ−1/3 (working in 3 dimensions).
The colored-noise correlation time τ of Eq. (3) is a nat-
ural choice for the time unit, t0 = τ . The idea is now to
investigate the consequences of using for the energy unit
the configurational temperature, i.e., of choosing e0 = kBTconf

(Sec. III justifies this choice). If the above two dimensionless
quantities are to be invariant when density varies, the follow-
ing must apply: μ ∝ l2

0 /(t0e0) = ρ−2/3/(τkBTconf ) and D ∝
l2
0 /t0 = ρ−2/3/τ . Since μ is taken to be constant, this leads

to τ ∝ ρ−2/3/μkBTconf and D ∝ μkBTconf . Thus the following
equations determine D and τ at density ρ from their values D0

and τ0 at a reference state point of density ρ0,

D = D0
Tconf (ρ)

Tconf (ρ0)
, τ = τ0

(
ρ0

ρ

)2/3 Tconf (ρ0)

Tconf (ρ)
. (4)

We note that D is proportional to the configurational temper-
ature Tconf (ρ), a finding that is analogous to the equilibrium
result D ∝ T in which T is the temperature [see the next
paragraph for the definition of Tconf (ρ)].

As mentioned, fluctuations are small for a large system,
and in that case Tconf (ρ0) may be evaluated reliably from a sin-
gle configuration of a steady-state simulation, R0: Tconf (ρ0) ∼=
Tconf (R0). In order to find Tconf (ρ) one scales R0 uniformly
to the density ρ using R = (ρ0/ρ)1/3R0; the configurational
temperature of Eq. (4) is then identified from Tconf (ρ) ∼=
Tconf (R). This leads to the following recipe for calculating D
and τ at density ρ:

D = D0
Tconf [(ρ0/ρ)1/3R0]

Tconf (R0)
,

τ = τ0

(
ρ0

ρ

)2/3 Tconf (R0)

Tconf [(ρ0/ρ)1/3R0]
. (5)

To test the predicted invariance of structure and dynamics
in reduced units when parameters vary with density accord-
ing to Eq. (5), we simulated the AOUP Kob-Andersen (KA)
binary Lennard-Jones (LJ) model in three dimensions [48].
A KA system of 10 000 particles consisting of the standard
mix of two types of LJ particles, A (80%) and B (20%),
was studied. Writing the LJ pair potential between particles
of type α and β as vαβ (r) = 4εαβ [(r/σαβ )−12 − (r/σαβ )−6]
with α, β = A or B, the KA parameters are [48] σAA =
1.0, σAB = σBA = 0.8, σBB = 0.88, εAA = 1.0, εAB = εBA =
1.5, εBB = 0.5. A shifted-force cutoff of vαβ (r) at rcut =
2.5σαβ was used [49]. The simulations employed the time
step 
t = 
t̃/(D ρ2/3) in which 
t̃ = 0.4. At the reference
state-point density, ρ0 = 1.2, 
t = 0.0001 was used. The

TABLE I. Density ρ and model parameters D and τ along the
predicted line of invariance calculated from Eq. (5) in which Tconf (ρ )
is determined from a single configuration R0 by means of Eq. (1)
after a uniform scaling to density ρ.

ρ D τ Tconf

1.2 3000 10.000 0.2742
1.5 9859 2.622 0.9014
2.0 39 160 0.5450 3.580
2.5 105 600 0.1741 9.657
3.0 230 800 0.0706 21.10
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FIG. 1. Radial distribution functions (RDF) of the Kob-Andersen system with AOUP dynamics at densities between 1.2 and 3.0 for
the model parameters D and τ of Table I determined by means of Eq. (1) and Eq. (5), as described in the text. The first column shows
the three partial RDFs along the proposed line of invariance, which is generated from a single configuration of the reference state point
(ρ0, D0, τ0 ) = (1.2, 3000, 10), plotted as functions of the pair distance r. The second column shows the same data as functions of the reduced
pair distance r̃ ≡ ρ1/3r, revealing a good collapse except at the first peak. For comparison, the third column shows data for the same values of
D and τ as the two previous columns but at density ρ = 1.2, while the fourth column shows AOUP data at the reference state point (brown)
and standard molecular dynamics (MD) thermal equilibrium data at the density ρ = 1.2 (indigo) evaluated at the MD temperature resulting in
the same average potential energy as that of the AOUP simulation, T = 1.57 (this is the AOUP system’s so-called systemic temperature [43]).

simulations were carried out on GPU cards; active-matter
simulations used a home-made code while MD simulations
used the Roskilde University Molecular Dynamics (RUMD)
package [50].

Table I reports the resulting values of D and τ for densities
ranging from 1.2 to 3.0, starting from the reference state
point (ρ, D, τ ) = (1.2, 3000, 10). In the two left columns of
Fig. 1 the three partial radial distribution functions (RDFs)
along the predicted line of invariance are shown as a func-
tion of the radial distance r and the reduced radial distance
r̃ ≡ ρ1/3r, respectively. The latter shows good invariance,
except that the height of the first peak is not invariant, in
particular for RDFAB. The third column of Fig. 1 shows
the results for the same values of D and τ as previously
(Table I), but at the reference-state-point density ρ = 1.2,
in which case no invariance is observed. The fourth column
compares the reference density RDFs with those of an equi-
librium molecular dynamics (MD) simulation at the reference
density and the temperature at which the average potential
energy is equal to that of the reference-state-point AOUP sim-
ulation (T = 1.57), showing little resemblance. Incidentally,
this “systemic” temperature [43] is quite different from the
configurational temperature, Tconf = 0.27, which corresponds

to a such a deeply supercooled state for the Newtonian system
that the metastable liquid cannot be equilibrated using state-
of-the-art MD.

Figure 2 shows the mean-square displacement (MSD) of
the A and B particles as functions of time. The four columns
are similar to those of Fig. 1 with the time t as the abscissa in
the first column and the reduced time t̃ ≡ (Dρ2/3) t ∝ t/τ in
the second, where the MSD is also given in reduced units, i.e.,
multiplied by ρ2/3. The latter shows approximate invariance
of the dynamics.

It is instructive to consider the limits of short and long
times. For t → 0, i.e., in the “ballistic” regime, Eq. (2) and
Eq. (3) imply that the MSD is proportional to (D/τ )t2, while
for t → ∞ the MSD is proportional to Dt . Thus the reduced-
unit short- and long-time limit MSDs are proportional to
ρ2/3Dτ t̃2 and ρ2/3Dτ t̃ , respectively. Since Eq. (5) implies
that ρ2/3Dτ is a constant, this means that in these limit the
MSDs are proportional to t̃2 and t̃ , respectively. This is con-
firmed by the second column of Fig. 2. The third column
of Fig. 2 gives the reduced MSD using the predicted D and
τ at the reference density. The fourth column compares the
reference state point MSDs to those of T = 1.57 MD sim-
ulation. We conclude from Fig. 1 and Fig. 2 that there is
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FIG. 2. Mean-square displacement (MSD) at the same state points as in Fig. 1. The first column shows the MSDs of the A and B particles
along the predicted line of invariance, plotted as functions of the time t . The second column shows the same data in reduced units (defined in
the text), revealing a good collapse. The third column shows reduced data for the same values of D and τ as the previous figures but at the
density ρ = 1.2. The fourth column shows a comparison of the reduced MSD AOUP data at the reference state point (brown) to the standard
reduced MD thermal-equilibrium MSD (indigo) at ρ = 1.2, where the temperature as in Fig. 1 was determined to result in the same average
potential energy as that of the AOUP simulation, leading to TMD = 1.57.

an approximate invariance of the reduced-unit structure and
dynamics.

Figure 3 investigates the robustness of the procedure. Fig-
ure 3(a) shows Tconf as a function of ρ in a log-log plot for the
selected scaling configuration R0 used in Eq. (5). The curve
slope reveals that at high density one finds almost Tconf (ρ) ∝
ρ4, reflecting the dominance here of the r−12 repulsive term
of the LJ pair potential [it follows from Eq. (1) that Tconf (ρ) ∝
ρn/3 for a system of r−n inverse power-law pair potentials]. At
lower densities this does not apply, however, demonstrating
that the invariance of structure and dynamics is not simply
a consequence of the scale-invariant repulsive r−12 term of
the LJ pair potential. Figure 3(b) shows the distribution of
configurational temperatures at the reference state point. We
find a fairly broad distribution, which motivated an investi-
gation into how much the prediction of the invariance line
depends on the choice of R0. Figures 3(c) and 3(d) show the
predictions for D and τ using three different configurations
in Eq. (1). The red curve is for the configuration R0 used
above that was selected from the center of the distribution in
Fig. 3(b), the black and blue curves are for two configurations
taken from the lower and higher ends of the distribution,
respectively. For both D and τ there is little visible difference,
and we indeed find that the RDFs and MSDs are virtually

indistinguishable from those of Fig. 1 and Fig. 2 (data not
shown). Only a ratio of configurational temperatures appears
in Eq. (5), and these data suggest that a significant cancellation
occurs. We conclude that, despite a relatively large spread of
configurational temperatures, 10 000 particles are enough for
Eq. (4) to be used for predicting model parameters resulting
in approximately invariant structure and dynamics.

III. THEORETICAL JUSTIFICATION
OF THE PROCEDURE

How can the characteristic energy kBTconf of the canon-
ical ensemble be relevant for identifying lines of invariant
physics for an active-matter system? While the energy kBTconf

per se is hardly important, we argue below that the ratio
Tconf (ρ)/Tconf (ρ0) determines the ratio of the relevant energy
scales at the two densities in question. To arrive at this con-
clusion, we first summarize relevant aspects of the isomorph
theory.

The starting point is that the KA model to a good approx-
imation obeys the hidden-scale-invariance uniform-scaling
symmetry defined [36,38] by the following logical implication
for the potential-energy function U (R),

U (Ra ) < U (Rb) ⇒ U (λRa ) < U (λRb). (6)
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FIG. 3. Variation of Tconf , D, and τ . (a) The configurational temperature Tconf as a function of the density for the scaling configuration,
R0. At the highest densities, Tconf is almost proportional to ρ4 (red dashed line); this is where the repulsive r−12 term of the LJ pair potential
dominates the potential energy. At the lowest densities, the scaling is approximately proportional to ρ5.3 (blue dashed line), showing that the
scaling is nontrivial. (b) The distribution of Tconf (R) for several configurations at the reference state point for a system of 10 000 particles.
The spread is larger than expected from a simple statistical 1/

√
N argument. The blue star marks Tconf of the reference scaling configuration

R0. (c) How D varies according to Eq. (5) for three different configurations: one is the R0 used in Fig. 1 and Fig. 2 from the center of the
distribution in (b) (red), the two others are from the lowest and highest ends of the distribution (black and blue). (d) How τ varies according
to Eq. (5) for the same three configurations. No significant differences are seen for the predicted parameters, meaning that 10 000 particles are
enough for using a single configuration to determine how to scale the AOUP model parameters.

Here Ra and Rb are configurations of same density and λ

is a scaling parameter. Physically, Eq. (6) expresses that the
ordering of configurations at one density according to their
potential energy is maintained when scaled uniformly to a
different density.

Recall that at a given thermodynamic equilibrium state
point, the excess entropy Sex is defined as the entropy
minus the ideal-gas entropy at the same density and tem-
perature [51]. In the case of ordinary Newtonian mechanics,
Eq. (6) implies that structure and dynamics in reduced units
(defined below) are invariant along the curves of constant
excess entropy [35,36,38]. Such curves are termed isomorphs,
and systems with isomorphs are termed R-simple.

Isomorph invariance is exact whenever Eq. (6) applies
without exception, but this is never the case for potentials
with both attractions and repulsions. Isomorph invariance is
still a good approximation, however, if Eq. (6) applies for
most of the physically relevant configurations at the state
points in question. Depending of course on how far the scaling
parameter λ is from unity, this is the case for the majority of
metals and van der Waals bonded systems, whereas systems
with strong directional interactions like hydrogen-bonded

and covalently bonded systems generally do not conform
to Eq. (6) and therefore violate isomorph-theory predictions
[52] (ionic and dipolar systems constitute an interesting class
in-between). Realistic R-simple pair-potential models include
the standard Lennard-Jones model in single-component, bi-
nary, and polydisperse versions, as well as with exponents
other than 6 and 12 (the so-called Mie potentials), the Yukawa
(screened Coulomb) pair potential [36,53], the EXP pair po-
tential [54,55], effective-medium potentials describing metals
[41], etc. We emphasize that Eq. (6) and its consequences
are not limited to pair-potential systems. For systems with
inverse-power-law interactions, the isomorph theory is exact.

For R-simple systems with Newtonian dynamics, the struc-
ture and dynamics of the condensed liquid and solid phases
are isomorph invariant to a good approximation when made
dimensionless using as units the length l0, energy e0, and time
t0 given by (in which m is the particle mass)

l0 = ρ−1/3, e0 = kBT, t0 = ρ−1/3
√

m/kBT . (7)

Using this unit system defines the reduced-unit value of the
quantity in question (henceforth marked by a tilde).
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The microscopic excess-entropy function is defined [36]
by Sex(R) ≡ Sex(ρ,U (R)) in which Sex(ρ,U ) is the thermo-
dynamic excess entropy of the equilibrium state point with
density ρ and average potential energy U . Note that the func-
tion Sex(R) is defined for any configuration of any system,
whether it is R-simple or not. It can be shown that whenever
Eq. (6) applies, Sex(R) depends only on the configuration’s
reduced coordinates, R̃ ≡ ρ1/3R [36]. Thus inverting the re-
lation Sex(R) = Sex(ρ,U (R)) leads for an R-simple system to

U (R) = U (ρ, Sex)|Sex=Sex (R̃), (8)

where U (ρ, Sex) is the average potential energy of the ther-
modynamic equilibrium state point with density ρ and excess
entropy Sex. For brevity, the right-hand side of Eq. (8) is
usually written as U (ρ, Sex(R̃)).

The consequences of Eq. (8) have so far been worked out
only for systems with standard time-reversible Newtonian dy-
namics [36,38]. However, Eq. (8) follows from Eq. (6) that has
no reference to thermal equilibrium; hence Eq. (8) may also be
applied to active-matter models with a hidden-scale-invariant
potential-energy function. Note that the function Sex(R) still
refers to the standard microcanonical ensemble according to
which Sex(R) is basically the logarithm of the number of
configurations at the same density with the same potential
energy as R [36].

We proceed to rewrite the AOUP equation of motion in
terms of reduced variables. Writing R = l0R̃ and t = t0t̃ in
which l0 = ρ−1/3 and t0 = τ as in Sec. II, Eq. (2) becomes
(with ∇̃ = ρ−1/3∇)

l0
τ

˙̃R = −μ
1

l0
∇̃U (R) + η(t ). (9)

The reduced noise is given by η̃ = (τ/l0)η in terms of which
Eq. (3) becomes

〈
η̃α

i (t̃ )η̃β
j (t̃ ′)

〉 = δi j δαβ

τ D

l2
0

e−|t̃−t̃ ′|. (10)

Equation (9) thus becomes

˙̃R = −μ
τ

l2
0

∇̃U (R) + η̃(t̃ ). (11)

For any configuration R we define the “systemic temperature,”
Ts(R), by [43]

Ts(R) ≡
(

∂U

∂Sex

)
ρ

∣∣∣∣∣
Sex=Sex (R)

. (12)

It should be emphasized that when we below use this concept
in the context of active matter, that does not imply an implicit
mapping of the active-matter system to the ordinary thermal-
equilibrium system; thus no relation between the physics of
the two different cases is assumed.

In a steady-state situation the fluctuations of the systemic
temperature go to zero in the thermodynamic limit, just as
those of Tconf (R). For this reason we henceforth occasionally
leave out R and write simply Ts. In practice, to determine
Ts(R) one utilizes the fact that Ts(R) is the equilibrium tem-
perature Teq of the thermodynamic state point with the density

of R and potential energy equal to U (R), implying that [43]

Ts(R) = Teq(ρ,U (R)). (13)

This means that there is no need to evaluate any entropy in
order to determine Ts, which is simply the temperature of
the thermal-equilibrium state point with same density and
potential energy as the active-matter system in question.

Equation (8) implies ∇̃U (R) = Ts∇̃Sex(R̃). When substi-
tuted into Eq. (11) this results in

˙̃R = −μ
τTs

l2
0

∇̃Sex(R̃) + η̃(t̃ ). (14)

It follow from Eq. (10) and Eq. (14) that the reduced AOUP
equation of motion is invariant upon a density change if τD/l2

0
and τTs/l2

0 do not vary with density. This implies D(ρ) ∝
Ts(ρ) and τ (ρ) ∝ ρ−2/3/Ts(ρ) in which Ts(ρ) is short-hand
notation for Teq(ρ, Sex(R̃)); compare Eq. (13). Working from
the reference state point (ρ0, D0, τ0), this means that the func-
tion Ts(ρ) determines how to scale D and τ to ensure invariant
AOUP dynamics,

D(ρ) = D(ρ0)
Ts(ρ)

Ts(ρ0)
,

τ (ρ) = τ (ρ0)

(
ρ0

ρ

)2/3 Ts(ρ0)

Ts(ρ)
. (15)

We next link to the configurational temperature. There is no
reason to expect Tconf = Ts in out-of-equilibrium situations,
and these quantities indeed differ by up to a factor of six
in our simulations (Paper II [42] suggests using Ts/Tconf as
a measure of the degree of deviation from thermal equilib-
rium). However, Eq. (15) still applies with Tconf instead of
Ts if the two temperatures are proportional in their density
variation. To show that this is the case we note that Eq. (8)
implies ∇̃U (R) = Ts∇̃Sex(R̃) and ∇̃2U (R) = Ts∇̃2Sex(R̃),
so Tconf (R) = [∇U (R)]2/∇2U (R) = [∇̃U (R)]2/∇̃2U (R) =
Ts[∇̃Sex(R̃)]2/∇̃2Sex(R̃) [43]. Here we ignored the depen-
dence of Ts(R) on the configuration R which, as mentioned
above, vanishes in the thermodynamic limit. In terms of
φ(R̃) ≡ [∇̃Sex(R̃)]2/∇̃2Sex(R̃) we thus have

Tconf (R)

Tconf (R0)
= Ts(ρ) φ(R̃)

Ts(ρ0) φ(R̃0)
. (16)

Since R̃ = R̃0 this implies Tconf (R)/Tconf (R0) =
Ts(ρ)/Ts(ρ0). In this way Eq. (15) leads to Eq. (4). Note
that by using Tconf instead of Ts, one does not have to identify
the equilibrium state point with the same potential energy as
the active-matter state point in question. Figure 1 and Fig. 2
demonstrated good invariance along active-matter isomorphs
determined by means of Eq. (4). A more accurate, but also
more demanding method for determining the active-matter
isomorphs of AOUP LJ systems, which utilizes Ts directly, is
discussed in the Appendix.

We end this section by checking a consequence of the
above. It was shown in Ref. [56] that for LJ systems, if W0

is the virial for the state point of zero potential energy on a
given isomorph, the following relation between the virial W
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FIG. 4. “Master isomorph” [dashed curve, Eq. (17)] expressing
the virial W as a function of the potential energy U along any iso-
morph of any type of LJ systems; W0 is the virial at the state point of
zero potential energy on the isomorph in question. The figure is Fig. 8
of Ref. [56] to which we have added data for the AOUP KA model
(open circles). The abbreviations KA, WBLJ, and SCLJ represent
the Kob-Andersen system, the Wahnstrom binary LJ mixture [57],
and the standard single-component LJ system, respectively.

and the potential energy U applies along the isomorph

2
W

W0
= 1 + 8

U

W0
+

√
1 + 8

U

W0
. (17)

This identity is a consequence of the reduced-unit RDF iso-
morph invariance, which applies in the R-simple region of any
single- or multicomponent LJ system (i.e., liquid or solid, but
not gas) [56]. Since the reduced RDF is also invariant to a
good approximation along the above studied KA active-matter
isomorph (Fig. 1), W should also in this case be determined by
U according to Eq. (17). This prediction is validated in Fig. 4
that reproduces the Newtonian-dynamics equilibrium data of
Ref. [56] to which our data have been added (open circles).

IV. DISCUSSION

The isomorph concept of equilibrium Newtonian dynam-
ics was recently generalized to out-of-equilibrium Newtonian
systems like that of a shear flow or an aging glass, leading
to the introduction of the concept of a systemic temperature
[Eq. (12)], which allows for the identification of lines of
approximately invariant structure and dynamics in the rele-
vant out-of-equilibrium phase diagram [43]. The results of
the present paper extend these findings by demonstrating the
existence of isomorphs for active-matter systems, which in
contrast to Newtonian systems are described by a dynamics
that is not time-reversible.

The configurational temperature expression is derived
from the canonical ensemble. This paper has neverthe-
less demonstrated the relevance of Tconf for tracing out
lines of approximately invariant physics in the phase dia-
gram of Ornstein-Uhlenbeck active-matter models involving a
potential-energy function that obeys hidden scale invariance.

We emphasize that this application is not based on a mapping
of the active-matter system to an equilibrium system.

Paper II [42] demonstrates the existence of active-matter
isomorphs for active Brownian particle dynamics and pro-
poses a second application of Tconf to active matter: It is
argued that the ratio of the systemic to the configurational
temperature, which is unity in thermal equilibrium because
T = Ts = Tconf , provides a simple measure of the degree of
deviation from thermal equilibrium.
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APPENDIX: A MORE ACCURATE METHOD
FOR TRACING OUT ACTIVE-MATTER ISOMORPHS

Equilibrium isomorphs may be traced out by different
methods, e.g., step-by-step integration of the exact equa-
tion for a configurational adiabat [35,58], the direct isomorph
check [35], and the recently introduced force method [59].
These are numerical methods of varying complexity and ac-
curacy. Likewise, there are different numerical methods for
tracing out an active-matter isomorph. We describe below a
more accurate alternative to the method used in Secs. II and
III, a method that is however also more involved.

The paper demonstrated how Tconf can be used for tracing
out active-matter isomorphs from a single configuration of
the AOUP model. The result was a recipe for calculating
how model parameters are to be changed as functions of the
density in order to arrive at approximately invariant structure
and dynamics, Eq. (5). This recipe provides a useful “quick-
and-dirty” method which, since it relies on Eq. (8), is exact
whenever hidden scale invariance holds exactly [which is only
the case if U (R) is an Euler-homogeneous function]. A more
accurate, but also more cumbersome, method for identifying
active-matter isomorphs refers directly to the concept of sys-
temic isomorphs. These lines in the (ρ, Ts ) phase diagram
are by definition the same as the ordinary isomorphs of the
canonical-ensemble equilibrium (ρ, T ) phase diagram [43]
(ordinary, systemic, and active-matter isomorphs are all de-
fined as lines of constant Sex in the respective phase diagrams).

To test the consequence of referring directly to the systemic
isomorph, we traced out the systemic isomorph of the KA sys-
tem by the direct isomorph check (DIC) method [35], which

TABLE II. Ratio of the model parameters D and τ along the
predicted line of invariance calculated from Eq. (5) (subscript “c”)
and from the fact that the systemic isomorph corresponds to an
equilibrium isomorph (subscript “s”).

ρ Dc/Ds τc/τs

1.2 1.000 1.000
1.5 1.139 0.878
2.0 1.278 0.782
2.5 1.345 0.743
3.0 1.382 0.723
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FIG. 5. Reduced MSD of the A and B particles as functions of reduced time along active-matter isomorphs of the AOUP KA model traced
out by two different methods. The left column reproduces the data of Fig. 2 where the isomorph was traced out by the above-developed Tconf

method. For comparison, the right column gives MSDs when the isomorph is traced out by the direct isomorph check (DIC) method [35] in
its analytical version for LJ-type systems [60,61], which refers directly to the fact that a systemic isomorph in the (ρ, Ts ) phase diagram is
identical to an equilibrium isomorph in the standard (ρ, T ) phase diagram. The active-matter-isomorph invariance is improved by this method.

is accurate and has a simple analytical expression for LJ-type
systems [60,61]. Table II gives the ratios of the parameters
predicted by the two different methods for tracing out the
active-matter isomorph. It does not make a huge difference
which method is used, but there is some improvement using
the DIC method. This is illustrated in Fig. 5, which in the left
column from Fig. 2 reproduces the reduced MSD as a function

of reduced time for the A and B particles. The right column
gives similar data when the model parameters are instead
determined by identifying the function Ts(ρ) by utilizing the
fact that this function is identical to T (ρ) of the corresponding
equilibrium isomorph, which may be determined by the DIC
method [60]. We see that the MSD is more invariant in the lat-
ter case, confirming that this method is indeed more accurate.
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