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ABSTRACT
This paper determines the thermodynamic phase diagram of the EXP system of particles interacting by the purely repulsive exponential pair
potential. The solid phase is face-centered cubic (fcc) at low densities and pressures. At higher densities and pressures, the solid phase is body-
centered cubic (bcc) with a re-entrant liquid phase at the highest pressures simulated. The investigation first identifies the phase diagram at
zero temperature at which the following four crystal structures are considered: fcc, bcc, hexagonal close packed, and cubic diamond. There is a
T = 0 phase transition at pressure 2.651 × 10−3 with the thermodynamically stable structure being fcc below and bcc above this pressure. The
densities of the two crystal structures at the phase transition are 1.7469 × 10−2 (fcc) and 1.7471 × 10−2 (bcc). At finite temperatures, the fcc–
bcc, fcc-liquid, and bcc-liquid coexistence lines are determined by numerical integration of the Clausius–Clapeyron equation and validated
by interface-pinning simulations at selected state points. The bcc-fcc phase transition is a weak first-order transition. The liquid-fcc–bcc triple
point, which is determined by the interface-pinning method, has temperature 5.9 × 10−5 and pressure 2.5 × 10−6; the triple-point densities
are 1.556 × 10−3 (liquid), 1.583 × 10−3 (bcc), and 1.587 × 10−3 (fcc).

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5094395

I. INTRODUCTION
The exponential repulsive EXP pair potential is defined by

vEXP(r) = ε e−r/σ. (1)

Despite its mathematical simplicity, the system of particles defined
by this potential has not been investigated much on its own right.
Usually, exponential functions appear in conjunction with other
terms, either in pair potentials or in more sophisticated many-body
potentials.1–6 Morse in 1929 and Born and Meyer in 1932 used an
exponential repulsive term in a pair potential in conjunction with
a long-ranged attractive exponential or r−6 term.1,2 In the 1960s,
Kac and co-workers used a hard-sphere pair potential minus a long-
ranged EXP term for rigorously deriving the van der Waals equa-
tion of state in one spatial dimension.7 Around that time, a number
of papers considered the pure EXP pair-potential system, calcu-
lating virial coefficients8–12 and the high-temperature equation of
state.13 With reference to the EXP pair potential, Maimbourg and

Kurchan have recently shown that for pair-potential systems with
strong repulsions, the isomorph theory becomes exact in infinite
dimensions.14 The EXP pair potential was also used recently by Kooij
and Lerner in a study of unjamming in models with analytic pair
potentials.15

We can think of three reasons for studying the EXP pair-
potential system in detail. The first one is the above-mentioned fact
that, despite the exponential function being one of the most fun-
damental functions of mathematics, few studies of the EXP system
have been undertaken. A notable feature of the EXP pair poten-
tial is that it is finite at zero separation in contrast to popular pair
potentials like the Lennard-Jones, inverse power-law, and Yukawa
potentials. One might well argue that no pair potential of the real
world can diverge, so in this sense, the EXP potential is more realistic
than many extensively studied pair potentials. A second reason for
studying the EXP pair-potential system is that it is useful for mod-
eling certain systems. Thus, Monchick in 1959 argued that the EXP
pair potential has “long been regarded as the true qualitative form
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of the repulsive intermolecular potential” at small distances or high
temperatures,10 and Sherwood and Mason in 1965 emphasized that
the EXP pair potential is more realistic than inverse-power-law pair
potentials.11 The EXP pair potential is a good approximation to the
low-density limit of the well-known Yukawa (screened Coulomb)
pair potential,16 which is used for modeling ions in solutions and
ionic liquids,17 as well as dusty plasmas.18 The third and perhaps the
most important reason the EXP system deserves a thorough investi-
gation is that it may be regarded as “the mother of all pair potentials.”
Thus as recently shown, the EXP pair potential provides an explana-
tion of simple liquids’ quasiuniversality supplementing the standard
hard-sphere explanation; this is because any pair-potential system
is quasiuniversal if it to a good approximation can be written as a
finite sum of EXP pair-potential terms with coefficients that are large
compared to the temperature.19,20

The present paper is the third in a series21,22 investigating the
physics of the EXP pair-potential system. Paper I studied struc-
ture and dynamics along the EXP system’s fluid-phase isotherms
and isochores.21 As for any other purely repulsive pair poten-
tial, the EXP system has no liquid-gas transition. Nevertheless,
in the thermodynamic phase diagram one can clearly identify a
region close to the melting line of typical liquid structure and
dynamics and a typical gas-phase region far from the melting
line. These regions merge smoothly into one another. We refer
to the fluid state points close to freezing as “liquid” states. Paper
I gave an example of gas- and liquid-state quasiuniversality19,20

by showing that the radial distribution function of the Lennard-
Jones system is close to that of the EXP system at state points
with the same reduced diffusion coefficient. Paper II studied the
EXP system’s gas and liquid phase isomorphs,22 demonstrating
the invariance of the reduced-unit structure and dynamics along
the system’s isomorphs (lines of constant excess entropy) that
is expected from the EXP system’s strong virial potential-energy
correlations.21–23

This paper establishes the thermodynamic phase diagram of
the EXP system. In the solid phase, we find two thermodynami-
cally stable crystal phases, a face-centered cubic (fcc) phase at low
densities and a body-centered cubic (bcc) phase at higher densi-
ties. The investigation first determines the stable crystal structures
at zero temperature as a function of density and of pressure (Sec. II).
Four different crystal structures are studied. As the density is var-
ied, only the fcc and the bcc structures give minimum free energy,
however. The finite-temperature fcc–bcc, fcc-liquid, and bcc-liquid
phase boundaries are established in the temperature-pressure phase
diagram by integration of the Clausius–Clapeyron equation, calcula-
tions that are validated by interface-pinning simulations at selected
state points (Sec. III). Section IV summarizes the results of the inves-
tigation, while Sec. V gives our suggestions for how to determine, in
general, a phase diagram numerically. Finally, Sec. VI gives a brief
discussion.

All quantities are reported in the unit system defined by
the EXP pair-potential parameters ε and σ, the “EXP unit sys-
tem.”21 Thus, distance is reported in units of σ, particle num-
ber density in units of σ−3, temperature in units of ε/kB, pres-
sure in units of εσ−3, potential energy per particle, and chemi-
cal potential in units of ε, etc. These are the standard rational-
ized units used when reporting the results of numerical investi-
gations of, e.g., the Lennard-Jones system. Note that EXP units

differ from the “macroscopic” state-point-dependent units of
isomorph theory used in this theory’s dimensionless so-called
reduced quantities.20,23,24

The study presented below focuses on the relatively low-density
state points defined by ρ < 1 in which ρ ≡ N/V is the particle density.
Likewise, when the pressure p is the relevant variable, we focus on
low-pressure states (p < 1). Classical physics is assumed through-
out, ignoring the fact that the real-world thermodynamics of low-
temperature crystals is of course dominated by quantum effects.
The zero-temperature calculations were performed by a custom-
made code using 128-bit IEEE quad precision numbers and no pair-
potential cutoff; in this way, one achieves energies that are accurate
to 16 significant digits. The finite-temperature molecular dynam-
ics (MD) simulations were carried out using the Roskilde Univer-
sity Molecular Dynamics (RUMD) code, a graphics-processing-unit
based efficient MD code.25 In these simulations, a shifted-force
cutoff at r = 6 was employed.

II. CRYSTAL STRUCTURES AT ZERO TEMPERATURE
At T = 0, we investigate the full EXP pair potential, i.e., no

cutoff is introduced. Because different structures may have very
similar energy, a high numerical accuracy is needed to determine
the “ground-state” (T = 0) crystal structures. If r(0)ij for a given
lattice is the equilibrium distance between particles i and j, the
ground-state lattice energy U0 is given by a sum over all particle
pairs,

U0 = ∑
i<j

vEXP(r(0)ij ). (2)

To calculate U0, we included images of sufficiently many unit cells
that the total energy is accurate to sixteen digits. For the high-
est density studied (ρ = 1), it was necessary to include up to 32
images in each direction. In order to minimize floating-point round-
off errors, the list of pair energies was sorted before the energies were
added.

Figure 1(a) shows the different ground-state energies as a func-
tion of the density. The barely distinguishable blue, green, and red
curves are the energies of the fcc, bcc, and hexagonal close packed
(hcp) lattices, respectively. These curves agree well with the “first
shell + mean-field” approximation detailed below (black curve). The
cubic diamond (cd) structure has significantly higher energy than
the fcc, bcc, and hcp structures (light green curve).

Figure 1(b) shows the energy difference between the bcc and
fcc structures relative to the fcc energy, plotted as a function of the
density. The lattice energies of the fcc and bcc structures are identical
at the density given by

ρc = 1.747 64 × 10−2. (3)

Below this density, the fcc structure has the lowest energy; above it,
the bcc structure has the lowest energy. The fact that the hcp and cd
structures at no density have lower energies than this follows from
the plots of their energy relative to that of the fcc structure shown,
respectively, in Figs. 1(c) and 1(d).

It is instructive to compare the lattice energies to the results of
a simple mean-field approximation. For a uniform and continuous
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FIG. 1. Zero-temperature (potential) energy per particle for different crystal structures (in the EXP unit system). (a) The energy as a function of the density for the following
four crystal structures: face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and cubic diamond (cd). The three first structures collapse in this
plot. The dashes lines are the results of different approximations detailed in the text. (b) Relative difference in lattice energy between the bcc and fcc structures. The fcc
structure has the lowest energy for ρ < 1.747 64 × 10−2, whereas the bcc structure has the lowest energy at higher densities. The energy difference between the fcc and
the bcc structures goes to zero at high densities because the EXP potential here becomes effectively long ranged. (c) Relative difference in lattice energy between the hcp
and fcc structures. The hcp energy is close to but slightly higher than the fcc energy at all investigated densities. This is because at any given density, the two structures
have the same nearest-neighbor distance, but the hcp structure has a smaller next-nearest-neighbor distance than the fcc structure, resulting in a higher energy. (d) Relative
difference in lattice energy between the cd and fcc structures.

distribution of particles in space with density ρ, the energy per par-
ticle u is given by u = (1/2)∫∞0 vEXP(r)4πρ r2dr in which the factor
1/2 compensates for double counting of the pair interactions. In the
EXP unit system, this becomes

u = 2πρ∫
∞

0
e−r r2dr = 4πρ, (4)

which is shown as the upper dashed curve in Fig. 1(a). The mean-
field prediction works best at high densities where the pair potential
becomes effectively long ranged, implying that the assumption of a
uniform particle distribution in space is realistic.

In Fig. 1(a), the dotted curve is the “first-shell” prediction
arrived at by including only the nearest-neighbor pairs of a fcc lat-
tice: u = 6 exp(−rnn), where rnn = a/

√
2 is the nearest-neighbor

distance and a is the lattice constant that in terms of the density is
given by a3 = 4/ρ. At low densities, this prediction is barely distin-
guishable from the exact fcc–bcc-hcp energies, but at high densities,

there are significant deviations because interactions here become
effectively long ranged. The short-long dashed curve gives the pre-
diction for a fcc lattice if the nearest-neighbor pairs are treated
separately, while all other interactions are taken into account by
integrating the mean-field approximation from a to ∞. This leads
to

u = 6 e−rnn + 2πρ e−a (a2 + 2a + 2). (5)

This “first-shell plus mean-field” approximation works so well that
it cannot be distinguished from the exact fcc, bcc, and hcp ener-
gies in Fig. 1(a). The results for this approximation, which is not
used further below, show clearly that the physics is dominated by
the nearest-neighbor interactions at low densities, while high den-
sities are described well by the opposite limit of a uniform particle
distribution.

The hcp structure has energy close to, but higher than, that of
the fcc structure [Fig. 1(c)]. The fcc and hcp structures are both
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FIG. 2. Relative difference in chemical potential [Eq. (6)] between the bcc and fcc
structures plotted as a function of the pressure at zero temperature. Our calcula-
tions show that the two phases coexist at the pressure p = 2.651 02 × 10−3. At
high pressures, the relative difference in chemical potential decreases, consistent
with the fact that the mean-field approximation here becomes increasingly reliable
[Fig. 1(a)].

close-packed with 12 nearest neighbors at the same distance for
a given density, but the next-nearest neighbors of the hcp lattice
(ABABAB plane packing) are closer than those of the fcc lattice
(ABCABC packing), resulting in a slightly higher energy.

At zero temperature, the thermodynamic phase diagram is one-
dimensional. It may be quantified by the density ρ or by the pres-
sure p. The above analysis shows that the ground state is fcc at
low densities and bcc at high densities, with a phase transition at
densities close to that given by the condition of identical poten-
tial energy [Eq. (3)]. The corresponding one-dimensional pressure
phase diagram is determined as follows. The stable phase is that with
the lowest chemical potential. At zero temperature, the Gibbs free
energy is given by G = U + W in which W ≡ pV is the virial. For
a system described by the pair potential v(r), if rij is the distance

FIG. 3. The pressure of the bcc structure at temperature T = 0.0022 and density
ρ = 0.1 as a function of the truncation distance (using a shifted-forces cutoff). The
pressure at this state point is for the full potential given by p = 0.1191(1), while
p = 0.1186(1) when a cutoff at r = 6 is used. At lower densities, the truncation error
is smaller.

FIG. 4. Fcc–bcc coexistence points computed by numerical integration of the
Clausius–Clapeyron equation for the slope of the coexistence line dp/dT [Eq. (8)].
The T = 0 coexistence point determined in Fig. 2 was the starting point of the
numerical integration (black dot). Red symbols give the results of the first part of
the integration that used temperature as the integration variable, and blue symbols
give the second part using pressure as the integration variable.

between particles i and j, for any configuration the virial is given by
W = −(1/3)∑i<jrijv

′(rij).26 If u is the potential energy and w is the
virial per particle, the chemical potential µ (Gibbs free energy per
particle) is given by

µ = u + w = u + p/ρ. (6)

FIG. 5. Configuration from an interface-pinning simulation of the bcc structure
in equilibrium with the liquid. Particles are colored according to the q̄6 rotational
order-parameter defined in Ref. 34. The image was generated using the visual-
ization software OVITO,35 the ray-tracing software Tachyon,36 and a home-written
code computing q̄6 (http://www.urp.dk/tools).
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Figure 2 shows the relative difference in chemical potential
between the bcc and fcc structures plotted as a function of the pres-
sure. The stable phase is fcc for p < 2.651 02 × 10−3 and bcc for p
> 2.651 02 × 10−3. The phase transition is of first order because at
the coexistence pressure, the densities of the two phases differ; they
are given by ρfcc = 1.746 902 × 10−2 and ρbcc = 1.747 118 × 10−2,
respectively. In other words, if one plots the equilibrium density as a
function of the pressure, there is a discontinuous density increase at
p = 2.651 02 × 10−3. The phase transition is characterized by a quite
narrow coexistence region, since the relative density change is only
1.2 × 10−4. The phase transition is thus only weakly first order.

III. COEXISTENCE LINES
The full pressure-temperature and density-temperature phase

diagram of the EXP system is given in Fig. 9 in Sec. IV. To
arrive at it, the present section establishes the phase boundaries in
the pressure-temperature phase diagram. The fcc–bcc, fcc-liquid,
and bcc-liquid phase boundaries are determined by numerical

FIG. 6. Determination of the triple point from NVT interface-pinning simulations of
pressure and chemical potential. (a) The difference in chemical potential between
the bcc and liquid phases computed by the interface-pinning method at T = 6
× 10−5, plotted against the pressure. The coexistence pressure at this tempera-
ture determined from a linear fit (the solid line) is given by p = 2.556(4) × 10−6.
Tables I and II give further thermodynamic information for this and other coex-
istence state points. (b) The relative difference of the bcc-liquid and fcc-liquid
coexistence pressures that is zero at the triple point, plotted as a function of tem-
perature. The triple point is found to be given by T = 5.9(4) × 10−5 and p = 2.5(2)
× 10−6.

integration of the Clausius–Clapeyron equation. Interface-pinning
simulations27 are employed for locating the fcc–bcc-liquid triple
point. The triple point is the starting point for the Clausius–
Clapeyron integrations of the fcc-liquid and bcc-liquid coexistence
lines, and the T = 0 coexistence point found in Sec. II is the starting
point for the fcc–bcc coexistence-line integration.

While we at zero temperature investigated the full EXP pair
potential, at finite temperatures, the potential was truncated at
r = 6 in order to reduce the computational cost. At low den-
sities, the error from the truncation is below the numerical
accuracy, but at higher densities, the truncation gives rise to a
detectable error. As an example, the pressure of the bcc struc-
ture at T = 0.0022 and ρ = 0.1 is 0.1191 for the full potential and
0.1186 for the truncated potential, compare Fig. 3. The trunca-
tion error is, however, below what is visible on the figures given
below.

FIG. 7. Validating the phase boundaries found by numerical integration of the
Clausius–Clapeyron equation by comparing to results from interface-pinning sim-
ulations at selected state points. (a) bcc-liquid coexistence line. The solid green
line marks the results of the fourth-order Runge-Kutta numerical integration of the
Clausius–Clapeyron equation starting from the triple point identified in Fig. 6(b)
(black dot). The red dots are the results of interface-pinning simulations. The accu-
racy of the integration is higher than what corresponds to the thickness of the line,
but not higher than that of the interface-pinning calculations (Table I). The ⋆ indi-
cates the maximum temperature at which liquid and bcc crystal may coexist (the
re-entrant point) (Fig. 8). (b) fcc-liquid coexistence line. The solid blue line marks
the results of the numerical integration of the Clausius–Clapeyron equation start-
ing from the triple point (black dot). The red dots are the results of interface-pinning
simulations.
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In order to determine the fcc–bcc coexistence line in the
temperature-pressure phase diagram, we integrated numerically the
Clausius–Clapeyron equation for the coexistence line slope28–30

dp
dT

= ∆S
∆V

. (7)

Here, ∆V is the volume difference and ∆S is the entropy difference
between the two phases. The latter quantity is determined from the
fact that the Gibbs free energies of two phases are identical at the
phase boundary. Because the kinetic energy is a function only of the
temperature, if the phases are denoted by 1 and 2, the condition
G1 = G2 implies U1 + pV1 − TS1 = U2 + pV2 − TS2, i.e., T∆S
= ∆U + p∆V. Equation (7) thus becomes

dp
dT

= p + ∆U/∆V
T

. (8)

The numerical integration of Eq. (8) was performed using
the fourth-order Runge-Kutta algorithm,31 starting from zero
temperature at which the coexistence pressure is p = 2.651 × 10−3

(Sec. II). To evaluate ∆U and ∆V on the right-hand side of Eq. (8),
we conducted constant-pressure (NpT) simulations32,33 of each of
the two phases at the state point in question.

The resulting coexistence line is shown in Fig. 4. The choice of
independent variable in the integration of the Clausius–Clapeyron
equation is a matter of taste, except that close to the vertical tan-
gent in Fig. 4 pressure must be used. The integration was carried out
in two steps. First, we used temperature as the integration variable,
increasing temperature in each step by 10%. In the second part of
the integration, pressure was the integration variable, decreasing the
pressure in each step by 10%.

The fcc–bcc-liquid triple point was determined using the
interface-pinning method,27 which briefly works as follows. For a
liquid-solid phase transition, one adds to the system’s potential-
energy function a harmonic bias potential that couples to a crys-
talline order parameter.27 The bias potential we used is given by
Ubias = κ/2(∣ρk∣−a)2 in which κ is a “spring constant,” a is an “anchor
point,” ρk = ∑N

j=1 exp(−ik ⋅ rj)/
√

N, and k is the wave vector of a
selected Bragg peak.27 The field biases the system toward two-phase
configurations. As shown in Ref. 27, the chemical-potential differ-
ence between the two phases is determined by the average force the
field exerts on the system.

A snapshot from an interface-pinning simulation is shown in
Fig. 5. Figure 6(a) shows the coexistence pressure determined by
means of the interface-pinning method plotted vs the bcc-liquid
chemical potential energy difference. Figure 6(b) plots the rela-
tive difference between the bcc-liquid and the fcc-liquid coexistence
pressures. The triple point is identified from the condition that the
two coexistence pressures are identical.

The predictions of the Clausius–Clapeyron integration may be
checked by comparing to the results of interface-pinning simula-
tions. This is done in Fig. 7(a) for the bcc-liquid phase boundary
and in Fig. 7(b) for the fcc-liquid boundary. Note that the bcc phase
is unstable above a certain temperature that defines a “re-entrant”
point around the density 0.1. Above this density, the solid-liquid
phase boundary has anomalous, i.e., negative slope, as found also, for
instance, for sodium37 and for the Gaussian-core model.38 Tables I
and II give interface-pinning simulation data for selected bcc-liquid
and fcc-liquid coexistence state points.

To locate the re-entrant point more accurately, Fig. 8(a) shows
the bcc-liquid chemical-potential difference ∆µ as function of the
pressure, calculated from interface-pinning simulations at a temper-
ature close to the maximum identified in Fig. 7(a) (T = 2.3 × 10−3).

TABLE I. Thermodynamic data for selected bcc-liquid coexistence state points obtained by interface-pinning simulations. v
is the volume per particle, and s is the entropy per particle.

T p vbcc vliquid ∆v ∆s

2.28 × 10−3 0.198(3) 7.77(16) 7.78(16) −2.8(5) × 10−4 0.7514(16)
2.2 × 10−3 3.14(3) × 10−2 18.92(9) 18.93(9) 0.0034(2) 0.7516(29)
2.1 × 10−3 1.823(8) × 10−2 24.41(5) 24.43(5) 0.00888(11) 0.7511(15)
2 × 10−3 1.209(5) × 10−2 29.49(7) 29.50(7) 0.0162(3) 0.7515(13)
1.8 × 10−3 6.090(18) × 10−3 40.06(2) 40.10(2) 0.0396(5) 0.7501(3)
1.5 × 10−3 2.582(8) × 10−3 58.38(7) 58.49(8) 0.1047(9) 0.7459(18)
10−3 6.4707(7) × 10−4 102.96(4) 103.36(4) 0.3971(18) 0.7453(10)
5 × 10−4 1.1569(11) × 10−4 195.06(3) 196.53(2) 1.466(2) 0.7353(11)
2 × 10−4 1.9079(4) × 10−5 352.40(2) 356.68(3) 4.275(7) 0.7343(12)
10−4 5.804(6) × 10−6 500.47(18) 508.13(19) 7.65(3) 0.7326(26)
8 × 10−5 4.040(5) × 10−6 553.93(22) 562.91(22) 8.98(4) 0.7309(30)
7 × 10−5 3.261(4) × 10−6 587.48(23) 597.34(24) 9.86(4) 0.7303(24)
6 × 10−5 2.556(4) × 10−6 627.40(28) 638.33(30) 10.92(8) 0.7292(44)
5 × 10−5 1.927(2) × 10−6 676.13(19) 688.42(22) 12.28(6) 0.7312(31)
4 × 10−5 1.3689(12) × 10−6 738.9(23) 752.96(22) 14.03(6) 0.7296(26)
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TABLE II. Thermodynamic data for selected fcc-liquid coexistence state points obtained by interface-pinning simulations.

T p vfcc vliquid ∆v ∆s

1 × 10−4 5.8884(9)× 10−6 497.03(31) 505.46(30) 8.4291(18) 0.8337(2)
8 × 10−5 4.075(6)× 10−6 551.40(26) 561.47(28) 10.066(24) 0.8390(12)
7 × 10−5 3.281(5)× 10−6 585.14(28) 596.26(28) 11.119(25) 0.8417(15)
6 × 10−5 2.559(3)× 10−6 625.63(23) 638.08(24) 12.447(23) 0.8454(12)
5 × 10−5 1.920(3)× 10−6 675.15(26) 689.26(27) 14.108(28) 0.8492(16)
4 × 10−5 1.3571(12)× 10−6 738.64(18) 754.99(20) 16.345(31) 0.8543(13)
1 × 10−5 1.7630(21)× 10−7 1205.59(43) 1241.06(46) 35.47(8) 0.8862(19)

From ∆µ, the melting temperature Tm is estimated via Tm ≅ T
+ ∆µ/∆s in which ∆s is the liquid-solid entropy difference per
particle. This equation is derived as follows. The expression for
the entropy S = −(∂G/∂T)p implies for the entropy per particle
s = −(∂µ/∂T)p, so for the liquid-solid difference, one has ∆s =

FIG. 8. Determining the solid-phase maximum temperature. (a) The difference in
chemical potential between the liquid and the bcc structure, ∆µ, plotted as a func-
tion of pressure along the T = 2.3 × 10−3 isotherm (evaluated by interface-pinning
simulations). The temperature studied was selected to be close to the bcc-liquid
re-entrance point (Fig. 6). (b) The estimated coexistence (melting) temperature,
Tm ≅ T + ∆µ/∆s, plotted as a function of the pressure. From this figure, one finds
that the re-entrance point is given by p = 0.12(2) and T = 2.296(3) × 10−3.

−(∂∆µ/∂T)p. This implies T − Tm ≅ −∆µ/∆s because ∆µ = 0 at coex-
istence. Figure 8(b) plots the melting temperature at each pressure
calculated this way, allowing for a more accurate identification of
the re-entrant point than merely estimating it from the maximum in
Fig. 7(a).

IV. PHASE DIAGRAMS OF THE EXP PAIR-POTENTIAL
SYSTEM

The result of the above investigation is summarized in Fig. 9
in which (a) shows the pressure-temperature phase diagram and
(b) shows the density-temperature phase diagram. The latter has
regions of coexistence which are, however, so narrow that they
appear merely as slightly varying line thicknesses. Figure 9(c) shows
as a function of pressure the entropy of melting of the fcc-liquid
and bcc-liquid transitions, as well as the phase-change entropy of
the fcc–bcc transformation. Note that the latter is small compared to
the melting entropy, which for a simple system liquid like the EXP
system is typically around kB per particle, i.e., unity in the EXP unit
system. Finally, Fig. 9(d) shows the relative width of the three coex-
istence regions in the density-temperature phase diagram as a func-
tion of the pressure, confirming that the fcc–bcc transformation is
only weakly first order. At high pressures, the fcc–bcc density differ-
ence becomes slightly negative; this happens at state points above the
point where dp/dT changes sign, compare the Clausius–Clapeyron
equation Eq. (7).

V. A NOTE ON THE GENERAL DETERMINATION
OF COEXISTENCE STATE POINTS

Establishing thermodynamic phase diagrams of model systems
is an important objective of computational materials science and
chemical physics. Phase boundaries are lines in the phase diagram
where the free energies of two phases are identical. Unlike pressure
or energy, it is not trivial to determine the free energy at a finite
temperature state-point because entropy cannot be computed as an
ensemble average. Several methods have been developed to over-
come this difficulty, each with advantages and disadvantages. As an
example, Widom’s insertion method39 can be used to compute the
free energy at a single state point, but it gives poor statistics for dense
phases like the ordinary liquid and solid phases. Another possibility
is to use thermodynamic integration from a state point at which the
free energy is known, typically an almost ideal gas state point or a
virtually harmonic crystal state point.40

J. Chem. Phys. 150, 174501 (2019); doi: 10.1063/1.5094395 150, 174501-7

© Author(s) 2019

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Thermodynamic phase diagrams of the EXP pair-potential system based on the results obtained in Sec. III. Numerical data for selected liquid-solid coexistence
state points are given in Tables I and II; more detailed data that include also data for the fcc–bcc coexistence line are available in the Glass and Time data repository
(http://glass.ruc.dk/data/). (a) shows the phase diagram in the pressure-temperature plane, (b) shows it in the density-temperature plane. In (b), there are narrow, regions of
coexistence, appearing as varying line thicknesses. In (a) and (b), the black dot marks the triple point, while the star marks the solid-phase maximum temperature. (c) Phase-
change entropy per particle for the fcc-liquid, bcc-liquid, and fcc–bcc transitions plotted as a function of pressure. (d) Relative density change of the fcc-liquid, bcc-liquid, and
fcc–bcc transitions plotted as a function of pressure.

Integrating the Clausius–Clapeyron identity from a coexistence
point30 is computationally efficient since it relates to straightforward
simulations of the bulk phases. A disadvantage of this method is that
one coexistence point must first be determined accurately; more-
over, systematic errors may accumulate during the integration. The
interface-pinning method gives an accurate prediction of the coexis-
tence point, but it is not computationally efficient because the equi-
libration time for interface fluctuations is often considerably larger
than for the bulk phases.27

The approach used in this paper is not specific to the EXP
system and may be used for computing coexistence lines of other
systems. The method we propose consists of the following three
steps:

1. Determine a single coexistence point to a high precision
using either a T = 0 calculation or the interface-pinning
method.

2. Starting from this state point, compute the coexistence line
by a fourth-order Runge-Kutta integration of the Clausius–
Clapeyron equation.

3. Validate the accuracy of the computed melting line by
interface-pinning simulations at selected state points.

VI. DISCUSSION
The existence of a fcc–bcc transition is not unique to the

EXP pair-potential system. For instance, the Yukawa pair poten-
tial exhibits the same transition.41,42 This is consistent with the fact
that the strong-screening limit of the Yukawa potential is domi-
nated by the exponential “screening” term. Another interesting fea-
ture of the EXP system is the existence of a re-entrant point. This
is also found in, for instance, the Gaussian-core model,38 which
like the EXP system has a finite value of the pair potential at zero
separation.

To summarize, the thermodynamic phase diagram of the
EXP pair-potential system has been determined below unit density
(Fig. 9). At low densities and temperatures, the thermodynamically
stable solid phase structure is fcc; at higher densities and tempera-
tures, the solid structure is bcc. The fcc–bcc transition is weakly first
order, i.e., with significantly lower volume and entropy changes than
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for typical melting transitions. At high densities, there is a re-entrant
point above which the liquid-bcc phase boundary has a negative
slope.
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