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It was recently shown that the exponentially repulsive EXP pair potential defines a system of particles in
terms of which simple liquids’ quasiuniversality may be explained [A. K. Bacher et al., Nat. Commun.
5, 5424 (2014); J. C. Dyre, J. Phys.: Condens. Matter 28, 323001 (2016)]. This paper and its companion
[A. K. Bacher et al., J. Chem. Phys. 149, 114502 (2018)] present a detailed simulation study of the
EXP system. Here we study how structure monitored by the radial distribution function and dynamics
monitored by the mean-square displacement as a function of time evolve along the system’s isotherms
and isochores. The focus is on the gas and liquid phases, which are distinguished pragmatically by
the absence or presence of a minimum in the radial distribution function above its first maximum. A
constant-potential-energy (NVU)-based proof of quasiuniversality is presented, and quasiuniversality
is illustrated by showing that the structure of the Lennard-Jones system at four state points is well
approximated by those of EXP pair-potential systems with the same reduced diffusion constant. Paper
II studies the EXP system’s isomorphs, focusing also on the gas and liquid phases.© 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5043546

I. INTRODUCTION

For more than half a century, the term “simple liquid”
has implied a system of point particles interacting via pair-
wise additive forces.1–8 The paradigmatic simple liquid is
the hard-sphere (HS) system of identical spheres that do not
interact unless they touch each other, at which point the poten-
tial energy jumps to infinity.8–14 The HS system embodies a
physical picture going back to van der Waals’ seminal thesis
from 187315 according to which the harshly repulsive forces
between a liquid’s atoms or molecules determine the structure.
This idea is the basis of the present understanding of liquids
as elucidated, e.g., in the classical monograph by Hansen and
McDonald from 1976,8 and in the classical reviews by Widom
from 196711 and by Chandler, Weeks, and Andersen from
1983.14 The HS picture has had many successes, for instance
leading to very useful perturbation theories of the liquid
state.8,16–22

van der Waals’ fundamental insight was that liquids’ prop-
erties to a large extent derive from the repulsive forces.15

The weaker and longer-ranged attractive forces play little role
for the structure and dynamics; they mainly serve to reduce
energy and pressure by providing a virtually constant negative
cohesive energy. It has been found from computer simulations,
however, that some pair-potential systems are not simple in any
reasonable understandings of the term, whereas, on the other
hand, a number of molecular liquids23 and even polymer-like
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systems24 have simple and regular behavior. A liquid like water
exhibits non-simple behavior by having, e.g., a diffusion con-
stant that increases upon isothermal compression, by melting
instead of freezing upon compression, etc.25 Pair-potential sys-
tems with such anomalous behavior include the Gaussian-core
model,26,27 the Lennard-Jones Gaussian model,28 and the Jagla
model.25 At high and moderate temperatures, the Gaussian-
core model is not steeply repulsive, which may explain its
anomalies, but the other two systems are complex despite
their strongly repulsive forces. Thus pair-wise additive forces
between point particles are neither necessary nor sufficient for
a liquid to be “simple,” and a different definition of simplicity
is called for.

An alternative definition of liquid simplicity is provided
by the isomorph theory according to which simple behavior
is found whenever the system in question to a good approxi-
mation exhibits “hidden scale invariance” (“hidden” because
this property is rarely obvious from the mathematical expres-
sion for the potential energy).7,29–31 This defines the class
of Roskilde (R)-simple systems that include the standard
Lennard-Jones (LJ) model, a class which was first identified
by characteristic strong correlations between the virial and
potential-energy thermal fluctuations in the canonical (NVT )
ensemble.32–34

R-simple systems have isomorphs,29 which are lines in
the thermodynamic phase diagram along which structure and
dynamics in reduced units (see below) are invariant to a good
approximation. These invariances reflect the fact that state
points on the same isomorph have approximately the same
canonical probabilities for configurations that scale uniformly
into one another.29 Isomorph-theory predictions have been
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validated in computer simulations of LJ type systems,29,35,36

simple molecular models,23 crystals,37 nano-confined liq-
uids,38 non-linear shear flows,39 zero-temperature plastic
flows of glasses,40 polymer-like flexible molecules,24,41 met-
als studied by ab initio density functional theory computer
simulations,42 plasmas,43 and other liquids.31,44 Experimen-
tal confirmations of the isomorph theory were presented in
Refs. 45–50. The numerical and experimental confirmations
notwithstanding, it is important to emphasize that the isomorph
theory is rarely exact, that it usually works only in the liq-
uid and solid parts of the thermodynamic phase diagram [the
exponential (EXP) system is an interesting exception to this],
and that the theory does not apply for systems with strong
directional bonding (hydrogen-bonding or covalently bonded
systems).

The basic characteristic of an R-simple system is that,
because of its isomorphs, the thermodynamic phase diagram is
effectively one-dimensional in regard to structure and dynam-
ics.29,31 R-simple systems have this property in common with
the HS system for which the packing fraction determines the
physics throughout the phase diagram.8

In 2014, it was shown51 that the isomorph theory is a con-
sequence of the following scale-invariance property in which
R = (r1, . . ., rN ) is the vector of all particle coordinates, U(R)
is the potential-energy function, and λ is a uniform scaling
parameter,

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). (1)

Thus if the potential energy of some configuration Ra is
lower than that of another configuration Rb, both of the same
density, this property is maintained after a uniform scaling
of the configurations. Strong virial potential-energy correla-
tions,32 as well as the approximate invariance along isomorphs
of Boltzmann probabilities of uniformly scaled configura-
tions that originally defined isomorphs,29 are consequences
of Eq. (1).51

The scale-invariance property Eq. (1) is only obeyed rig-
orously for the unrealistic case of a system with an Euler-
homogeneous potential-energy function plus a constant. For
realistic R-simple systems, Eq. (1) applies to a good approxi-
mation, i.e., for modest density variations of most of its phys-
ically relevant configurations. This is, nevertheless, enough
to ensure approximate invariance of the structure and dynam-
ics along the isomorphs.51 Incidentally, these curves in the
phase diagram are virtually parallel to the freezing and melting
lines,29,44 a fact that explains several well-known phenomeno-
logical melting-line characterizations, e.g., the Lindemann
melting criterion’s pressure independence.29,52,53

The invariance of the structure and dynamics along iso-
morphs relates to “reduced” quantities.29,31,51 These are quan-
tities that have been made dimensionless by scaling with the
length

l0 ≡ ρ
−1/3 (2)

defined from the particle density ρ ≡ N /V in which N is
the number of particles and V is the sample volume, the
energy

e0 ≡ kBT (3)

in which T is the temperature, and the time

t0 ≡ ρ
−1/3

√
m

kBT
(4)

in which m is the average particle mass. Note that these units
vary with the state point in question.

Reduced units are used throughout the present paper and
Paper II.79 Two notable exceptions to this are density and tem-
perature, which are both constant in reduced units. Therefore,
in order to specify a state point, the density is reported in units
of the EXP pair potential length parameter σ of Eq. (5) below,
i.e., in units of 1/σ3, and temperature is reported in units of
the potential’s energy parameter over the Boltmann constant,
ε/kB. We refer to this as the “EXP unit system.”

Although the HS system provides a good reference for
understanding simple liquids, it has some challenges.44 For
instance, while simple liquids’ quasiuniversal structure may be
understood from the harsh interparticle repulsions modeled by
a HS system, it is much less obvious how to explain simple liq-
uids’ quasiuniversal dynamics by reference to the HS system.
After all, the HS system’s particles evolve in time according to
Newton’s first law following straight lines in space, interrupted
by infinitely fast collisions. This is quite different from what
happens in a real liquid where each particle interacts continu-
ously and strongly with ten or more nearest neighbors. Also,
the HS reference system cannot explain the above-mentioned
fact that some systems with strong interparticle repulsions
do not belong to the quasi-universal class of “simple” sys-
tems.31 Finally, the HS system is unphysical becasuse of its
discontinuous potential-energy function, implying, in particu-
lar, that the time-averaged potential energy is zero at all state
points.

It would be nice to have a generic analytic pair-potential
system in terms of which simple liquids’ quasiuniversality may
be explained, thus defining the “mother of all pair-potential
systems.” By means of the isomorph theory, it was recently
suggested31,44 that this role may be played by the exponen-
tially repulsive EXP pair potential defined by (in which ε is a
characteristic energy and σ a characteristic length)

vEXP(r) = ε e−r/σ . (5)

References 31 and 44 showed that any system with a pair
potential, which may be written as a sum of spatially decay-
ing exponentials of the form given in Eq. (5) with numer-
ically large prefactors relative to kBT, to a good approx-
imation obeys the same equation of motion as the EXP
system itself. This explains the quasiuniversality of tradi-
tional simple liquids like the LJ system, inverse power-
law systems, Yukawa pair-potential system, etc., as well as
exceptions to quasiuniversality that cannot be written in this
way.31,44

Despite its mathematical simplicity and the fact that the
exponential function in mathematics is central, e.g., for defin-
ing the Fourier and Laplace transforms, the EXP pair-potential
system has been studied little on its own right. In the litera-
ture, an EXP term typically appears added to an r−6 attrac-
tive term54,55 or multiplied by a 1/r term as in the Yukawa
pair potential.56,57 Born and Meyer in 1932 used an expo-
nentially repulsive term in a pair potential and justified this
from the fact that electronic bound-state wavefunctions decay
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exponentially in space.54 Kac and co-workers used a HS
pair potential minus a long-ranged EXP term for rigorously
deriving the van der Waals equation of state in one dimen-
sion.58 Recently, by reference to the EXP pair potential Maim-
bourg and Kurchan showed that the isomorph theory for pair-
potential systems with strong repulsions is exact in infinite
dimensions.59 The EXP pair potential was also used recently
by Kooij and Lerner in a study of unjamming in models with
analytic pair potentials.60

The reason that the pure EXP pair-potential system has
not been studied very much may be that this system has been
regarded as unrealistic by being purely repulsive. However,
even the purely repulsive inverse power law pair-potential sys-
tems have been studied much more than the EXP system.61–67

In view of this, the present paper and Paper II79 undertake an
investigation of the EXP pair-potential system by presenting
results from extensive computer simulations.

Figure 1 shows the phase diagram of the EXP system
indicating the state points studied. Like for any purely repul-
sive system there are only two thermodynamically distinct
phases: a solid phase at low temperatures and high densities

FIG. 1. Log-log density-temperature phase diagram of the EXP system show-
ing the state points investigated. Gas-phase state points are given in red and
condensed-phase (liquid and solid) state points in blue. Because the EXP
pair potential is purely repulsive, there is no gas-liquid phase transition and
no gas-liquid coexistence region; the gas and liquid phases merge contin-
uously. Liquid state points are distinguished pragmatically from those of
the gas phase by having minima in their pair-distribution functions above
the nearest-neighbor peak; the light colored state points indicate the tran-
sition region between gas and liquid. The solid-liquid coexistence region
is covered by the black line (determined as the approximate melting-line
isomorph).

and a “fluid” phase; there is no gas-liquid phase transition
since this requires attractive forces. We have chosen, never-
theless, to pragmatically distinguish typical “gas” state points
from typical “liquid” state points, but it is important to recall
throughout the paper that these phases merge continuously into
one another, just as in a real system above its critical temper-
ature. To distinguish the gas and liquid phases, we used the
following criterion: if the radial distribution has a clear mini-
mum above its first maximum, the state point is liquid; if not,
it is a gas-phase state point. The large region of in-between
states is indicated in Fig. 1 by the use of light colors. This is
where the so-called Frenkel line is located.80

In Sec. II, we briefly discuss technicalities relating to
computer simulations of the EXP system. Section III shows
that the EXP system obeys Eq. (1) to a good approximation
by demonstrating that one of its consequences—strong virial
potential-energy correlations at constant density34,68—applies
in a large part of the thermodynamic phase diagram. Section IV
gives results for how pressure, virial, and potential energy
vary throughout the system’s phase diagram. In Sec. V,
we report simulations of the structure and dynamics along
isotherms, while Sec. VI gives the same information along iso-
chores. Even though the EXP system has no liquid-gas phase
transition, its structure and dynamics look pretty much like
those of other simple liquids. Section VII rationalizes this by
giving a new proof of simple liquids’ quasiuniversality in terms
of the EXP pair-potential system. This section also presents
numerical results for four state points, showing that the physics
of the LJ system is fitted well by that of EXP systems with the
same reduced diffusion constant. Finally, Sec. VIII provides a
brief summary.

II. SIMULATIONS DETAILS

The simulations were performed on graphics cards using
the RUMD open-source software.69 All simulations were car-
ried out using the unit system in which temperature and density
are both unity; varying the state point is achieved by changing
the parameters ε and σ of the EXP pair potential.

The time step ∆t = 0.0025 was used in most of the
phase diagram, except for state points with T = 10−6 and
ρ > 2 · 10−4 for which∆t = 0.002. Temperature was controlled
by a Nose-Hoover thermostat with characteristic time 0.2. For
most state points [compare Fig. 2(a)], an initial configuration
of 1000 particles in a simple cubic lattice was generated with
thermal velocities. An initial configuration of 2000 particles
in a body-centered cubic lattice was used for state points with
1.5 · 10−6 < T < 1.5 · 10−3 and ρ > 1.5 · 10−3, compare
Fig. 2(a). The system was equilibrated by 10 000 000 time
steps at the desired state point—ensuring a mean-square dis-
placement (MSD) of at least 1000 at all fluid state points. Data
collection was carried out over at least 10 000 000 subsequent
time steps.

A shifted-force cutoff was used to allow for a shorter cut-
off distance than the standard shifted-potenial cutoff.70,71 The
cut-off was 2σ when ρ < 1.5 · 10−3 except for the lowest-
temperature state points, else at 4σ, compare Fig. 2(b). RUMD
uses single precision as standard. A customized version with
double precision was used to validate selected simulations,
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FIG. 2. (a) Number of particles N sim-
ulated at different state points where
blue indicates 1000 particles and red
2000 particles. (b) Shifted-force cutoff
rc in reduced units (r̃c ≡ rcρ

1/3) where
blue indicates r̃c = 2 and red r̃c = 4.

concluding that single precision works well in the reported
part of the phase diagram. Only in the low-temperature, high-
density part, i.e., deep into the crystalline phase, did the use
of single precision present a problem. These state points have
been left out.

The focus of the present paper and Paper II79 is on the gas
and liquid phases. Results are occasionally reported also for
the solid (crystalline) phase, but these may be less reliable by
deriving from simulations initiated from lattices that in some
cases during the simulation reorganized into different crystal
structures. This led to crystals with many defects, i.e., solids
that are not in proper thermodynamic equilibrium.

III. STRONG VIRIAL POTENTIAL-ENERGY
CORRELATIONS

This section studies how well the EXP system’s constant-
density thermal-equilibrium virial fluctuations correlate with
its potential-energy fluctuations. Strong correlations are a con-
sequence of Eq. (1) 51 and have been demonstrated in NVT
computer simulations of many model liquids,32,34 including
the molecular ones.72 Recall that the microscopic virial W (R)
is defined as W (R) = ∂U(R)/∂ ln ρ in which the density change
induces a uniform scaling of R. The virial, which is an exten-
sive quantity of dimension energy, provides the modification
of the ideal-gas law caused by particle interactions,

pV = NkBT + W (6)

in which W = 〈W (R)〉 where the sharp brackets denote a
thermal average.

The microscopic virial is calculated by summing over
all particles as follows: W (R) =

∑
i< jrij · Fij/3, where rij is

the vector from particle i to particle j and Fij is the force

with which particle i acts on particle j.8,70 Figure 3 shows
results from simulations of the EXP system’s equilibrium
fluctuations at a liquid state point. The black stars give the
potential energy and the red circles give the virial. From
both quantities the mean has been subtracted, after which
they were normalized to unit variance. There is a very strong
correlation. The EXP pair potential has the unique prop-
erty that the pair force is proportional to the pair potential
energy. Thus, if interactions corresponding to a narrow range
of pair distances dominate the potential energy as well as
the virial, one expects strong correlations between these two
quantities.

The Pearson correlation coefficient R quantifying corre-
lations is defined by

R ≡
〈∆U∆W〉√

〈(∆U)2〉〈(∆W )2〉
(7)

FIG. 3. Normalized equilibrium fluctuations of potential energy (black) and
virial (red) at the state point (ρ, T ) = (10−3, 1.25 · 10−3). The correlations are
strong (R = 0.9916), showing that the EXP pair potential system is R-simple
at this state point.
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FIG. 4. (a) Phase diagram of the EXP system giving the virial potential-energy correlation coefficient R [Eq. (7)] in color coding. The EXP system is R-simple
in the low-temperature part of the phase diagram. The correlation coefficient depends predominantly on the temperature, which is the prediction of the analytical
theory for R in the gas phase (Appendix A). The black line covers the solid-liquid coexistence region. (b) Numerical values of R at different state points (visible
upon magnification) at the densities and temperatures listed in Appendix B. At each state point, the value of R is written with a slope marking the direction of
the isomorph through the state point in question (see Paper II79). Red indicates gas, blue liquid, and green solid phase state points.

in which ∆ denotes the quantity in question minus its state-
point average. A system is defined to be R-simple or strongly
correlating whenever R > 0.9,34 which provides a pragmatic
though somewhat arbitrary criterion. The state point studied
in Fig. 3 has better than 99% correlation. This is quite strong
compared to, for instance, the LJ system that has R ∼ 95% for
liquid state points close to the triple point.

We evaluated R for the EXP system at several state points.
Figure 4(a) shows the thermodynamic phase diagram colored
after the value of R, while (b) gives numerical values of R
throughout the phase diagram as tiny numbers written into
the figure. Interestingly, R is fairly independent of the density.
The virial potential-energy correlation coefficient is close to
unity at low temperatures (Paper II79 proposes that R→ 1 as
T → 0 if the limit is taken along an isomorph). Note that R � 1
applies at low temperatures for all phases, which may be inter-
preted as reflecting an effective inverse-power law behavior
of the EXP system at low temperatures, independent of the
density. In particular, it is notable that the low-temperature gas
phase exhibits strong correlations, which may be contrasted to
the LJ system for which this does not apply due to the attractive
pair forces.34,68

At small densities, the EXP system is a gas in which indi-
vidual pair interactions (collisions) dominate the physics. In
this limit, it is possible to calculate R analytically assuming
that the particle collisions are random and uncorrelated. The

derivation, which is given in Appendix A, results in

R =
A3
√

A2 A4
(8)

in which (with β ≡ ε/kBT )

An =

∫ ∞
0

v lnn(1/v) e−βvdv . (9)

Table I compares the theory’s predictions to numerical results
for R, which at each temperature have been averaged over the
simulated gas-phase state points.

TABLE I. Predictions of the analytical theory for the virial potential-energy
correlation coefficient R at low densities where the system is in the gas phase
(Appendix A). The simulation results are averages over all gas state points at
the given temperature (compare Fig. 1).

Temperature R from theory R from gas-phase simulations

1.00 · 10�1 0.9396 0.9348
1.00 · 10�2 0.9808 0.9807
1.25 · 10�3 0.9911 0.9912
1.00 · 10�4 0.9955 0.9955
1.00 · 10�5 0.9972 0.9972
1.00 · 10�6 0.9981 0.9981
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IV. THERMODYNAMICS

A visual representation of the EXP system’s equation of
state (pV T relation) is provided in Fig. 5 showing how the
average reduced pressure 〈p̃〉 ≡ 〈p〉/(ρkBT ) and the average
reduced virial per particle 〈W̃〉/N vary throughout the phase
diagram. Both quantities are colored after the value of their

logarithm. The reduced pressure is close to unity in the gas
phase (p̃ = 1 corresponds to the ideal gas equation), but it
grows and becomes much larger than unity as the liquid and
solid phases are approached. Comparing Figs. 5(a) and 5(b)
reveals that the virial per particle in the gas phase is much
lower than the pressure, whereas in the solid and liquid phases
the pressure is dominated by the virial. For reference, (c)

FIG. 5. (a) Variation of the logarithm of the average reduced pressure 〈p̃〉. (b) Logarithm of the average reduced virial per particle 〈W̃〉/N . (c) and (d) give the
numerical values (visible upon magnification) at the densities and temperatures listed in Appendix B. The numerical values are written with a slope marking the
direction of the isomorph through the state point in question; red indicates gas, blue liquid, and green solid phase state points.
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FIG. 6. (a) Variation of the logarithm of the reduced potential energy throughout the phase diagram. (b) gives the numerical values of Ũ at different state points
(visible upon magnification) at the densities and temperatures listed in Appendix B. At each state point, the numerical value is written with a slope marking the
direction of the isomorph through the state point in question; red indicates gas, blue liquid, and green solid phase state points.

and (d) report the numerical values of average pressure and
virial.

The variation of the reduced average potential energy per
particle is shown in Fig. 6(a). The gas phase is characterized by
a much lower potential energy than the kinetic energy, imply-
ing 〈Ũ〉/N � 1. In the solid phase, the opposite behavior is
seen; here the potential energy dominates.

V. STRUCTURE, DYNAMICS, AND SPECIFIC
HEAT ALONG ISOTHERMS

This section investigates the EXP system’s properties
along selected isotherms; Sec. VI does the same along iso-
chores. Both sections cover temperatures between 10−6 and 1
and densities between 10−5 and 10−2, with a focus on the gas
and liquid phases (compare Fig. 1).

Figure 7 shows how the radial distribution function (RDF)
g(r) develops with density at four temperatures: T = 1,
T = 10−2, T = 10−4, and T = 10−6. Recall that the RDF gives
the probability to find two particles the distance r from each
other relative to that of an ideal gas at the same density. When
comparing g(r) at different state points, it is convenient to use
reduced units, r̃ ≡ ρ1/3r.

At the highest temperature T = 1, there is little structure;
here the system is a gas at all densities investigated. At close
distances, the RDF falls below unity, reflecting the interparticle
repulsion. Because of the reduced units used, at low densities
this happens for r̃ � 1. (b) shows T = 10−2 data; some structure

now appears at the highest densities. (c) shows the data for T =
10−4. The range of densities studied here comprise a few solid
state points, revealed as spikes in the RDFs that are present also
at large distances (dashed lines). (d) gives RDFs for T = 10−6

at which a similar pattern appears. For all four temperatures,
the low-density state points have little structure because they
are all in the gas phase.

Figure 8 shows the reduced mean-square displacement
(MSD) 〈∆r2(t)〉 as a function of time evaluated along the same
four isotherms. The MSD is converted into reduced units by
multiplying by ρ2/3 while time is multiplied by ρ1/3

√
kBT/m,

which is the inverse of the time for a free particle of kinetic
energy kBT to move a typical nearest-neighbor distance. (a)
gives the T = 1 results for the same range of densities as
in Fig. 7. At short times corresponding to ballistic motion,
the reduced MSD equals 3 t̃2 since 〈∆r̃2(t)〉 = ρ2/3〈v2〉t2

= ρ2/33(kBT/m)t2 = 3t̃2. At long times, the MSD varies in
proportion to t̃, which is the well-known diffusive motion.
The lower density is, the later does the transition to diffu-
sive motion take place. This is because for gas-like states,
the mean free path l is much larger than the average nearest-
neighbor distance73,74 (see below). At lower temperature (b),
the transition moves closer to t̃∼1 as density increases. In (c)
and (d) reporting results for the two lowest temperatures, we
observe at high densities a solid phase MSD (dashed lines, not
equilibrated).

Figure 9(a) shows the reduced diffusion constant D̃
derived from long-time MSD data via 〈∆r2(t)〉 = 6Dt along
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FIG. 7. Structure along isotherms probed by the radial distribution function (RDF) as a function of the reduced pair distance r̃ ≡ ρ1/3r at the following
temperatures: (a) T = 1, (b) T = 10−2, (c) T = 10−4, and (d) T = 10−6. The RDFs of state points in the gas and liquid phases (Fig. 1) are indicated by full lines and
solid-phase RDFs by dotted lines. Panel (a) corresponds to the average kinetic energy per particle comparable to the pair potential energy at zero separation. In
this case, the system is gas-like over the entire density range investigated. (b) Liquid-like structure is observed at the highest densities. (c) and (d) With increasing
density, the system transforms from gas to liquid to solid behavior.

FIG. 8. Reduced-unit mean-square displacement (MSD) for selected state points along the four isotherms T = 1, T = 10−2, T = 10−4, and T = 10−6. Gas and
liquid phase state points are indicated by full lines and solid state points by dotted lines. At short times, the MSD in all cases follows the ballistic prediction
3 t̃2 (see the text), and at long times it follows the diffusion equation prediction ∝ t̃. Not surprisingly, the solid phase does not reach the long-time diffusive
limit.
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FIG. 9. Reduced diffusion constants determined from the long-time limit of
the MSD. (a) shows results for isotherms as a function of the density. At all
temperatures, the reduced diffusion constant decreases as density increases;
at high temperatures one finds D̃ ∝ ρ−2/3 as predicted by kinetic theory
[Eq. (10), slope indicated by the dashed line]. (b) gives the numerical values
of the reduced diffusion constants (visible upon magnification) at the same
state points as those of Fig. 4 (Appendix B). Red are gas, blue liquid, and green
solid phase state points. At each state point, the value of the reduced diffu-
sion coefficient is written with a slope marking the direction of the isomorph
through the state point in question.

several isotherms in the gas and liquid phases. At fixed tem-
perature, D̃ decreases when density increases; as the gas
phase transforms smoothly into the liquid phase, the mean-
free path is reduced and approaches the average interparticle
distance. More accurately, as we now proceed to show, in the
gas phase D̃ ∝ ρ−2/3 at fixed temperature [dashed line in
Fig. 9(a)].

According to kinetic theory,73,74 the diffusion con-
stant in the gas phase is proportional to lv in which l is
the mean free path and v the thermal velocity. Since v
is basically l0/t0, compare Eqs. (2) and (4), this implies

FIG. 10. Reduced isochoric excess heat capacity per particle along isotherms.
Gas and liquid state points are given as open symbols; stars represent crys-
tal state points. The dashed line is the prediction for a harmonic crystal,
c̃ex

V = 3/2.

D̃≡D/(l2
0/t0)∝ l/l0 = lρ1/3. Gas-phase kinetic theory more-

over predicts that l is given by ρlr2
0 ∼ 1 where r0 is the

effective hard-sphere radius that may be estimated from
vEXP(−r0) = kBT, implying r0 = ln(1/T ) =−ln T in the EXP
unit system. Thus one expects the reduced diffusion constant
in the gas phase to be given by D̃ ∝ lρ1/3 ∝ ρ−2/3/r2

0
= ρ−2/3/ ln2(T ). The Enskog kinetic theory determines the
constant of proportionality,73,74 resulting in

D̃ =
3

8
√
π

ρ−2/3

ln2(T )
= 0.212

ρ−2/3

ln2(T )
. (10)

This expression is validated below in Fig. 13. The hard-sphere
approximation is expected to work best at low densities and
low temperatures, which is consistent with the findings of
Fig. 9(a).

Figure 10 gives the reduced excess isochoric spe-
cific heat per particle c̃ex

V , i.e., cV /kB subtracted the 3/2
ideal-gas per-particle contribution. This quantity is calcu-
lated from the system’s potential-energy fluctuations in
NVT simulations via the canonical-ensemble expression
c̃ex

V = 〈(∆U)2〉/kB
2T2N .29,70 The lowest temperatures have

the largest c̃ex
V , reflecting stronger interactions than at higher

temperatures, which are more gas like. There is a transition to
a virtually constant c̃ex

V � 3/2 at high densities at which the
system is in the crystalline state.

VI. STRUCTURE, DYNAMICS, AND SPECIFIC
HEAT ALONG ISOCHORES

Next we study how the above quantities vary along the
lines of constant volume, reporting results for the densities
10−5, 10−4, 10−3, and 10−2.

Figure 11 shows the reduced RDFs along these four iso-
chores. At the lowest density (a), there is little structure. Here
the system is a gas at all temperatures, compare Fig. 1. As
density is increased, structure begins to appear at the lowest
temperatures, and for the two highest densities, we recognize
the crystalline phase (dashed lines).

Figure 12 shows the reduced MSD along the same iso-
chores. At high temperatures, the system is a dilute gas and
the transition to diffusive behavior takes place much above
t̃ ∼ 1; compare Fig. 8.
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FIG. 11. Radial distribution functions along the following isochores: (a) ρ = 10−5, (b) ρ = 10−4, (c) ρ = 10−3, (d) ρ = 10−2. State points in the gas and liquid
phases (compare Fig. 1) are indicated by full lines, solid-phase state points by dotted lines. At the lowest densities little structure is present and the system is a
gas even at the lowest temperatures studied. At higher densities liquid-like structure appears at the lowest temperatures, and for ρ = 10−3 and ρ = 10−2 crystal
structure is observed at the lowest temperatures.

Figure 13(a) shows how the reduced diffusion constant
varies with temperature along the seven isochores. For a given
temperature, the reduced diffusion constant is largest at low
densities. The increase with temperature reflects the effective

particle size decreasing; compare kinetic theory (Sec. V). The
Enskog prediction Eq. (10) for ρ = 10−4 is shown as the
dashed line in Fig. 13(a). Figure 13(b) plots ρ2/3D̃ versus
1/ln2(T ) in order to test Eq. (10), which is expected to apply

FIG. 12. Reduced MSD along four isochores: (a) ρ = 10−5, (b) ρ = 10−4, (c) ρ = 10−3, and (d) ρ = 10−2. Gas and liquid phase state points are indicated by full
lines and solid-phase state points by dotted lines.
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FIG. 13. (a) Gas and liquid phase reduced diffusion constants along seven isochores. The dashed line is the Enskog kinetic-theory prediction for ρ = 10−4,
Eq. (10). The inflection at low temperatures and high densities is where the condensed liquid phase is approached, signaling strong deviations from the gas-phase
prediction. Panel (b) investigates Eq. (10) more closely by plotting ρ2/3D̃ versus 1/ ln2(T ). The dotted line is the Enskog prediction, which works well at low
densities. The inset focuses on the data close to the origin.

asymptotically as the density goes to zero. This is the case to
a good approximation.

Finally, Fig. 14 shows how the excess isochoric heat
capacity c̃ex

V varies with temperature along seven isochores.
At low temperatures and high densities, the reduced heat
capacity is high and constant, close to the 3/2 per parti-
cle harmonic contribution expected in the solid phase. For
other state points, the excess heat capacity is considerably
lower.

VII. QUASIUNIVERSALITY

As mentioned in Sec. I, the EXP pair potential is cen-
tral in a recent proof of simple liquids’ quasiuniversality,44

a review of which is given in Ref. 31. The idea is that—to
a good approximation—any pair-potential system for which
v(r) is a sum of exponential functions corresponding to the
strongly correlating part of the phase diagram (Fig. 4), i.e.,
with coefficients that are much larger than kBT , has the same
structure and dynamics as the EXP system itself. This sec-
tion presents a constant-potential-energy (NVU)-based proof
of quasiuniversality, combining arguments from Refs. 51 and
75. After this, as an example it is shown how the LJ system’s
structure at four state points may be approximated by those of
EXP pair-potential systems with the same reduced diffusion
constant.

FIG. 14. Reduced isochoric excess heat capacity per particle c̃ex
V along seven

isochores. Gas and liquid phase state points are represented by open sym-
bols and stars correspond to solid-phase state points. The dashed line is the
prediction of a harmonic crystal (c̃ex

V = 3/2).

A. NVU proof of simple liquids’ quasiuniversality

NVU dynamics is molecular dynamics based on conser-
vation of the potential energy.76–78 The idea is the following.
The 3N-dimensional configuration space of the particle coor-
dinates R—usually implemented assuming periodic boundary
conditions, i.e., on a high-dimensional torus—has (3N-1)-
dimensional hypersurfaces of constant potential energy. NVU
dynamics is defined as motion at constant velocity on these
hypersurfaces along geodesic curves, i.e., curves of minimum
length (locally). A geodesic curve is a generalized straight
line, so NVU dynamics may be regarded as realizing New-
ton’s first law in the curved high-dimensional space defined by
the relevant constant-potential-energy hypersurface. Geodesic
dynamics also appears in the general theory of relativity, but
there just in four dimensions. Despite the fact that the poten-
tial and kinetic energies are both conserved in NVU dynamics,
it has been shown analytically as well as numerically that
NVU dynamics in the thermodynamic limit leads to the same
structure and dynamics as ordinary Newtonian NVE or NVT
dynamics.76,77

Quasiuniversality of systems with a pair-potential func-
tion that is a sum of EXP pair potentials from the strongly
correlating part of the EXP phase diagram (Fig. 4) is based
on the following fact: For different pair-potential parameters
ε and σ, the EXP system’s family of reduced-unit constant-
potential-energy hypersurfaces are identical. We show this
below, followed by a proof that systems with a pair poten-
tial that is a linear combination of two or more EXP terms
have the same constant-potential-energy hypersurfaces as the
EXP system itself and, consequently, have the same NVU
trajectories. This implies identical reduced-unit structure and
dynamics.

For any system at density ρ, one defines the micro-
scopic excess-entropy function by Sex(R) ≡ Sex(ρ, U)|U =U (R)

in which Sex(ρ, U) is the thermodynamic excess entropy
as a function of density and average potential energy.51 In
other words, Sex(R) is the thermodynamic excess entropy
of the state point with density ρ corresponding to R and
average potential energy U(R). By inversion, one has U(R)
= U(ρ, Sex(R)) in which U(ρ, Sex) is the average potential
energy at the state point with density ρ and excess entropy
Sex. From the configuration-space microcanonical ensemble
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expression for the excess entropy, it is straightforward to show
that the hidden-scale-invariance condition Eq. (1) implies
Sex(λR) = Sex(R), i.e., a uniform scaling of a configuration
does not change its excess entropy.51 This scale invariance
means that the microscopic excess entropy is a function of
the configuration’s reduced coordinate vector R̃ ≡ ρ1/3R,51

implying that

U(R) = U(ρ, Sex(R̃)). (11)

Having in mind that the EXP system’s potential-energy
function UEXP(R) depends on ε and σ, Eq. (11) implies that a
dimensionless function ΦEXP of two variables exists such that
(S̃ex ≡ Sex/kB)

UEXP(R, ε,σ) = εΦEXP

(
ρσ3, S̃EXP

ex (R̃)
)
. (12)

The appearances of ε in front and of σ3 multiplied by the den-
sity are dictated by dimensional analysis. A consequence of
Eq. (12) is that different EXP systems have the same family of
reduced-coordinate constant-potential-energy hypersurfaces,
all of which are given by S̃EXP

ex (R̃) = Const. The constant
defines the relevant isomorph.

Consider now the system defined by the pair potential
v(r) = ε1 exp(−r/σ1) + ε2 exp(−r/σ2) and let us focus on one
particular configuration R. Since it defines all pair distances,
this system’s potential-energy function is given by adding the

two EXP system’s potential energies,

U(R) = ε1ΦEXP

(
ρσ3

1 , S̃EXP
ex (R̃)

)
+ ε2 ΦEXP

(
ρσ3

2 , S̃EXP
ex (R̃)

)
. (13)

Assuming positive temperature, i.e., that

ε1(∂ΦEXP(ρσ3
1 , Sex)/∂Sex)ρ

+ ε2(∂ΦEXP(ρσ3
2 , Sex)/∂Sex)ρ > 0, (14)

the potential energy U(R) of Eq. (13) can be constant only if
S̃EXP

ex (R̃) is constant. Via Eq. (12), this implies that UEXP(R, ε,
σ) is constant. Thus the constant-potential-energy hypersur-
faces for the function U(R) of Eq. (13) are identical to the EXP
system’s constant-potential-energy hypersurfaces. The NVU
dynamics of the sum of two EXP systems is consequently iden-
tical to that of the EXP system, implying identical structure
and dynamics.

The above generalizes to pair-potential systems of arbi-
trary linear combinations of EXP terms, and EXP pair-
potential terms may also be subtracted. Basically, the only
requirement is that each EXP pair-potential term refers to
the strongly correlating part of the EXP system’s phase dia-
gram, i.e., that the energy parameter obeys ε � kBT .31 This
requirement, which ensures that Eq. (12) applies for each term,
translates into requiring that the reduced-unit pair potential

FIG. 15. Quasiuniversality illustrated by comparing radial distribution functions (RDF) at four state points for the Lennard-Jones (LJ) system (black curves)
to those of EXP systems with the same reduced diffusion constant within 1% (colored curves). EXP state points are specified by density, temperature, and
density-scaling exponent γ. (a) LJ state point (ρ, T ) = (0.029, 199.6), a typical high-temperature gas state point at which D̃ = 4.8061. γ here is 4.29, which
is not far from the value 4 predicted from the repulsive r−12 term of the LJ pair potential.68 The red, blue, and green curves are RDF predictions for different
EXP systems with the same reduced diffusion constant. (b) LJ state point (ρ, T ) = (1.09, 482.17), a moderate-density, high-temperature gas state point at which
D̃ = 0.3789. The red EXP system fits better than the blue one. Deviations are centered around the first peak, with the largest deviations for the EXP state point
with density-scaling exponent γ most different from its LJ value (blue). (c) LJ state point (ρ, T ) = (1.09, 10.17) at which D̃ = 0.1068. There are slight deviations
around the first peak, which are smallest for the EXP system with γ closest to that of the LJ system. (d) LJ state point (ρ, T ) = (1.09, 2.17), a condensed-phase
liquid state point close to the melting line at which D̃ = 0.0266. The green curve, which fits best, represents an EXP system that has virtually the same γ as the
LJ system. The inset provides a blow up of the first peak.
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in question is a sum of EXP terms with numerically large
prefactors.31

B. Example: The EXP system approximates
the Lennard-Jones system

The LJ system (v(r) = 4ε[(r/σ)−12 − (r/σ)−6]) is in the
EXP quasiuniversality class.8,44 As a demonstration of qua-
siuniversality, we consider four state points of the LJ system
typical for the high-temperature gas, the high-temperature liq-
uid, and the liquid close to the melting line. At each state point,
the reduced diffusion constant D̃ was evaluated. According to
quasiuniversality, D̃ determines the reduced structure. For each
of the four reduced LJ diffusion constants, we identified two
or three EXP systems (equivalently: EXP state points) with the
same D̃ and calculated the RDF in order to compare to those
of the LJ system.

The results are shown in Fig. 15, which gives LJ sys-
tem RDFs as black curves and those of EXP systems with
same reduced diffusion constant as colored curves. The fits
are generally good. Deviations are center around the first peak.
These reflect the following breakdown of quasiuniversality: At
small interparticle separation the RDF is dominated by the pair
potential via the asymptotic behavior g(r) ∼ exp(−v(r)/kBT )
for r → 0.8 The quantity v(r)/kBT is not isomorph invariant,
however, implying that the way in which g(r) approaches zero
at short distances violates quasiuniversality. If one assumes
that the number of particles in the first coordination shell is qua-
siuniversal, there must be a compensating non-quasiuniversal
height of the first peak of the RDF. For the EXP system,
the larger the density-scaling exponent becomes along an iso-
morph (see Paper II79), the higher is the peak because the more
rapidly does g(r) go to zero at short distances. This explains the
slight deviations from quasiuniversality observed in Fig. 15.
If one wishes from the reduced diffusion constant to iden-
tify an EXP system with almost identical RDF also around
the first peak, an EXP system should be sought with both
the correct reduced diffusion constant and the correct density-
scaling exponent. This is illustrated in Fig. 15(d), compare
the inset.

VIII. CONCLUDING REMARKS

We have presented an investigation of the EXP pair-
potential system’s structure and dynamics over a large part of
its low-temperature, low-density thermodynamic phase dia-
gram, focusing on gas and liquid state points. At temperatures
higher than those studied here the EXP system changes char-
acter because particles there may overlap and pass through
one another. As for other systems with no attractive forces, the
EXP system has a solid and a fluid phase, but no liquid-gas
phase transition. We find gas-like behavior in a large part of
the studied phase diagram as revealed by a virtual absence of
structure probed by the RDF. When varying density or tem-
perature, we find, not surprisingly, that the EXP fluid has more
structure the closer it is to the melting transition. For both the
structure and the dynamics, one finds the same trends whether
density or temperature is lowered. This reflects the existence
of isomorphs, which are lines in the thermodynamic phase

diagram along which the reduced-unit physics is invariant29,51

(Paper II79).
The motivation for studying the EXP pair-potential system

is the recent suggestion that the EXP potential may be regarded
as “the mother of all pair potentials” in the sense that any pair
potential of an R-simple single-component pair-potential sys-
tem may be well approximated by a sum of EXP pair potentials
with coefficients that in reduced units are numerically much
larger than unity.31,44 Because the EXP system is R-simple,
isomorph theory implies that any such linear combination has
virtually the same structure and dynamics as the pristine EXP
system;31 compare Sec. VII. This is our explanation of the
quasiuniversality reported for the majority of simple liquids,
which is traditionally explained by reference to the hard-sphere
system.

The present paper focused on the gas and liquid phases.
This is also the focus of Paper II studying the EXP system’s
isomorphs.79
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APPENDIX A: ANALYTICAL THEORY FOR THE VIRIAL
POTENTIAL-ENERGY CORRELATION COEFFICIENT
IN THE GAS PHASE

For mathematical simplicity, we use below the EXP unit
system in which ε = σ = 1; moreover we put kB = 1. The EXP
pair potential is given by

v(r) = e−r . (A1)

The inverse temperature is denoted by β, i.e., β ≡ 1/T.
When the density is sufficiently low, the individual pair

energies and forces are statistically independent and one can
calculate the averages in R [Eq. (7)] by reference to single parti-
cle pairs. This is the same simplification that was recently used
to prove that the isomorph theory is exact in infinite dimen-
sions for all pair-potential systems with strong repulsions.81

For a pair at distance r, the virial is given by w = (−1/3)rv ′(r),
i.e.,

w =
1
3

ln(1/v)v . (A2)

In terms of v and w, Eq. (7) becomes

R =
〈vw〉 − 〈v〉〈w〉√

(〈v2〉 − 〈v〉2)(〈w2〉 − 〈w〉2)
. (A3)

The gas-phase physics is determined by the two-particle
Boltzmann canonical probability, p(r) ∝ r2 exp(−βv(r)). The
pair-potential energy v = exp(−r) varies between zero and
one, but when the temperature is low, little error arises from
allowing v to be any positive number. The probability of find-
ing the pair potential energy v is given by p(v) = p(r)|dr/dv |.
Since r = ln(1/v), one has p(v) ∝ ln2(1/v) exp(−βv)|dr/dv |
or
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p(v) ∝
ln2(1/v) exp(−βv)

v
(0 < v < ∞). (A4)

This distribution is not normalizable in the v→ 0 limit, reflect-
ing the infinitely many particle pairs found far from each
other. Introducing a lower v cut-off, the normalization con-
stant thus diverges as the cutoff goes to zero. This means that
in expressions like 〈∆v∆w〉 = 〈vw〉−〈v〉〈w〉 the latter product
disappears as the v cutoff goes to zero, so Eq. (A3) simplifies
into

R =
〈vw〉√
〈v2〉〈w2〉

. (A5)

If one defines

An =

∫ ∞
0

v lnn(1/v) e−βvdv (A6)

and K is the normalization constant of p(v) with a cutoff, one
has 〈v2〉 = KA2, 〈vw〉 = KA3/3, and 〈w2〉 = KA4/9, but K does
not enter into the final expression,

R =
A3
√

A2 A4
. (A7)

Using Maple, one gets

A2 = β−2
(

ln2 β − 2(1 −C) ln β + (π2/6 + C2 − 2C)
)
, (A8)

A3 = β−2 ( ln3 β − 3(1 − C) ln2 β

+ (π2/2 + 3C2 − 6C) ln β + k3
)
, (A9)

and

A4 = β−2
(

ln4 β − 4(1 − C) ln3 β + (π2 + 6C2 − 12C) ln2 β

+ h4 ln β + k4

)
. (A10)

Here

C ≡ lim
n→∞

*.
,

n∑
p=1

1
p
− ln n+/

-
= 0.577 216 . . . (A11)

is Euler’s constant (in his original notation, this number is
sometimes denoted by γ),

k3 = C3−3C2+(π2/2)C−π2/2+2ζ(3) = −0.48 946 (A12)

in which ζ(3) = 1.20 206 is the Riemann zeta function’s value
at 3 (“Apery’s constant”),

h4 = 2
(
2C3 − 6C2 + π2C − π2 + 4ζ(3)

)
= 4k3 = −1.9578,

(A13)

and

k4 = C4 − 4C3 + π2C2 − 2π2C + 8ζ(3)C − 8ζ(3) + 3π4/20

= 1.7820. (A14)

Numerically, the three integrals are given by

β2 A2 = ln2 β − 0.8456 ln β + 0.8237, (A15)

β2 A3 = ln3 β − 1.268 ln2 β + 2.471 ln β − 0.4895, (A16)

and

β2 A4 = ln4 β − 1.691 ln3 β + 4.942 ln2 β

− 1.958 ln β + 1.782. (A17)

APPENDIX B: SIMULATED STATE POINTS

The state points simulated involve the following densities
1.00 · 10−5; 2.00 · 10−5; 3.00 · 10−5; 5.00 · 10−5; 8.00 · 10−5;
1.00 · 10−4; 1.25 · 10−4; 2.16 · 10−4; 3.43 · 10−4; 5.12 · 10−4;
7.29 · 10−4; 1.00 · 10−3; 2.00 · 10−3; 3.00 · 10−3; 5.00 · 10−3;
8.00 · 10−3; 1.00 · 10−2 and the following temperatures:
1.00 · 10−6; 2.00 · 10−6; 3.00 · 10−6; 5.00 · 10−6; 8.00 · 10−6;
1.00 · 10−5; 2.00 · 10−5; 3.00 · 10−5; 5.00 · 10−5; 8.00 · 10−5;
1.00 · 10−4; 2.00 · 10−4; 3.00 · 10−4; 5.00 · 10−4; 8.00 · 10−4;
1.25 · 10−3; 2.00 · 10−3; 3.33 · 10−3; 5.00 · 10−3; 1.00 · 10−2;
2.00 · 10−2; 3.00 · 10−2; 5.00 · 10−2; 8.00 · 10−2; 1.00 · 10−1;
2.00 · 10−1; 3.00 · 10−1; 5.00 · 10−1; 8.00 · 10−1; 1.
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