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This paper presents data for supercooled squalane’s frequency-dependent shear modulus covering
frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also
reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A
model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled
liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear
compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are
each represented by a “Cole-Cole retardation element” defined as a series connection of a capacitor and
a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics.
The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with
the angular frequency as ω−1/2, has seven parameters. Assuming time-temperature superposition for
the alpha and beta processes separately, the number of parameters varying with temperature is reduced
to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type
model. From the temperature dependence of the best-fit model parameters, the following conclusions
are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-
peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the
model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent;
(4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature
range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic
bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K
to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta
process. A single-order-parameter framework is suggested to rationalize these similarities. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4979658]

I. INTRODUCTION

Many organic liquids are easily supercooled and excellent
glass formers, usually with the glass transition taking place
far below room temperature. Such systems are experimentally
convenient for studying the physics of highly viscous liquids,
the glass transition, glassy relaxation, etc., phenomena that
are believed to be universal for basically all liquids.1–8 As the
liquid is cooled, the relaxation time and the viscosity increase
by many orders of magnitude over a narrow temperature range.
Beyond the dominant and slowest alpha relaxation process
many liquids have additional faster relaxation(s), notably the
so-called beta relaxation. The alpha and beta processes are
often studied by means of dielectric spectroscopy. They are
also present, however, in the liquid’s mechanical properties,
which are the focus of this paper presenting squalane data
and comparing these to a new, general model for supercooled
liquids’ dynamic shear-mechanical properties.

Squalane is a liquid alkane consisting of a linear C24 back-
bone with six symmetrically placed methyl groups. Its system-
atic name is 2,6,10,15,19,23-hexamethyltetracosane. Squalane
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is a van der Waals liquid that is an excellent glass former.1,9–12

Squalane’s melting point is Tm = 235 K and its glass tran-
sition temperature Tg � 168 K follows the well-known rule
Tg ∼ (2/3)Tm.5,13 Squalane has a low toxicity and is used in
cosmetics as a moisturizer; due to the complete saturation,
squalane is not subject to auto-oxidation.14 In basic research,
squalane is used as a reference liquid in tribology and for elu-
cidating the mechanism of elastohydrodynamic friction.15–18

Squalane has been studied in molecular dynamics simula-
tions of nonlinear flows.19 Squalane has also been used as
a solvent for studying the intriguing Debye dielectric relax-
ation of mono-hydroxy alcohols,20 the rotation of aromatic
hydrocarbons in viscous alkanes,21 and the Stokes-Einstein
relation for the diffusion of organic solutes.22 Due to its low
vapor pressure, squalane is used as a benchmark molecule
for reaction-dynamics experiments performed under ultrahigh
vacuum conditions.23,24

Measurements of neat supercooled squalane’s dynamic
shear modulus in the MHz range were reported many years
ago.25 Subsequent studies of squalane include measurements
of its dielectric relaxation10 and dynamic shear modulus over
frequencies ranging from a few mHz to 10 Hz,9 later extended
to 30 kHz.11 The present paper covers the latter range of fre-
quencies with more accurate data and for more temperatures
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than Ref. 11. Our main motivation is not to present new data,
however, but to introduce an electrical equivalent-circuit model
representing data very well. The model is a modification of one
discussed previously by our group by introducing a crucial
extra capacitor.26

Section II briefly presents the squalane data and the
piezo-ceramic transducer used to obtain them. Section III
introduces electrical-equivalent circuit modeling of linear
shear-mechanical response functions in general and motivates
the model. It has four free parameters of dimensions and three
dimensionless “shape” parameters that are fixed from the fit-
ting to data at a selected temperature. Section IV shows that the
model fits data very well, in fact considerably better than a sim-
ilar Havriliak-Negami (HN) type model with the same number
of parameters. While the paper’s main focus is on dynamic
shear data, Section V supplements these by presenting the
dynamic adiabatic bulk-modulus data. It is shown that these
may be interpreted in terms of an electrical-equivalent circuit
model in which the dissipation is controlled by the dynamic
shear modulus. Finally, Section VI gives a discussion with
a focus on the temperature dependence of the best-fit model
parameters, showing that these conform to the shoving model
and that the beta process activation energy is temperature inde-
pendent. If these two findings were built into the model, it
would have just two parameters varying with temperature.

II. DATA FOR THE DYNAMIC SHEAR MODULUS
OF SQUALANE

This paper focuses on the modeling of the dynamic
shear-mechanical properties of metastable equilibrium super-
cooled liquids, in casu squalane above its glass transition
temperature 168 K. Measurements were performed at tem-
peratures down to 146 K, however, which is well into
the glassy phase. Data were obtained with 2 K intervals
using the three-disc piezo-ceramic shear transducer shown
in Fig. 1(a)27 in the setup described in Ref. 28. The home-
built cryostat used keeps the temperature stable within
10 mK. References 29 and 30 give details about the cryostat
and the impedance-measuring setup.

Before measuring, the filled transducer was annealed at
the highest temperature for 30 h in order to equilibrate the
ceramics. After this, with 2 K intervals several temperatures
were monitored in decreasing order by for each temperature
first equilibrating for 1 h, after which a frequency spectrum
was measured which lasted approximately 1 h. This mea-
surement was repeated to ensure reproducibility, i.e., that the
liquid is in metastable equilibrium and that the setup works
properly. All in all, approximately 3 h were spent at each tem-
perature. The protocol is illustrated for a few temperatures
in Fig. 1(b). After all measurements had finished, the empty
transducer was calibrated.28 If everything works, a set of data
as those analyzed below may be obtained within less than a
week.

Figures 2(a) and 2(b) present the real and imaginary parts
of squalane’s dynamic shear modulus G(ω) in which ω is the
angular frequency. Shown in Fig. 2(c) is the so-called Nyquist
plot of G(ω), i.e., the real versus imaginary parts parametrized
by the frequency; in this figure our data for the glassy
phase were included. A strong beta relaxation is observed.
Figures 2(d) and 2(e) present the real and imaginary parts of
the dynamic shear compliance J(ω) = 1/G(ω), while Fig. 2(f)
gives the Nyquist plot of J(ω).

III. ELECTRICAL-EQUIVALENT CIRCUIT MODEL
A. Philosophy of circuit modeling

Some scientists regard the modeling of linear-response
data by an electrical-equivalent circuit as old-fashioned. A
common argument is that all data may be fitted by an electri-
cal circuit and that, consequently, such models can contribute
little if physical insight is the goal. In our opinion this is not
quite correct,32 and the following reasons may be given for
using electrical-equivalent circuits for rationalizing data as a
first step towards a physical understanding:

• Physical consistency. Circuit models guarantee that
inconsistencies are avoided. Not only is linearity
ensured, so is causality and positive dissipation,
requirements that any linear-response model must obey.

FIG. 1. (a) A three-disc transducer used for measuring the dynamic shear modulus over frequencies from 1 mHz to 50 kHz above which resonances make it
impossible to measure in the quasi-static mode.27 This paper presents data from 10 mHz to 30 kHz. The discs are polarized piezo-ceramics with electrodes
on both sides that are electrically coupled in such a way that when the middle disc expands radially, the upper and lower discs contract by half the amount.27

Each disc has a thickness of 0.5 mm and a diameter of 20 mm. The liquid is placed between discs 1 and 2 and between discs 2 and 3 at room temperature
at which squalane has a low viscosity. (b) Examples of data for the imaginary part of the shear modulus as a function of frequency, G′′(ω), illustrating the
measurement protocol: Starting at a high temperature, data were generated by moving in steps down to 146 K. At each temperature, the sample was equilibrated for
1 h before measuring, which takes approximately another hour (in the present case when the lowest frequency is 10 mHz). The procedure was repeated to ensure
reproducibility and that the sample is in (metastable) equilibrium. The 166 K data show that the equilibrium was not reached here. We do not analyze data below
168 K, but above this temperature the liquid is in a state of metastable equilibrium and there is full reproducibility.
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FIG. 2. The dynamic shear modulus G(ω) and shear
compliance J(ω) = 1/G(ω) of the metastable equilib-
rium supercooled liquid phase of squalane for tempera-
tures ranging from 168 K to 190 K probed at intervals of
2 K.31 The blue symbols correspond to low temperatures
and the red ones to high temperatures. (a) and (b) show the
real and imaginary parts of G(ω) ≡ G′(ω) + iG′′(ω). (c)
shows a Nyquist plot of G(ω) with the real part along the
x axis and the imaginary part along the y axis in a curve
parametrized by the frequency; we here included data
extending into the glassy state in which only theβ process
is observable. (d) and (e) show the real and negative imag-
inary parts of J(ω) ≡ J′(ω)−iJ′′(ω); (f) shows a Nyquist
plot of J(ω) (excluding the highest temperatures).

• Simplicity. The electrical circuit defines the model.
Even simple circuits represent several differential equa-
tions.
• Same language as that used for modeling the experi-

mental setup. This paper is concerned with the inter-
pretation of linear-response data for the dynamic shear
modulus. The experimental setup used for obtaining the
data is itself modeled by an electrical-equivalent cir-
cuit,28–30 and there is an element of economy in using
electrical-equivalent circuits for both purposes.
• High- and low-frequency limits. These limits are

straightforward to identify for a given circuit.
• Couplings between different linear-response func-

tions are easily introduced. For glass-forming liq-
uids, a major challenge is to understand the relation
between different frequency-dependent linear-response
functions like the shear and bulk moduli, dielectric
constant, specific heat, etc.33 Such relations are con-
veniently modeled via electrical-equivalent circuits
related by transformers in which, for instance, charge
is transformed into mechanical displacement/entropy,
electrical current into velocity (shear rate)/heat cur-
rent over temperature, and voltage into mechanical
force/temperature.34,35 Shifts between different types
of variables are represented by transformer elements
with the property that the power—the product of gener-
alized “voltage” and “current”—is invariant. For more
details on the general “energy-bond” formalism, the
reader is referred to Refs. 34–38; a brief discussion is
given below.
• Straightforward extension to a nonlinear model via

parametric control. An electrical-equivalent circuit’s

parameters vary with the thermodynamic state point.
Having such dependencies controlled by charges or
voltages at particular points of the circuit opens for
constructing simple models of physical aging, which
automatically ensure that no fundamental physical laws
are violated.

Once an electrical-equivalent circuit has been constructed
representing data accurately, this provides an important input
for constructing a microscopic physical model of the system
in question. We regard the circuit as a help toward eventually
obtaining the ultimate microscopic understanding, not as the
final model itself.

B. Basic circuit elements

Rheology has its own circuit language based on dashpots
representing the Newtonian viscous flow and springs repre-
senting a purely elastic response.39 This language is math-
ematically equivalent to that of electrical-circuit modeling,
and which language to use is a matter of convenience. As
physicists, we are comfortable with electrical circuits. Their
use has the additional advantage of easily relating to dielec-
tric relaxation phenomena, which are of great importance for
glass-forming liquids40 and experimentally closely connected
to the shear-mechanical properties.41–44

Translating from electrical to rheological circuits is a bit
counterintuitive when it comes to the diagrammatic represen-
tation because series connections become parallel connections
and vice versa: Two elements in series in an electrical cir-
cuit have the same current, which corresponds to the analo-
gous rheological elements being placed in parallel because
the two shear displacements are identical. Likewise, an
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electrical-circuit parallel connection translates into a mechan-
ical series connection. Once this is kept in mind, however, the
translation between the two languages is straightforward and
unique.

Since electrical-equivalent circuits are used for model-
ing dynamic mechanical relaxation phenomena, we shall not
distinguish between the dynamic capacitance C(ω) and the
dynamic shear compliance J(ω). As mentioned, there is a
general circuit-modeling language—the energy-bond graph
formalism34–37—which may be used also, e.g., for thermal
relaxation phenomena. An energy bond is characterized by
an “effort” variable e and a “flow” variable f, the product
of which gives the power transferred into the system from
its surroundings. For instance, for a thermodynamic energy-
bond e is the temperature deviation from a reference tem-
perature and f is the entropy current, i.e., the heat flow over
temperature.34,45,46

How to translate electrical linear-response functions to the
corresponding rheological ones? With the energy-bond for-
malism in mind, the displacement q represents the electrical
charge or shear displacement (strain), the flow given by f ≡ q̇
represents the electrical current or shear rate, and the effort e
represents the voltage drop or shear stress.34,36,37

The most important complex-valued linear-response func-
tions translate as follows when given as functions of the
angular frequency ω in the standard way, e.g., q(t)
=Re

[
q(ω) exp(iωt)

]
in which q(ω) is the complex amplitude:

• Electrical capacitance C(ω) corresponds to the complex
shear compliance J(ω) since both are equal to displace-
ment over effort, i.e., q(ω)/e(ω). If the symbol∼ is used
for “corresponds to,” this is summarized as follows:

C(ω) ∼ J(ω) ∼
q(ω)
e(ω)

. (1)

• Inverse electrical capacitance 1/C(ω) corresponds to
the complex shear modulus G(ω) = 1/J(ω) since both
are equal to effort over displacement, i.e., e(ω)/q(ω),

1
C(ω)

∼ G(ω) ∼
e(ω)
q(ω)

. (2)

• Electrical impedance Z(ω)= 1/Y (ω) corresponds to the
complex shear viscosity η(ω) since both are equal
to effort over flow, i.e., e(ω)/f (ω) = e(ω)/q̇(ω)
= e(ω)/(iωq(ω)),

Z(ω) ∼ η(ω) ∼
e(ω)

iωq(ω)
. (3)

Three basic circuit elements are used here (Fig. 3(a)):
resistors, capacitors, and constant-phase elements (CPEs).47

A CPE is characterized by a capacitance that as a function of
ω varies as

C(ω) ∝ (iω)−x (4)

in which 0 < x < 1 in the present case where inertia plays
no role. The name CPE reflects the fact that the ratio between
the real and imaginary parts of C(ω) is the same at all fre-
quencies, which implies a constant phase difference between
displacement and effort. The CPE is a generalization of capac-
itors and resistors because a capacitor obeys C(ω) ∝ (iω)0

= Const. while a resistor’s capacitance is given by C(ω)

FIG. 3. Electrical-equivalent-circuit modeling. (a) The three basic elements:
a resistor (R), a capacitor (C), and a constant-phase element (CPE). Their
complex, frequency-dependent capacitances—corresponding to the dynamic
shear compliance J(ω) (Eq. (1))—vary with angular frequency ω in propor-
tion to, respectively, (iω)−1, (iω)0 = Const., and (iω)−x (0 < x < 1). (b) The
Cole-Cole retardation element (CCRE) leading to the well-known Cole-Cole
expression for the capacitance (shear compliance),48 Eq. (8).

∝ (iω)−1. Thus allowing for 0 ≤ x ≤ 1 there is just a sin-
gle “Lego brick” in the model tool box, namely the CPE. Note
that Eq. (4) translates into the following:

• J(ω) ∝ (iω)−x for the CPE dynamic shear compliance;
• G(ω) ∝ (iω)x for the CPE dynamic shear modulus;
• η(ω) ∝ (iω)x−1 for the CPE dynamic shear viscosity.

C. Parametrizing the constant-phase element

For the CPE, we define a magnitude constant C0 and a
characteristic time τc by writing

C(ω) = C0 (iωτc)−x . (5)

Because the CPE is time-scale invariant, however, the con-
stants C0 and τc are not uniquely determined: the same physics
is described by using instead for any number k > 0 the mag-
nitude constant kC0 and the characteristic time k1/xτ. The
CPE is central for the model proposed below, and for the dis-
cussion of the model parameters’ temperature dependence in
fit to data (Sec. VI) we need a convention about the magni-
tude constant and the characteristic time. We take C0 to be
a universal, temperature-independent number. The motiva-
tion is that, if any physics is to be ascribed to τc, the CPE
magnitude constant C0 should also make sense physically.
Since squalane like most other organic glass-forming liq-
uids has an instantaneous shear modulus, i.e., high-frequency
plateau shear modulus, of order GPa, for both the alpha
and the beta processes we fix the magnitude constant as
follows:

C0 ≡ 1 GPa−1 . (6)

D. The Cole-Cole retardation element

What is here termed a Cole-Cole retardation element
(CCRE) consists of a series connection of a CPE and a
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capacitor (Fig. 3(b)). Recall that the capacitance C(ω) of
two elements in series with capacitances C1(ω) and C2(ω)
is given by 1/C(ω) = 1/C1(ω) + 1/C2(ω). Thus if the CCRE
capacitor’s value is J0, the CCRE compliance J(ω) is given by

1
J(ω)

=
1
J0

+
1

C0(iωτc)−x . (7)

The CCRE is named after the Cole-Cole dielectric capacitance
function from 1941,48 which in the mechanical language is the
following expression:

J(ω) =
J0

1 + (iωτ)x , (8)

where J0 is the DC (steady-state) shear compliance and τ the
inverse angular loss-peak frequency. It is straightforward to
show that Eq. (7) leads to Eq. (8) if one identifies

τ ≡ τc

(
J0

C0

)1/x

. (9)

Note that the characteristic time τc is not in general identical
to the inverse loss-peak frequency of the CCRE.

The fit to data (Sec. IV) gives CPE characteristic times
that are thermally activated for both the alpha and the beta
process. As demonstrated in Fig. 12 below, the alpha CPE
characteristic time activation energy is proportional to the
instantaneous (plateau) shear modulus, whereas the beta CPE
characteristic time activation energy is temperature indepen-
dent. Physically, we think of each CPE’s characteristic time τc

as reflecting this element’s “inner” clock somewhat analogous
to the material time of the Narayanaswamy physical-aging
theory.49–52

E. Model for the dynamic shear-mechanical properties

To arrive at an electrical-equivalent circuit model of a
supercooled liquid’s shear dynamic properties, we first note
that a standard parallel electrical RC element corresponds to
the classical Maxwell model of viscoelasticity. This beautifully
simple model is based on the assumption that the stress decays
exponentially to zero whenever the sample is at rest.1,5,53 If the
time-dependent shear stress is denoted by σ(t), the shear dis-
placement (strain) by γ, the DC shear viscosity by η0, and the
instantaneous shear modulus by G∞, the differential equation
describing the Maxwell model for an arbitrary shear rate as a
function of time, γ̇(t), is1,5,53

γ̇(t) =
σ(t)
η0

+
σ̇(t)
G∞

. (10)

The Maxwell model is equivalent to a parallel electrical RC
element because for such an element the voltage is the same
across the resistor and the capacitor, which in the Maxwell
model corresponds to having the same shear stress. The resis-
tor current corresponds to the first term on the right hand side
of Eq. (10) (a dashpot in the traditional language of viscoelas-
ticity) and the capacitor current corresponds to the second term
(a spring in the viscoelastic language).

The Maxwell model is too simple to fit data for glass-
forming liquids, however, and must be extended by including
one or more non-trivial dissipative terms. This paper’s basic
idea is that these terms are described by CCREs placed in

FIG. 4. Electrical-equivalent-circuit model for the dynamic shear-mechanical
properties of a supercooled liquid. The model is characterized by addi-
tivity of the alpha and beta compliances. The alpha process is repre-
sented by a standard RC element—corresponding to the Maxwell model
Eq. (10)—in parallel with a Cole-Cole retardation element (CCRE) with
exponent 1/2. The beta process is represented by an additional CCRE. The
model has seven parameters, one for each basic element except for the beta
CPE element that has two parameters. In the fit to squalane data, the three
dimensionless parameters are assumed to be temperature independent, cor-
responding to the assumption that the alpha and beta shear compliances
separately obey time-temperature superposition (TTS).

parallel to the Maxwell RC element, one for the alpha process
and one for the beta process (Fig. 4).

In the model, none of the two CCREs are inherently linked
to the alpha process RC element. Nevertheless, one CCRE will
be regarded as a part of the alpha process for the following rea-
sons. Previous publications of the Glass and Time group have
presented experimental28,54,55 and theoretical56–58 evidence
that in the absence of beta relaxation the alpha process has a
generic ω−1/2 high-frequency decay of the dielectric loss and
shear compliance. This is an old idea that keeps resurfacing,
recently in an interesting biophysical context,59 and a generic
ω−1/2 high-frequency decay is the characteristic feature of
the 1967 Barlow-Erginsav-Lamb (BEL) model.1,53,56,60,61 In
view of this we fix the exponent to 1/2 for one CCRE and
regard this element as a part of the alpha process. Confirming
this assignment, for liquids without a mechanical beta relax-
ation like the silicone diffusion pump oils DC704 and DC705,
the dynamic shear compliance is well fitted by the model of
Fig. 4 without the beta CCRE (unpublished). It should be
mentioned that a finite one-dimensional so-called diffusion
chain describing, e.g., the relation between temperature and
heat flux entering from one end has a compliance function
that is very close to that of the alpha CCRE of the model in
Fig. 4.

The dynamic shear compliance is a sum of the individ-
ual elements’ shear compliances. Thus the model leads to the
following expression, which defines the parametrization used
henceforth:

J(ω) = Jα

(
1 +

1
iωτα

+
k1

1 + k2(iωτα)1/2

)
+

Jβ

1 + (iωτβ)b
.

(11)

For later use, we note that the instantaneous (plateau)
shear modulus G∞ = limω→∞ G(ω) = limω→∞ 1/J(ω) is
given by

G∞ =
1
Jα

. (12)
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The modulus plateau between the alpha and beta processes at
temperatures low enough that these are well separated, i.e.,
when frequencies exist obeying ωτα � 1 and ωτβ � 1, is
denoted by Gp,αβ and given by

Gp,αβ =
1

Jα + Jβ
. (13)

In the low-frequency limit, the shear compliance diverges
as ∝ 1/iωτα, as required for any liquid with a finite DC
viscosity. In the DC limit, the real part of the shear com-
pliance, the so-called recoverable shear compliance, is given
by

Re (J(0)) = (1 + k1)Jα + Jβ . (14)

The model has seven parameters:

• Two compliance strengths Jα and Jβ [unit: 1/GPa];
• Two relaxation times τα and τβ [unit: s];
• Two alpha “shape parameters” k1, k2 [dimensionless];
• The beta CCRE exponent b [dimensionless].

We shall assume that time-temperature superposition (TTS)
applies for both the alpha and the beta processes, implying that
in fit to data the three dimensionless shape parameters k1, k2,
and b do not vary with the temperature. The parameters allowed
to vary with temperature are the two compliance strengths and
the two relaxation times.

The characteristic times of the alpha and beta CPEs are
denoted by τc,α and τc,β , respectively. In the below fit to the
squalane data we take as mentioned the constants k1 and k2

to be independent of temperature. This implies that τc,α ∝ τα
with a temperature-independent constant of proportionality,
and for this reason τc will not be discussed separately from
τα. The beta characteristic time τc,β , on the other hand, is not

proportional to τβ in its temperature variation, which makes
both beta times important to keep track of (Sec. VI).

IV. FITTING THE MODEL TO THE DATA
FOR SQUALANE

The model was fitted to the squalane data of Fig. 2
using MATLAB’s “fminsearch” Nelder-Mead downhill sim-
plex least-squares fitting procedure. The fit excluded data
taken at too low a temperature to be in equilibrium or at such
high temperatures that the alpha and beta process have almost
completely merged. These limitations leave data for temper-
atures between 168 K and 182 K for fitting and parameter
identification.

The data for the real and imaginary parts of the frequency-
dependent shear modulus cover angular frequencies ranging
from 10 mHz to 30 kHz, with up to 16 frequencies per decade
evenly distributed on a logarithmic scale. The data were fitted
to Eq. (11) for the shear-modulus (fitting to the shear compli-
ance would have been dominated by the low-frequency com-
pliance divergence). First, the three temperature-independent
shape parameters k1, k2, and b were identified by fitting to the
172 K data, which have the alpha and the beta loss peaks both
well within the frequency window, but still clearly separated.
Subsequently, the four remaining parameters were determined
from the best fit at each temperature.

Figure 5 compares model fits (full green curves) to
data (black crosses). Figure 5(a) compares model predic-
tion to data for the real part of the dynamic shear modulus,
Fig. 5(b) compares the same for the imaginary part, and
Fig. 5(c) compares model prediction versus data in the Nyquist
plot of the shear modulus. Figures 5(d)–5(f) give the same for
the dynamic shear compliance.

FIG. 5. Comparison between liquid-phase data (black
crosses) and model predictions Eq. (11) (full green
curves). At each temperature the four free parameters
of dimension were determined as described in the text,
after first identifying the three temperature-independent
dimensionless parameters k1, k2, and b by fitting to the
172 K data.
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The fits are excellent, but given the number of free param-
eters this may not appear very surprising. Our experience with
fitting data to similar models over the last 20 years shows,
however, that the present model is better than other models
with the same number of parameters. As an illustration of this,
we have compared to a fit assuming a Havriliak-Negami (HN)
type function for the alpha process. The function fitted to data
is the following:

J(ω) = JHN
α

(
1 −

1

(1 + (iωτHN
α )

c
)
a

)−1

+
JHN
β

1 + (iωτHN
β )

b
. (15)

This has the same number of parameters as Eq. (11): two
strength parameters, two relaxation times, and three dimen-
sionless shape parameters (a, b, c). A qualitative difference to
Eq. (11) should be mentioned, because the latter has a finite
recoverable compliance, i.e., a finite low-frequency limit of
J ′(ω), whereas Eq. (15) like the BEL model60 diverges in this
limit. We determined the best-fit parameters in the same way
as above. The fit to data is not as good as that of Eq. (11),
which is clear from Fig. 6 that compares the overall quality of
the two best fits as functions of temperature.

Returning to the model Eq. (11), Fig. 7 shows the tem-
perature variation of the four free parameters. Figure 7(a)
shows how the alpha and beta relaxation times τα and τβ
vary with temperature. As for any glass-forming liquid, the
alpha relaxation time increases strongly when the temperature
is decreased. The beta relaxation time τβ is almost constant
and, in fact, not even a monotonic function of temperature.
In contrast, the beta characteristic time τc,β decreases with
temperature. The dielectric beta loss-peak frequency is usu-
ally reported to be Arrhenius,40,65 but it is important to note
that almost all literature data for τβ (the inverse beta loss-
peak frequency) refer to the glass phase, not to the metastable
liquid phase about Tg. Figure 7(b) shows the best-fit shear-
compliance strengths Jα and Jβ as functions of temperature.
Note that the beta process strength varies considerably more
than the alpha strength.

These findings are consistent with previous ones for the
beta dielectric relaxation process, which may be summarized
as follows:62–64,66 In the metastable liquid phase, the relaxation

FIG. 6. Comparing the quality of fitting data to Eq. (11) and to Eq. (15),
quantified via the frequency-averaged deviation of the best-fit complex shear
modulus from that of the data. Although the two models have the same number
of parameters, the former fits the data better by at least a factor of two and
more than a factor of ten at low temperatures.

FIG. 7. Temperature dependence of the parameters when Eq. (11) is fitted
to the shear-modulus data of Fig. 2 assuming temperature independence of
the three shape parameters k1, k2, and b, which were identified by fitting to
the 172 K data resulting in k1 = 7.9, k2 = 4.8, and b = 0.36. (a) shows the
alpha and beta relaxation times, τα and τβ , as well as the beta characteristic
time τc,β . Note that τc,β differs from τβ and has a more systematic variation
with temperature. τα decreases strongly with increasing temperature, which
is a well-known feature of glass-forming liquids. (b) shows the temperature
dependence of the shear-compliance strengths Jα and Jβ . The latter changes
by a almost factor of three, whereas Jα changes by just 25% over the same
range of temperatures. The results of (a) and (b) for the beta process are
qualitatively similar to previous findings of ours for the dielectric beta loss-
peak frequency of glass-forming liquids, which is found to be Arrhenius in
the glass phase but only weakly temperature dependent in the metastable
liquid phase, whereas the beta strength has the opposite behavior with strong
temperature dependence in the liquid and weak in the glass.62–64

strength increases considerably with increasing temperature,
whereas the relaxation time is almost temperature indepen-
dent; in the glassy phase, the strength is almost constant,
whereas the loss-peak frequency (inverse relaxation time) is
strongly temperature dependent (Arrhenius). As an alternative
to the minimal model of Ref. 64, it is possible to rationalize
these properties of the beta process—as well as its behavior
under annealing of the out-of-equilibrium liquid—by assum-
ing that the relaxation strength freezes at the glass transi-
tion, whereas the characteristic time τc,β is Arrhenius with
an activation energy that is unaffected by the glass transition
(unpublished).

V. DATA FOR THE DYNAMIC ADIABATIC BULK
MODULUS OF SQUALANE

Figure 8 shows our transducer for measuring the dynamic
adiabatic bulk modulus. It consists of a radially polarized
piezo-ceramic spherical shell with electrodes on the inner
and outer surfaces. An applied electrical potential induces a
slight compression or expansion of the sphere in which the
liquid is placed (the top is a reservoir allowing for the liquid’s
thermal expansion).28,67,68 Figure 9 shows data for the real
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FIG. 8. The piezo-ceramic transducer used for measuring the dynamic adia-
batic bulk modulus.28–30,67,68 The device consists of a piezo-electric ceramic
shell with electrodes on both sides with wires connected to a frequency ana-
lyzer. The inner diameter is 18 mm and the shell thickness is 0.5 mm. A small
hole in the shell makes it possible to fill the transducer with liquid at room
temperature at which the viscosity is low. A tube acting as a liquid reservoir
is attached on top of the hole, which ensures that the sphere remains filled as
the liquid inside contracts upon cooling.

and imaginary parts of the dynamic adiabatic bulk modulus
K(ω) = K ′(ω) + iK ′′(ω) as well as a Nyquist plot of the same
data.

Comparing the bulk modulus loss in Fig. 9(b) to the
shear modulus loss in Fig. 2(b), we see a qualitatively sim-
ilar behavior with an alpha loss peak that moves rapidly
to lower frequencies upon cooling and a large beta peak

FIG. 9. Data for the dynamic adiabatic bulk modulus of squalane K(ω)
= K′(ω) + iK′′(ω) covering temperatures from 172 K to 200 K. (a) and
(b) show the real and the imaginary parts of K(ω), respectively. (c) shows a
Nyquist plot of the same data.

appearing. To the best of our knowledge, this is the first
observation of a beta process for the dynamic bulk modulus.

How to interpret the similarity between the dynamic shear
and bulk moduli? This finding is consistent with many previ-
ous ones,28,33 but it is important to emphasize that there is
no fundamental reason for the similarity. This is because the
dynamic bulk modulus—whether adiabatic or isothermal—is
a scalar linear-response function, whereas the dynamic shear
modulus is a vector linear-response function. As discussed by
Meixner long time ago, these functions belong to fundamen-
tally different symmetry classes.45 Nevertheless, by reference
to the Eshelby picture of structural rearrangements within a
surrounding elastic matrix, Buchenau has recently discussed
how the relaxational parts of the bulk and shear moduli may
be connected69 in arguments that may be extended to finite
frequencies, thus establishing a connection between G(ω) and
K(ω).

Referring to the energy-bond formalism,34–38 there are
two fundamental thermodynamic scalar energy bonds: a ther-
mal energy bond with effort equal to temperature difference
and flow equal to entropy current, and a mechanical bond with
effort equal to minus pressure difference and flow equal to
the rate of volume change. Consistent with Buchenau’s rea-
soning,69 we propose a general energy-bond model in which
all dissipation connected with the two scalar thermodynamic
energy bonds is controlled by the dynamic shear modulus (or,
equivalently, the dynamic shear compliance). A representation
of this idea is given in Fig. 10(b). An energy-bond diagram
of this sort implies that the system in question is a “single-
order-parameter” liquid.38,70–72 This is equivalent to being an
R simple system, i.e., one with so-called isomorphs, which
are lines in the thermodynamic phase diagram along which
the dynamics is invariant to a good approximation.73–76

In Fig. 10(b) there may be several non-dissipative ele-
ments, but the important point is that these are all connected to
the element of Fig. 4 via a single, “internal” energy bond. The
predictions for the dynamic adiabatic/isothermal bulk mod-
uli (or those of the dynamic expansion coefficient77) depend,
of course, not just on the dynamic shear modulus (compli-
ance) but also on the non-dissipative elements. For a system
described by Fig. 10(b), one a priori expects that all the scalar
response functions at any given temperature have alpha and
beta processes located at frequencies similar to those of the
shear modulus’ alpha and beta processes.

As an example of the general modeling philosophy of
Fig. 10(b), Fig. 11(b) gives a specific model for K(ω) in
terms of G(ω). First, Fig. 11(a) demonstrates the similarity
between the relaxation times of the equilibrium shear-stress
fluctuations determining G(ω) via the fluctuation-dissipation
theorem (red circles) and those of the pressure fluctuations
determining K(ω) (blue stars). Clearly, these two times are of
the same order of magnitude and have similar dependence on
temperature. This means that a model of the form given in
Fig. 10(b) makes sense. There are many different such mod-
els, the one shown in Fig. 11(b) is just an example. At each
temperature there are only a few fitting parameters while the
entire nontrivial frequency dependence is determined by G(ω).
In the fit to data, we took the zero-frequency (adiabatic) bulk
modulus K(0) measured at the temperature in question as input,
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FIG. 10. Schematic energy-bond diagram for the linear dynamic responses of the two fundamental scalar thermodynamic energy bonds: the thermal bond
defined by effort and flow being temperature T and entropy flow Ṡ, respectively, and the mechanical bond defined by effort and flow being minus pressure �p and
the rate of volume change V̇ , respectively. (a) The general scenario. (b) The situation in which all dissipation via a single “internal” energy bond is controlled
by the dynamic shear modulus, an instance of the general single-order-parameter scenario.70 This diagram provides an abstract link between the vector energy
bond associated with the mechanical shear deformation and the two scalar thermodynamic energy bonds.

FIG. 11. (a) Loss-peak frequencies of the dynamic shear modulus (red circles) and the dynamic adiabatic bulk modulus (blue asterisks) as functions of
temperature. Clearly, the two probes of the dynamics have similar relaxation times and follow each other in the slowing down upon cooling. This may be
rationalized by a model in which the bulk modulus is controlled by the shear modulus. (b) An example of such a model. This is an instance of the general model
philosophy illustrated in Fig. 10(b) in which all dissipation is controlled by the dynamic shear modulus. (c) Results from fitting the model in (b) to the dynamic
bulk modulus data plotted in a Nyquist plot. Inputs to the fits at each temperature are the measured G(ω) and zero-frequency adiabatic bulk modulus K(0)
(inverse compressibility), leaving two fitting parameters to determine the three capacitors of (b). We conclude that it is possible to fit the dynamic bulk modulus
data in this way, at least qualitatively.

leaving just two free parameters. Nevertheless, the Nyquist plot
of K(ω) demonstrates a reasonable fit (Fig. 11(c)).

VI. DISCUSSION

This paper has demonstrated that dynamic shear-
mechanical data for squalane may be fitted very well with
the electrical-equivalent circuit model of Fig. 4 leading to
Eq. (11) for the dynamic shear compliance. The model
assumes additivity of the alpha and beta shear compli-
ances. The model has seven parameters, one more than
alternative phenomenological models.26,78 In the fit to data,
however, the three dimensionless shape parameters were
taken to be temperature independent, a consequence of
our fundamental assumption that time-temperature super-
position applies separately to both the alpha and the beta
compliance functions. We conjecture that this applies gener-
ally for glass-forming liquids. In this picture, the observed
deviations from TTS derive simply from the merging of the
alpha and beta processes.

How to physically justify that the Maxwell RC element
and the two CCREs should be combined in a way that is

additive in their shear compliances, not in their shear mod-
uli? There are no logically compelling arguments for this. We
think of it as follows. Imagine a small particle in the liquid. The
particle’s mean-square displacement (MSD) as a function
of time in one axis direction, 〈∆x2(t)〉, will have a rapid
increase on the phonon time scale, followed by a transition
to the long-time diffusive behavior proportional to time. If
one assumes that the alpha and beta processes are statis-
tically independent,79 this implies for the particle’s motion
that ∆x(t) = ∆xα(t) + ∆xβ(t) with 〈∆xα(t)∆xβ(t)〉 = 0. In
this case, the MSD is a sum of an alpha and a beta con-
tribution: 〈∆x2(t)〉 = 〈∆x2

α(t)〉 + 〈∆x2
β(t)〉. If one moreover

assumes the Stokes-Einstein relation between the dynamic
shear viscosity and the particle’s dynamic friction coefficient,
this translates via the fluctuation-dissipation theorem into addi-
tivity of the dynamic shear compliances for the alpha and beta
processes.

In regard to the single-particle MSD, note that associ-
ated with any function 〈∆x2(t)〉 there is a characteristic time,
namely the time at which the particle has moved a typical
intermolecular distance. This is how we think of each CPE
basic element’s characteristic τc, which was defined by the
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absolute value of the compliance at ω = 1/τc being 1 GPa�1

(Eq. (6)). For the beta process, it is important to distin-
guish between this time and the inverse loss-peak frequency
τβ , because via Eq. (9) the latter time’s temperature varia-
tion reflects the combined effect of the changing compliance
strength Jβ and the Arrhenius τc,β (see below).

The electrical-equivalent circuit model Fig. 4 is identical
to that proposed in Ref. 26 except for an important extra capac-
itor, the one in the alpha CCRE. This capacitor eliminates an
unphysical feature of our previous model, which predicted an
infinite recoverable shear compliance. This unphysical feature
is also present in the BEL model from 1967.1,60 Introduc-
ing the extra capacitor has the added benefit of resulting in
symmetry between the alpha and beta CCREs, the only dif-
ference being that the alpha CCRE has the exponent fixed
to 1/2.

We note that if the alpha CCRE’s relaxation time is much
shorter than RC, the circuit mimics the situation reported in
recent papers for the dielectric relaxation of monohydroxy
alcohols, for which one observes a low-frequency Debye-type
process followed by, in order of increasing frequency, first an
alpha and then, in most liquids, a beta process.80,81

As regards the temperature dependence of the best-fit
model parameters for squalane we have compared to the pre-
diction of the shoving model.5,82 If τ0 � 10−14 s is a typi-
cal phonon time and V c the so-called characteristic volume
assumed to be temperature independent, the shoving model
predicts the following relation between the temperature varia-
tion of the alpha relaxation time and that of the instantaneous,
i.e., high-frequency plateau, shear modulus G∞:

τα(T ) = τ0 eVcG∞(T )/RT. (16)

The shoving model, which links a supercooled liquid’s fragility
to the temperature variation of G∞, fits data well for many
glass-forming liquids.5,28,82,83 This model relates directly to
Eq. (11) since if it applies, via Eq. (12) the number of
temperature-dependent fitting parameters is reduced from four
to three. We have not made this assumption in the fit to data, but
have instead checked Eq. (16) against the best-fit parameters.
This is done in Fig. 12 in which the relaxation times τα and τc,β

have been converted into temperature-dependent activation
energies E(T ) by writing for each τ(T )= τ0 exp(E(T )/RT )
with τ0 = 10−14 s. According to the shoving model Eα(T )
=VcG∞(T ). By comparing the black crosses and the red triang-
les in Fig. 12, we conclude that the shoving model applies with
G∞ calculated from the best fit model parameters via Eq. (12).

If the shoving model is instead interpreted with G∞ taken
to be the modulus between the alpha and beta processes, the
quantity Gp,αβ given by Eq. (13), the model does not apply
(blue crosses). This confirms the basic physical assumption of
the shoving model, which is that the actual barrier transition
for a rearrangement of molecules is very fast, presumably on
the picosecond time scale. Consequently, the activation energy
is proportional to the shear modulus of the liquid measured on
this short time scale at which the liquid behaves like a solid, not
to the plateau modulus between the alpha and beta relaxations.

Our model for G(ω) (Fig. 4) consists of a Maxwell
element in parallel with two CCREs. One may speculate
that additional high-frequency mechanical processes beyond

FIG. 12. Activation energies calculated from E = RT ln(τ/τ0) for the alpha
relaxation time τα (red triangles) and the beta characteristic time τc,β (red
circles), assuming in both cases that τ0 = 10−14. Eβ is temperature inde-
pendent to a good approximation, showing that τc,β is Arrhenius. The alpha
relaxation time activation energy is compared to the prediction of the shov-
ing model (black crosses) according to which Eα = VcG∞ where V c is the
“characteristic” (temperature-independent) volume (per mole) and G∞ is the
instantaneous, i.e., high-frequency limiting shear modulus, which according
to Eq. (11) equals 1/Jα . The shoving model is confirmed. If one in this
model, however, instead of G∞ uses the modulus corresponding to frequen-
cies between the alpha and beta processes, Gp,αβ (Eq. (13)), the Eα prediction
results in the blue crosses that do not fit the red triangle data. The shoving-
model based activation energies E(G∞) and E(Gp,αβ ) were both normalized
to predict the correct alpha activation energy at T = 182 K (leading to V c being
9% of the molar volume for the E(G∞) case).

the alpha and beta relaxations can be included by adding
further CCREs in parallel, each one still subject to time-
temperature superposition, i.e., with temperature-independent
shape parameters.

To summarize, an excellent fit to the dynamic shear-
mechanical data of squalane is provided by an electrical-
equivalent circuit model with seven parameters. The model
assumes an ω−1/2 high-frequency decay of the alpha com-
pliance,56–58,60 additivity of the alpha and beta compliance
functions, and that these functions separately obey time-
temperature superposition. The latter assumption reduces the
number of parameters varying with temperature to four. The
best fit parameters confirm the shoving model and show,
moreover, that the beta process characteristic time has a
temperature-independent activation energy, i.e., is Arrhenius.
If these findings were both incorporated as model assumptions,
the number of parameters varying with temperature would
reduce to two. These could be taken to be, e.g., the compliance
magnitudes Jα and Jβ .

We also presented data for the adiabatic dynamic bulk
modulus and showed that these may be interpreted in terms of
a single-order-parameter model in which all dissipation is con-
trolled by the shear-mechanical properties. Such a model con-
nects the class of scalar viscoelastic linear-response functions
to that of vector symmetry.45

In regard to future works, one obvious thing is to compare
the model to shear-mechanical data for other glass-forming
liquids. We have not done so systematically, but have found
in all cases so far investigated that the model works well
(unpublished). The hope is that the model is general, in this
way providing a step towards a microscopic understanding of
supercooled liquids’ shear-dynamical properties.
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