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I. INTRODUCTION 

Correlation effects in atomic transport in solids refer to those effects which enhance or 
depress the value of the transport quantity in question compared with that for a random 
walk. In general, correlation effects are manifested as a memory between successive jump 
vectors of the diffusing entity. As is shown herein, the diffusing entity can be an ion, a 
group of ions of the same type, or even the entire system. 

Historically, the study of correlation effects in diffusion has mainly been directed to tracer 
correlation effects. As a prelude to our detailed discussion here of correlation effects in ionic 
conductivity, it is worthwhile to review briefly tracer correlation effects. Bardeen and Herring1 
discovered the tracer correlation effect in diffusion some 30 years ago. Since that time, the 
effect has been the subject of extensive continued study. 

Tracer Correlation effects are conventionally embodied in the so-called tracer correlation 
factor f, which appears as a correction factor in the random walk expression for the tracer 
diffusion coefficient D*. For isotropic cubic solids D* is expressed as'-2 

where r is the atomic jump frequency and a* is the jump distance. The tracer correlation 
factor itself is conventionally expressed via the Einstein equation as2 

f = lim(AR2)/na'2 
n-m 

where AR is the displacement of a particle after n jumps in time t and the Dirac brackets 
indicate a large number of ions for averaging purposes. 

Equation 2 is conventionally expanded to 

where rlr r,, . . . ,rn are the individual displacements of a particle. The correlation between 
directions of jump vectors is a natural consequence of the proximity of the defect (which 
makes the jump possible) to a given tracer atom after the atom has just jumped with the 
defect, see Figure 1. In this figure, which uses the vacancy as the defect for diffusion, we 
assume that the tracer atom (hatched) has just exchanged places with the vacancy. Since 
the vacancy is still adjacent to the tracer atom, the tracer may reverse its last jump with a 
probability greater than a jump elsewhere. This is a rudimentary description of the correlation 
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FIGURE 1. Illustration of the vacancy mechanism in the square planar lattice 
(see text for a description of the correlation factors f and g associated with 
the mechanism). 

process, but it suffices well enough for our purposes. Other reasons for tracer correlation 
include a tracer atom (now formally an impurity) which has an exchange frequency with 
the vacancy different from the host,3 and the so-called physical correlation e f f e ~ t , ~  e.g., in 
ordered alloys, where an atom which takes a jump from its lattice to the lattice of the other 
component, i.e., from a “right” site to a “wrong” site, tends to reverse that jump on the 
next jump in order to maintain order. 

Much of the earlier work on tracer correlation was concerned with the calculation of f 
for the common diffusion mechanisms in the common lattices. This kind of work has 
continued up to the present day, partly to obtain f to a higher level of accura~y,~  sometimes 
exactly,6 and partly for more specialized mechanisms in specialized lattices.’ Other early 
work concentrated on the calculation of f  for impurity diffusion. The large literature on the 
subject was reviewed in 1970 at length in an authoritative review by Le Claire.* More recent 
calculations in the area have not been reviewed. 

Starting about the time of Le Claire’s review, calculations were made of f for models 
which required master equation approaches for their solution. Sat0 and Kik~ch i~ .* - ’~  and co- 
workers are the pioneers in this area. They developed their Path Probability Method (PPM) 
to cope with problems in alloys which exhibit order (previous to this, only random alloys 
had been examined), superionic conductors, and nonstoichiometric compounds. A little later, 
numerical calculations based on Monte Car10 computer simulation were also performed on 
similar models and, in fact, also for many of the more familiar diffusion mechanisms in the 
common lattices. l6 

The substantial interest in the rather innocuous quantity f comes about not because f is a 
particularly important quantity numerically in the expression for the tracer diffusion coef- 
ficient. For example, in the f.c.c. lattice and the vacancy mechanism, f equals 0.7815 and 
therefore reduces the value of D* only some 22% from the random walk value. This is 
really not much greater than the reproducibility in measuring D* by standard serial sec- 
tioning.” There are occasions, of course, when f is sufficiently small (e.g.. an ordered 
alloy), where the inclusion of f is in fact important. The real significance of f comes about 
because it is possible, in principle, to measure experimentally f o r  a quantity closely related 
to it. Since f is dependent upon mechanism, among other things, then a measurement of f 
can sometimes throw considerable light on the diffusion mechanism operating. The exper- 
imental methods used to determine f include the isotope effect’* and the Haven 
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The former relies on a special means of accurately measuring the small difference in the 
values of the tracer diffusion coefficient of two tracers which have been permitted to diffuse 
(usually simultaneously, though not always). The latter relies on the measurement of the 
ionic conductivity of the sample as well as the tracer diffusion coefficient and can be used 
only when the sample is principally an ionic conductor. The Haven Ratio affords a convenient 
introduction to correlation effects in ionic conductivity. 

The Haven Ratio and its connection to f originally depended on the ionic conductivity u 
being expressed in the following form: 

u = Cq2Ta2/6kT (4) 

where C is the concentration of charge carriers, q is the ionic charge, and k and T are the 
Boltzmann constant and temperature, respectively, and a is the distance moved by the charge. 
This distance is not necessarily the same distance as the distance an ion moves, e.g., with 
the interstitialcy mechanism. The ionic conductivity can be converted to a dimensionally 
correct diffusion coefficient D, by way of the relation 

u/D, = Cq2/kT ( 5 )  

Equation 5 is sometimes called the Nernst-Einstein relation. This title is not, in fact, 
strictly correct. The exact Nernst-Einstein relation refers to a relation between a chemical 
diffusion coefficient and the ionic conductivity.*’ In addition, the exact relation contains a 
thermodynamic factor. The exact relation reduces to Equation 5 at low concentrations of 
charge carriers or under thermodynamically ideal conditions. When Equation 5 is used 
indiscriminately, it should be seen only as a way of converting an ionic conductivity to a 
dimensionally correct diffusion coefficient, D,. Such a diffusion coefficient normally has 
no meaning in the Fickian sense. That is to say, it is not necessarily a proportionality factor 
between a flux and a concentration gradient. 

When Equations 1, 4, and 5 are combined, one has for the Haven Ratio, H,: 

H, = D’/D, = f(a’/a)2 

Thus a measurment of D* and u gives direct access to f: with assumptions about the tracer 
jump distance a* and the charge jump distance a, it is possible to infer a value of f from a 
measurement of H, and, from this, to infer the mechanism of diffusion. 

This simple picture for the makeup of H, was accepted in the 1960s until Sat0 and 
Kikuchig.” showed that things could be rather more complicated. Using the PPM, they 
showed, for a lattice gas model of nearest-neighbor interacting particles diffusing on a 
honeycomb lattice with inequivalent sites arranged alternately, that the ionic conductivity 
itself included a “correlation factor”. They showed for the foregoing model that 

u = Cq2Ta2f,/6kT (7) 

where f, is the physical or conductivity correlation factor. The factor was found to be 
nontrivial, i.e., #1 when a relatively high vacancy concentration was present. In other 
words, Equation 4 is not correct in general. Sat0 and Kikuchi’s results’ for fI are shown in 
Figure 2. The existence of fi of course changed the simplicity of Equation 6 so that in general 

H, = (f/f,)(a*/a)* (8) 

Sat0 and Kikuchi’s calculation of fi was the starting point for the development of the new 

D
ow

nl
oa

de
d 

by
 [

Im
pe

ri
al

 C
ol

le
ge

 L
on

do
n 

L
ib

ra
ry

] 
at

 0
8:

05
 2

6 
Ju

ne
 2

01
6 



348 CRC Critical Reviews in Solid State and Muterials Sciences 

1.c 

0.8 

0.6 

f1  

0.4 

0.2 

n 

FIGURE 2. Path Probability Method results for the dependence off, on ion 
concentration in the honeycomb lattice:89 the effect of nearest-neighbor re- 
pulsion and alternate site inequivalence in energy. T* = kT/c, and wlc, = 
5.0, where w is the difference in site energies and c, is the interaction energy. 

area of correlation in ionic conductivity, although some years earlier Manning2’ had dis- 
covered a related effect in binary systems called the vacancy-wind effect. In the case of 
ionic conductivity u, of an impurity, this effect led to the following expression for ui: 

where qi and q, are the charges on the impurity and host ions, respectively, and <n,,> is a 
complex kinetic quantity. 

In this review, we first discuss fl, its physical meaning in the light of recent findings, 
and its formal relationship to f .  Then we discuss the binary analogs of fl and make connection 
to the vacancy-wind effect of Manning. 

11. CONDUCTIVITY CORRELATION IN THE UNARY SYSTEM 

A. General Features 
The original name for fl was the “physical correlation factor”. This was later found to 

be a somewhat unfortunate choice because the adjective “physical” was supposed to refer 
to those physical effects which we have already discussed in relation to tracer diffusion in 
an ordered alloy.4 That is to say, interactions and/or inequivalent site potential energies can 
work in such a way as to reverse disordering-like jumps. Other cases have since been found 
where these physical effects are not so obvious. Some workers have then referred to fl as 
the conductivity or charge correlation factor. Even this is not entirely satisfactory because 
fl also occurs in chemical diffusion.22 It should also be noted that in the literature sometimes 
the symbol f, is used rather than fl. We have used fl in this review. . 

In Sato and Kikuchi’s original PPM calculation fl turned up as a deviation from the 
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expected flow of ions in the static electric field. To make this clearer, let us assume that 
the motions of the current carriers in the assembly are uncorrelated. Then we can write the 
following expression for their random walk diffusion coefficient D,: 

Using Equation 5, with D, = D,, this time to convert to the ionic conductivity, we find 
that the ionic conductivity would simply be Equation 4. This is to say, the expected con- 
ductivity derives from uncorrelated motion. 

If the determination of cr is made by means of calculating the flow either by the PPM or 
by Monte Carlo simulation, and a deviation exists from Equation 4, then this deviation is 
ascribed to fl. This is perfectly reasonable and is by way of analogy with the way f represents 
a deviation in random walk behavior for D*. It does not shed much light, however, on the 
physical nature of fl. As it tumed out, for quite a few years after the discovery of fl, and 
certainly up to 1983, the physical nature of fl, and especially whether it had correlation 
factor status like f, was by no means clear. It is not going too far to say that there seemed 
to be a certain mystery surrounding f, which none of the calculations really dispelled since 
they were all based on the calculation of a flow. It must be admitted that there were skeptics 
who were quite uneasy about fl, possibly because it spoiled the simple (but incorrect) picture 
of H, and possibly because fl could not be explained in any sort of transparent physical way 
(such as f has in Figure 1) without resorting to a calculation of a flow. 

I t  turns out that the Onsager equations of irreversible thermodynamics partly by themselves 
but mostly in conjunction with the time-correlation formulas for the phenomenological 
coefficients provide the necessary understanding of f,. Let us see how this understanding 
comes about by starting with the flux equations for a system containing host ions A, tracer 
ions A*, and vacancies V. It is assumed here and in the rest of Section 1I.A that the lattice 
is cubic and the vacancy mechanism operates. All of the considerations that follow can 
readily be generalized to any other diffusion mechanism, etc. The flux equations are 

J, = LAAX, + L,,.X,. ( 1  la) 

where the L,, are the phenomenological coefficients, and the X, are the driving forces, for 
example, X, = -grad p,, where p, is the chemical potential of species i .  

Let us first show the surprising result that f itself is a conductivity correlation factor. 
Since the tracer diffusion coefficient D,. is defined by way of Fick's First Law for c,. + 
c, = const. 

ac,. 
ax 

J,. = -D,. - 

where dC,./dx is the concentration gradient, it is straightforward to show that D,. is given 
by2' 

kTV LA.,. D,. = - (- - "-*) all c,. 
N c,. C A 

where V is the volume, N is the total number of entities (tracer and nontracer ions and 
vacancies), and ci is the mole fraction of species i. Note that in the general case, D,, actually 
depends on two phenomenological coefficients, LA.,. and LA.,. For vanishingly small tracer 
concentrations such as are normally encountered experimentally, Equation 13 reduces to 
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D,. = kTVL,.,./Nc,. c,.--*O (14) 

The ionic conductivity of either or both components A and A* can also be conveniently 
expressed in terms of the Lij. In order to show that f is a conductivity correlation factor, it 
is convenient here to consider a "thought experiment". It is not one which can be performed 
experimentally, although it can be simulated easily on a computer. We consider the situation 
where only tracer ions feel the static electric field whereas host ions do not. Accordingly, 
X,. = q,.E and X, = 0, where E is the static electric field strength. The flux of A* is 
given by 

J,. = q,.EL,.,. (15) 

and the ionic conductivity of the A* ions can easily be shown to be given by2' 

Accordingly, when we combine Equations 14 and 16 for the condition c,. -+ 0, we have 

uA./DA. = C,.qi./kT (17) 

Since D,. can always be written in the correlated random walk form (Equation I ) ,  then by 
virtue of Equation 17 u,. must also contain f (cf. Equation 7): 

u,. = C,.q:.Ta2f/6kT c,.+O (18) 

From Equation 18 we see that f itself clearly can have the status of a conductivity correlation 
factor, i.e., it reflects a deviation in the flow of the A* ions in a neutral matrix of A. Thus 
we have shown, not that f, enjoys correlation factor status like f, but rather the converse, 
that f can have conductivity correlation factor status like f, enjoys! 

An important development in the area of solid-state diffusion is the fact that the L,J can 
be expressed in terms of atomistic Einsteinian formulas24 

L,J = lim lim(6VkTt)-'(AR(')(t) * AR'J)(t)) 
V-m h r n  

where AR"' (t) is the total displacement of species i in time t and the Dirac brackets denote 
a thermal average. In practical applications of Equation 19 (e.g. in computer simulations), 

mulative and may extend outside the finite volume. 
It is instructive at this point in our discussion to sketch a simple derivation of Equation 

19, taking advantage of the fact that the flux equations are perfectly general and apply even 
to hypothetical situations which are not easily realized in the laboratory. Let us first consider 
a single particle alone in the world performing a random walk. The fundamental equation 
which characterizes the motion of the particle is the Einstein equation 

the average is calculated with periodic boundary conditions, while the vector AR") 1s ' cu- 

(AR2(t)) = 6Dt (20) 

Here, the diffusion coefficient D is linked to the mobility u by the Nernst-Einstein equation 
(exact in this form in the limit of a single particle) 
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Note that the mobility is the velocity per unit field. (The ionic conductivity is simply Cqu.) 
By combining Equations 20 and 21, we find that 

u = lim q(AR2(t))(6kTt)-' 
I-D- 

where the limit t + Q) is introduced because Equation 10 is only valid in the limit of large 
times. Equation 22 is a special case of the celebrated fluctuation-dissipation theorem.25 The 
general idea is that the linear response toward an external field is determined by the size of 
certain fluctuations in thermal equilibrium. Thus, according to Equation 22, the mobility is 
proportional to ym + w(A P2(t))lt, where P = q R is the dipole moment. Now, since the 
fluctuation-dissipation theorem is completely general, Equation 22 applies just as well for 
a system of particles. The reason for this is simply that nature does not know and cannot 
know just how the dipole movement fluctuations occur, that is, whether they are due to the 
motion of one or several particles. 

We now apply Equation 22 to the hypothetical case where all A* particles carry a charge 
while the A particles do not. The particle flux in a static external field E is given by Equation 
15. The flux is also given by 

J,. = C,.u,.E (23) 

and u,. is the mobility of a single A* particle. Thus 

Combining this with Equation 22, where now hR is the sum of the A* particle position 
vectors and, similarly u = VC,.u,., we get 

LA.,. = lim lim(hR(A')(t) - AR("')(t))(6VkTt)-' (25) 
v-m 1-9- 

This is the A*-A* case of Equation 19. The limit V + Q) is introduced in order to eliminate 
finite size effects and arrive at a true bulk result. The A-A case is derived analogously. 
Finally, in order to derive the cross-tern case A-A*, we assume that all particles carry the 
same charge. Then, according to Equation 11, the total flux is given by 

where we have applied the Onsager reciprocal condition LA., = LA,.. Similar to Equation 
25, we get 

LA.,. + L, + 2L,., = lim lim(AR('o')(t) * AW")(t))(6VkTt)-' (27) 
v-- w- 

where AR"' = 
we are led immediately to the required A-A* case 

+ ARA). By utilizing Equation 19 for the A*-A* and A-A cases, 

LAA. = lim lim(AR(A)(t) * AR(A'))(6VkTt)-' 
v-9- 1-m 

Next in our discussion, we use Equation 19 to sketch out the derivation that f and f, are 
in fact related by a third, two-particle correlation factor g.26*27 First we note that the total 
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displacement of species i, hR") (t) in Equation 19 is of course given by the sum of the 
individual ion displacements, i.e., 

If Equation 29 is substituted back into Equation 19, for i = j = A*, we have 

Now, the usual tracer correlation factor f is given by the Einstein expression in the termi- 
nology of this section 

f = lim lim(A?(t))/rta* 
v-.m ,-- 

Furthermore, we can define a two-particle correlation factor g by 

g = lim limN(Arm(t) * Arn(t))/rta2 m # n 
v-m I-.- 

The factor N (the total number of entities) in Equation 32 compensates for the fact that 
interactions giving rise to correlations between ions m and n take place less frequently as 
the volume is increased. Upon substituting the definitions of f and g (Equations 31 and 32) 
into Equation 30, we immediately find 

LA.,, = Ta2Nc,.(f + cA.g)/6VkT V-w (33) 

The conductivity of A* is given by Equation 16 for all c,. and certainly for c, = 0, which 
we now focus on. When c, = 0, A* is the sole source of current in the system. Accordingly, 
the conductivity correlation factor, f,, which is defined for a situation where all the ions 
carry the charge, must in fact be given by 

f, = f + c,.g c, = 0 (34) 

Equation 34 has also been illustrated by Monte Carlo simulation.26 We might mention that 
f and g depend only on c, + c,. since A* and A ions move in an identical manner. 

Thus, fI is simply a sum of two correlation factors which refer to the atomic level. There 
is no mystery about the nature of f,, and there are no collective or cooperative effects 
contained in it. The physics o f f  are of course well known as we have already discussed in 
conjunction with Figure 1. The physics of g are new and are worth discussing here in a 
little detail. Consider, for example, a specific example such as that indicated in Figure 1. 
When the vacancy concentration is very low, fI is in fact trivially equal to unity, so that 
g = l - f >  0. Suppose that ion m (the hatched one) has just exchanged sites with the 
vacancy. If the subsequent jump of the vacancy is perpendicular to that jump, then there is 
no contribution to either f or g. If the vacancy jumps back again (with m). this of course 
contributes to make f less than unity, as is well known. However, there is an additional 
probability that the vacancy jumps in the same direction as the initial jump by exchanging 
with a new atom n. It is this jump which will give a positive contrib'ution to g for ions m 
and n. This contribution to g is the most important one and results in g ending up positive. 
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A qualitative comment on the sign of g is appropriate here. When one part of a solid is 
pulled, the rest follows in the same direction. From the fluctuation-dissipation theorem, this 
fact should be reflected by a correlation of the form g > 0. These are situations where 
g > 0 can be regarded perhaps as “solid-like”. In liquids, we have just the opposite. When 
a particle of the liquid is pulled, the rest tends to flow the other way locally to fill the 
vacuum left behind the pulled particle. Thus, such a situation could be regarded as being 
“liquid-like”, with g < 0. As it turns out, f is C1 in solids, in agreement with g >O, while 
f can be > I  in liquids,6’ thereby in agreement with g < O .  

The form of Equation 34 has significant ramifications on the interpretation of the Haven 
Ratio, which, for the vacancy mechanism, now becomes 

H, = f/(f + c,.g) C, = 0 (35) 

In the “pre-f,” era when H, # 1, this was considered to be direct evidence of a nonunity, 
that is, a nontrivial value of the tracer correlation factor f. However, from the form of H, 
in Equation 35, it is seen that H, # 1 is in reality a unique indication of a nontrivial two- 
particle correlation effect. In principle, although we admit it is not very likely, it could be 
possible for f = 1 at the same time. 

Next, in this section on the nature of f,. we wish to draw specific attention to the fact 
that fl can in fact be expressed in a simple Einsteinian form quite reminiscent of the form 
that f itself takes.2n Starting again with Equation 19, we write for LA.,.: 

LA.,. = lim lim(6VkTt)- l(AR(A*)(t) - AR“”(t)) 
v 4 m  ,-m 

Let us assume that A* ions are the only type of ions in the system, i.e., c, = 0. 
Accordingly, if A* ions are the only source of current in the system, then from Equations 
7 and 16 

fl = 6kTL,.,./C,.Ta2 

and from Equation 36 

fl = lim(AR(A’)2)/Nc,.TaZ 
I--+- 

(37) 

(38) 

The total number of A* ions is Nc,., so the jump frequency of the vector hR“” is Nc,.T. 
Therefore, whereas f encompasses correlation effects of a single particle in a system, f, 
encompasses correlation effects of the entire system in a manner as if the system acts like 
a (hypothetical) particle. This is made clear in Figure 3, which shows a Gaussian spread of 
the displacement of a system (observed 10,976 times) compared with the displacements of 
10,976 individual particles. 

Finally, in this section on the general features of f,, we wish to show that fl can be 
expressed as the ratio between low- and high-frequency conductivity, i.e., 

f* = a(O)/a(m) (39) 

Let us consider the case of a single particle alone in the world. (Equation 21 is the 
expression for the DC ionic mobility ~ ( 0 ) ) .  Combining this equation with Equation 20 led 
to Equation 22 as we have seen. The mean square displacement of the particle in time t is 
given by 
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FIGURE 3.  (0 )  Monte Carlo resultsz8 of the calculation of the x-displacements of 10,976 ions in a 21,952-site 
simple cubic lattice with 10,976 random traps, exp ( -  w/kT) = 0.1 and 2500 jumps per ion. This results in f = 
0.6328. (0) Monte Carlo results of 10,976 observations of the x-displacement of the entire system of 500 ions in 
a 1000-site simple cubic lattice with 500 traps, same conditions as above. This results in f, = 0.8626. 

where the walk is assumed, for convenience, to take place on a simple cubic lattice with 
jump distance a. Equations 22 and 40 imply that 

u(0) = fqa2r/6kT 

i.e., the analog of Equation 18 for one particle. 
Now the high-frequency mobility u(m) is given by the same expression, but without the 

f.29 Why? Because on a short time scale, there occurs maximally one single jump, and 
therefore correlations or memories between the directions of consecutive jumps can play no 
role. We thus find that the geometrical correlation factor is simply given by 

when expressed in terms of the mobilities or conductivities for the single particle. A special 
case of the equation was derived by Dyre.m In order to anive at Equation 39, we now note, 
just as previously, that the behavior of a many-particle system is completely analogous to 
that of a single particle if just AR in Equations 40, etc. is thought of as being the sum of 
the displacements of the individual particles composing the system. We have already shown 
that fI is actually the geometric correlation factor of the total displacement vector. Thus, we 
get the required Equation 39 directly from Equation 42a. It is worth noting that because 
fI = f + cA. g, then Equation 42b now becomes a special case of Equation 39. This comes 
about because a system of completely noninteracting particles (more than one particle per 
site) is equivalent in its behavior to one single particle in the system. For that situation, 
g = 0. 
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Equations 39 and 42 hold quite generally for hopping conduction and a general proof has 

Kimball and ad am^^^ showed that u (0) S u (a) in any stochastic model. This means 
been given62 as well as a model-specific one in the context of the PPM.63 

that f, 1 always. This condition limits the variation o f f  and g: 

f + c,.g 1 c, = 0 (43) 

In particular, whenever f > 1, g must be negative. 

B. Calculations off, 
As already mentioned, the first calculation of fl was made by Sato and Kikuchi using the 

PPM.9.to Their model consisted of a honeycomb lattice gas in which particles were distributed 
over the sites subject to nearest-neighbor interactions and a site energy difference between 
alternate sites. This particular model was conceived for p-alumina. The result (Figure 2) 
showed the characteristic minimum at about 50% occupation, which was to be found again 
and again in other lattice gas systems (see later). The minimum was interpreted as a per- 
colation difficulty since the efficiency of motion of the ions was reduced (relative to a random 
walk) because of the ordering between the ions. In this lattice gas, the maximum ordering 
occurs at 50% occupation. 

The PPM calculation was followed sometime later by a series of Monte Carlo simula- 
t i o n ~ . ~ ’ . ~ ~  These calculations have been reviewed in detail elsewhere. The Monte Carlo 
calculations verified Figure 2 and also demonstrated that similar behavior to that shown in 
this figure can in fact be obtained with interactions between the particles alone, i.e., without 
the site energy difference. This was not found by Sato and Kikuchi, who originally found 
that f, equals unity in that situation. Subsequent improvements to the PPM calculation have 
now given essential agreement with all the Monte Carlo results. 

It should be noted that in the PPM the overall transition probability is defined by the 
maximization process of the PPM function and includes the distribution of atoms and va- 
cancies. In principle, the meaning is the same in the procedure of Monte Carlo simulation 
once reaching “thermal equilibrium”. A problem with the original PPM was that the dis- 
tribution in the overall transition probability was given as an average of the state and not 
as the instantaneous value when an atom is ready to jump. The Monte Carlo calculation 
naturally uses the instantaneous value. 

Although we have said that the minimum in fl is due to the inefficiency of motion of the 
ions which is associated with ordering, it should not be concluded that ordering alone is the 
actual cause of the minimum. The basic transition probability for a single ion to jump to a 
vacant neighboring site used in these lattice gas calculations is of the form 

w = exp( - UJkT)exp(ze,,/kT) 

where E,, is the nearest-neighbor interaction energy, z is the number of nearest neighbors 
around a given ion chosen to attempt to jump, and U, is the activation energy for an isolated 
ion. From the form of this equation, it is clear that the ion does not “know” beforehand 
the energy of the site to which it is jumping. This is in contrast with many transition 
probabilities used in the literature, especially in Monte Carlo work, where one often uses 
such probabilities as the Metropolis one?’ 

w = exp( - AE/kT) AE L 0 ( 4 5 4  

where AE is the change in energy of the system. 
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All of these transition probabilities satisfy detailed balance of course, that is, they maintain 
the same degree of “equilibrium” or order. The transition probability used in Equation 44, 
however, while reasonably “realistic”, somewhat exaggerates the effects of order on the 
dynamics. Thus, an ion which jumps from a low-energy to a high-energy site (“right” site 
to a “wrong” site) does not “know” until it gets to the new site that is is in fact a “wrong” 
site. There will then be a high probability of returning again to the low-energy site. Obviously 
this leads to a preponderance of jump reversals and a resultant inefficiency in motion or a 
“percolation difficulty”. With Equation 45, the ion in a low-energy site neighboring a high- 
energy site “knows” about this high-energy site and would probably not even jump in the 
first place! It would be interesting to compare the effects of the choice of transition probability 
on the behavior of fI. 

A rather large number of other Monte Carlo calculations have been made of f, in various 
lattice gases. They include the simple cubic lattice gas with nearest-neighbor repulsion/ 
attraction,” the simple cubic lattice gas with nearest-neighbor bl~cking,’~ the square planar 
lattice gas with next-nearest-neighbor and/or nearest-neighbor blocking,36 the square planar 
lattice gas with nearest-neighbor blockir~g,’~ the square planar lattice gas with nearest- 
neighbor repulsion and next-nearest-neighbor attraction,” the square planar lattice gas with 
nearest-neighbor repulsion at 50% ~ccupa t ion ,~~  the simple cubic lattice gas with alternate39 
or random sites inequivalent,“ the ordered honeycomb lattice and a variety of one- 
dimensional models.43 We make mention also of a calculation making use of the hybrid 
(Monte Carlo + Relaxation) computer simulation method.” In this new type of calculation, 
which was applied to Y,O,-doped CeO,, the activation energies for motion were first cal- 
culated for 30 unique environments of Y3+ ions in the CeO, matrix using the CASCADE 
program. These were fed into a subsequent Monte Carlo lattice gas program that sampled 
the energies as jump frequencies. In this simulation, perhaps the first realistic simulation of 
diffusion in a complex oxide, f, was found to change from unity at low Y3+ content to the 
extremely low value of 0.05 at high Y3+ content as a result of trapping. The importance of 
fl in the description of ionic conductivity in such materials obviously cannot be overstated. 

Other nonsimulation calculations of fl include the ID lattice gas with alternate sites 
inequivalenPs and the 1 D lattice gas with nearest-neighbor  interaction^.^^ Calculations for 
binary systems will be presented in Section 1II.B. 

As a result of this very large body of information regarding the behavior off,, for specific 
models, it is reasonable to ask: what is the minimum requirement for a nontrivial, that is, 
nonunity, value of f,? It is clear that in the absence of interactions apart from self-blocking 
- only one particle to a site - fI  is definitely only equal to unity in a homogeneous solid. 
However, by the simple artifice of making some sites inaccessible (i.e., by introducing 
obstacles), then this simple model alone is sufficient to make fl < 1 .47 At high concentrations, 
that is, at and above the percolation threshold (e.g., at a site concentration of the [random] 
obstacles of 80.2% in f.c.c.), then fl = 0 and percolation through the forest of obstacles is 
impossible. Also, fl may differ from unity in models of completely noninteracting particles 
moving in inhomogeneous solids.30 

When site inequivalence in energy is introduced, by either random traps or low-energy 
sites in some ordered arrangement, this also is sufficient to result in fl < 1.39.40 In such 
models, the transition probability takes two values: at a regular site 

w = l  

w = exp( - wkT) 
and at a trapping site 

where w is the trap energy. The trapping case is probably more coqmon than the obstacle 
case mentioned previously. The role of the vacancy concentration is rather important here. 
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At very low vacancy concentrations, fl + I no matter how many ion jump frequencies there 
are in the lattice. (This remark does not apply to the case of completely noninteracting 
 particle^.^^) For practical considerations, as distinct from purely theoretical ones, conductivity 
correlation effects tend to be amplified by increasing the vacancy concentration in such 
models, and this could explain why conductivity correlation effects were not noticed for so 
long since the study (either experimental or theoretical) of diffusion in systems with high 
defect concentrations did not really begin until the discovery of fast-ion transport in the late 
1960s. 

We can briefly summarize the situation by saying first that the appearance of a nontrivial 
(# 1) value for fl is connected to the deviation of the hopping process from a random walk 
by the inequality of lattice sites due to such processes as crystallographic differences, mutual 
interactions among the hopping ions, differences in accessibilities of sites, etc. We can also 
say that, whereas f encompasses the correlation effects of a single particle in a system, fl 
encompasses correlation effects of the entire system as if the system itself acted like a single 
hypothetical particle. Sat0 and co-workers prefer to say, equivalently, that f is the percolation 
efJiciency of a single particle, whereas f,  is the percolation efJiciency of the entire system. 
It is now clear that fl is certainly as important as f and in some respects could be regarded 
as a more general quantity than f .  

111. CONDUCTIVITY CORRELATION IN BINARY SYSTEMS 

A. General Features 
Although the system we focused on in Section 11, namely, A and A*, was ostensibly a 

“binary” one, the jump frequency of A and A* was implicitly assumed to be identical. Of 
course, real tracers in materials do have different frequencies from the host, but these 
differences are very small and do not affect the physics and mathematics contained in Section 
11. The small differences in jump frequency between tracer and host or, more correctly, 
between types of tracer can be put to good use in the experimental measurement of the 
isotope effect and related to f ,  but that is altogether another subject which has been reviewed 
elsewhere.18 In this section, we are interested in binaries where the jump frequencies are 
sufficiently different that this difference significantly affects the diffusion behavior of either 
component. 

Let us write expressions for the fluxes using the Onsager equations of irreversible ther- 
modynamics. Again, let us assume that this lattice is cubic and the vacancy mechanism 
operates. All of the considerations can be readily generalized to other diffusion mechanisms. 
The flux equations are 

where the L, are the phenomenological coefficients and the Xi’s are the driving forces. 
Although the L,’s are treated as being “phenomenological”, they can in fact be derived 
analytically using methods such as the PPM. 

Let the charges on A and B ions be qA and q,, respectively. It is convenient to decompose 
a and qB to ZAe and Z,e, respectively, where Z is the number of charges and e is the 
electronic charge. If a static electric field E is applied, the driving forces on A and B ions 
are ZAeE and Z,eE, respectively. The fluxes are 
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J B  = eE(Z&BB + ZALBA) (48b) 

It is convenient at this point to split up the L,’s into correlated and uncorrelated parts.48 The 
“uncorrelated” part contains jump frequency and concentration information, and from our 
point of view in this discussion, the uncorrelated part contains spectator quantities. The 
“correlated” part of the L, contains, of course, information on correlation effects. For the 
diagonal phenomenological coefficients, we write 

L,, = LIp’f,, i = A,B (49) 

where Lip) is the uncorrelated part of L,,, i.e., 

Lip) = CiTia2/6kT i = A,B (50) 

For the off-diagonal terms, we note the Onsager condition LAB = LBA. We can write LAB 
in two forms: 

because we have a choice given by the different jump frequencies of A and B.  The fiJ’s are 
called correlation functions, for want of a better name! To make contact with the work of 
Sat0 et a]. ,4y at this point we note that they give the fiJ the symbol eiJ and use the terminology 
tAB = Ftd and eBA = F f d .  It should be noted that FLd # f‘:; because the jump frequencies 
differ. This is made clearer in the following discussion. 

The expressions for uA and u, now become 

e2Z2,CArAa2 [ 
fAA ’+ 2 fay 

6kT “ I  UA = 

and 
e2ZiCBrEa2 [ 

6kT 
UE = 

A comment on the general nature of the fij is useful here. The Einsteinian form for the f,,, 
while convenient for their calculation by Monte Carlo, does not on this occasion provide 
very much insight into their physical meaning. Thus, we have 

f,, = ((ARi)2)/NciT,a2 i = A,B (53) 

where AR, is the displacement of the system of atoms of type i. 
Similarly, we have (from Equation 19) 

fzb = (MA - ARB)/NciTia2 i = A,B (54) 

From the denominator in this equation, it is clear why f‘L2 differs from Ffd. One can make 
the usual observation that the off-diagonal correlation functions, derived as they are from 
the L, (i # j), reflect the interference of the flux of the i-th species on the flux of the j-th 
and vice versa. The diagonal coefficients, derived from the Lii, reflect the effect of the flux 
of the i-th species upon themselves in the presence of the flux of the j-th species.” 

Sat0 groups the terms in square brackets in the expressions for uA and u, (Equation 52) 
to give 
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A B 

FIGURE 4. (A) The location of the 12 nearest neighbors of an impurity in the f.c.c. lattice. (B) Illustration of 
the jump frequencies w,, wl. and w]. The digit I at two sites indicates t h e j r s f  nearest-neighbor site, similarly for 
the other digits. w, (not shown) is the reverse of wl, and w,, (not shown) is the jump frequency for any other jump. 

uA = e2Z:CATAa2fl,/6kT ( 5 5 4  

U, = e2Z;C,T,a2fl,/6kT (55b) 

The correlation factors fl, and flB are seen to be the binary analogs o f f ,  in the unary system 
(see Equation 7). 

B. Calculations of the Binary Conductivity Correlation Factors 
In this section, we are concerned with the various calculations that have been performed 

on f,,, f,,, and flib. There have been many calculations for dilute systems, especially with 
the five-frequency model (see Figure 4) for impurity transport. This area has been reviewed 
exhaustively recently, and it would be superfluous to go into much detail The first 
calculation of the L,, was made by Howard and Lidiards2.’3 for the five-frequency model in 
the f.c.c. lattice with a very small concentration of vacancies. For convenience, we focus 
here on that model. Howard and Lidiard assumed that the vacancy concentrations were at 
equilibrium on all sites on the second coordination sphere centered on the impurity. This 
assumption was shown by Mannings4 to be equivalent to assuming that vacancies which 
jump to the second or more distant neighbors are lost in the sense that any future return to 
the first-neighbor shell is considered random. Manning essentially removed this assumption 
by introducing a quantity F, the fraction of dissociating vacancies that are permanently lost 
from a site and are uncompensated for by returning vacancies. (F = 1 in the Howard and 
Lidiard treatment.) Manning studied the case that the trajectories of vacancies are followed 
which can possibly lead to their return to second, third, or fourth nearest neighbors of the 
impurity. This leads to 

1 10a4 + 1 8 0 . 5 ~ ~ ~  + 927a2 + 1341a 
2a4 + 40.2a’ + 254a2 + 59701 + 436 

7 F = 7 -  

(where a = w,/w,,) in the expression for flA (A is the impurity) 

)] (57) 
~ , [ 3  - 7(1 - F)(w, - w,)w,’] - 2wI 

2w, + 7Fw3 
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where fA is the impurity correlation factor of A. More recent calculations5’ have slightly 
refined the coefficients of the last three terms in the numerator and the last four terms in 
the denominator of Equation 56. These later calculations and a Monte Carlo calculation 
have indicated the essential correctness of Manning’s initial treatment. 

What is not so obvious from the preceding expression for f,, is that it can even be greater 
than unity and, more surprisingly, even be negative. Correlation in the conductivity of an 
impurity is sometimes loosely called the “vacancy-wind effect”. The general physical 
process here is that the driving force alters the local disposition of vacancies with respect 
to an impurity in such a way that there is an increased tendency for the impurity to jump 
in a-direction opposite to the vacancy flux. Accordingly, each impurity has an additional 
drift velocity which it would not have if the vacancy flux were absent. It can be helpful to 
imagine the effect is analogous to a rock (say, a slow-moving impurity) in a stream which 
distorts the flow of water (vacancies) in its 

Now let us move onto concentrated systems. Such systems have long been a source of 
special difficulty in diffusion theory because there is no easy way of extending, say, the 
five-frequency impurity model into the concentrated regime without rapidly increasing the 
number of jump frequencies to an unworkable number. As a result, models have been 
introduced which limit the number of jump frequencies but only as a result of some loss of 
realism. The first of these is the “random alloy” model introduced by Manning3 another 
is the binary alloy analog of the Ising magnet, which has been developed extensively by 
Sat0 and K i k u ~ h i ~ . ~ . ’ ~ . ~ ~  and co-workers with the PPM. We might mention that the original 
problem of coping with a very large number of jump frequencies in the alloy can be handled 
by computer simulation along the lines of the hybrid (Monte Carlo + Lattice Statics) 
simulation exemplified by the calculation of ionic conductivity in yttria-doped ceria.“ This 
scheme makes use of pattern recognition of environments during the progress of the sim- 
ulation. 

The random alloy is of considerable interest because, despite its simplicity, it seems to 
describe fairly well the diffusion behavior of a large number of alloys. The atomic components 
are assumed to be (ideally) mixed randomly. The atom/vacancy exchange frequencies wA 
and w, are explicitly specified. Neither wA or w, change with composition/environment. 
Manning3 worked out the following expressions for fAA, fBB, and f‘& for the case of a very 
small concentration of vacancies 

where f, is the tracer correlation factor (for self-diffusion) in the lattice of interest. (Computer 
simulationsa have shown these expressions to be rather accurate.) More important, perhaps, 
is the fact that Equations 58 and 59 actually come from expressions involving tracer diffusion 
coefficients, i.e., 

fii = fi(l + 2DI[M,(cAD; + c,Di)] i = A,B (61) 

and 
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These expressions can be derived with which do not involve the random alloy 
model, and they appear to have general significance. For example, they are valid to a good 
approximation for the interacting alloy 

From equations 52 and 55 we can obtain an expression for the binary physical correlation 
factors fli in the random alloy model. We have 

The deviation of fli/fi from unity is evidence for a vacancy-wind effect. Conversely, fi/fli 
corresponds to the binary analog of the Haven Ratio. 

Using their PPM, Sat0 and Kikuchi and co-workers made pioneering calculations for fli 

in the case of the interacting alloy m ~ d e l . ’ ~ . ~ ~ . ~ ~  In this model, one introduces interactions 
E,, eBB, and E,, between nearest-neighbor components of the type A-A, B-B, and A-B, 
respectively. The exchange frequencies w, and wB are no longer explicitly specified as in 
the random alloy model, but are expressed in terms of the interaction energies which ef- 
fectively modify a specified saddle-point energy U. For example, for w, we have 

wA = uAexp( - UA/kT)exp[(zAEAA + z,~,,)/kT)] (64) 

where uA is the lattice vibration frequency, the zi’s are the numbers of atoms of type i 
neighboring to the A atoms chosen to jump and the E’S are assumed to be negative. Sat0 
and co-workers studied the honeycomb lattice, which also was given a site energy difference 
between alternate sites and a variable vacancy concentration. The interactions with the 
components and the vacancy, and between vacancies, were set equal to zero. 

The PPM calculation showed sharp minima in fj, at about 50% occupation when there 
was attraction, i.e., ordering between the components (for example, see Figure 5). The 
minimum was said to be due to a “percolation difficulty” created by such ordered arrange- 
ments. The percolation difficulty results from the fact that the efficiency of motion of the 
assembly of ions is reduced relative to that of a random walk. Physically, this means that 
many jumps are reversed as a result of disordering jumps tending to be followed by reordering 
jumps (i.e., the physical correlation effect). 

The appearance of the minima in fjA and flB is strongest as the dimensionality is lowered 
and appears to be a major contributor to the so-called mixed alkali effect. This effect is 
characterized by a substantial decrease in the ionic conductivity at intermediate mixed 
compositions, for instance, in a Na,K silicate glass or Na,K p-alumina, without any obvious 
physical cause. Although attractive interactions alone can, through the maintenance of local 
order, make the jump frequencies decrease at intermediate compositions and cause the 
conductivity to decrease, the existence of minima in fjA and fiB represents an additional 
source of the decrease. As noted in Section 11, at very high field frequencies the physical 
correlation factor increases to unity. This behavior also extends to f, and fja as 
Indeed, the fji can be defined by analogy with Equation 39 

Since there is a substantial frequency dependence of the mixed alkali effect,59 then this is 
good evidence that the fli’s do in fact play an important role in this effect. 

Other calculations of the fii and f&, have been made by computer simulation for the 
interacting alloy s y ~ t e m . ~ ~ . ~  These calculations have been confined to the limit of a very 
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I 1 I I I 
0.2 0.4 0.6 0.8 I .o 

FIGURE 5 .  Path Probability Method results” for the physical correlation 
factors fiA and fm in the two-component honeycomb lattice with c, = 0.2 and 
T/T, = 0.5, where T, is the orderldisorder temperature. The dashed line 
shows the case where the development of the long-range order is artificially 
suppressed in order to show the effect of ordering. 

low vacancy concentration and also to the simple cubic lattice. The first of these simulations 
used an electric field which could be selectively switched on and off for various components. 
For example, if B atoms “feel” the field and A atoms do not (9, = 0), then the drift of 
the B atoms in time t can be related directly to L,, without the inclusion of L,,. Conversely, 
the indirect drift of the A atoms in time t can be related to LA, without the inclusion of 
LA,. These drifts were expressed in terms of drift factorssg which are related to the quantities 
used here by fAA = s; and FLd = s i  - s i .  More recent calculations have used the entirely 
equivalent time-correlation formulas (Equations 53 and 54).48.60 

Some results for the fAA and FL; are shown in Figures 6 and 7. A brief discussion of the 
behavior of these quantities is appropriate here. First, with respect to fan, as c, + 0, the 
A atoms behave like impurities in the B matrix, and f, reduces to the tracer or, here, the 
impurity correlation factor. The results here extrapolate precisely to results for f, for the 
four-frequency model in the simple cubic lattice. At c, = 0.5. the minima found are a 
manifestation of the percolation difficulty as described previously. As c, + 1, all curves 
converge on unity. This should be expected since, for a lattice containing essentially only 
A, correlation effects due to preservation of order must disappear. The “particle”, consisting 
collectively of the system of A atoms, now moves on a complete random walk. 

Next, let us briefly discuss Fkd. As cA + 0, again we have impurity conditions for A, 
and the results extrapolate precisely to those from the four-frequency model of impurity 
conduction in the simple cubic lattice. Similar to f,, minima develop at c, = 0.5 as a 
result of a percolation difficulty. As c, + 1, all curves converge on zero. This is to be 
expected for a correlation function derived from the cross-tern LAB. in this limit. 
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C, 

FIGURE 6. Monte Carlo resultss8 for f,, in the two-component simple cubic 
lattice at various values of E/kT, where E is the ordering energy given by 
E = E,, + eBB - 2e,,. here E, ,  = en,,. E/kT. == 0.887. 

0.75t &I .333 

0.00 0.25 0.50 0.75 1 .oo 
C A  

FIGURE 7.  Monte Carlo resultsJ' for Ps in the two-component simple cubic 
lattice at various values of E/kT, where E is the ordering energy given by 
E = E~ + cBB - 2eAB; here e,, = eBB. E/kT, = 0.887. 

IV. CONCLUSIONS 

From the foregoing, it is clear that the area of correlation effects in ionic conductivity 
has expanded rapidly since its discovery almost 20 years ago. It is now no longer satisfactory 
to dismiss such correlation effects as being unimportant. They cannot be dismissed any more 
than tracer correlation effects can be ignored in tracer diffusion. In some respects, the 
presence of f, in the expression for the ionic conductivity is even more important than the 
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presence of f in the expression for the tracer diffusion coefficient. This is because many 
materials with high defect contents show low coordination lattices where correlation effects 
tend to be largest. In addition, many defective materials are doped, thereby introducing 
trapping centers. These account for considerable correlation because of inefficient motion, 
such as rotation around the trapping site. 
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