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A brief review of the history of ac ionic and electronic conduction in disordered solids is given,
followed by a detailed discussion of the simplest possible realistic model: the random free-
energy barrier model. This model assumes conduction takes place by hopping, where the
hoppirig charge carriers are subject to spatially randomly varying energy barriers. The model is
solved in the continuous time random walk and in the effective medium approximation, and it
is shown that the two solutions are almost ifidistifiguishable. Iri the raridom free-energy barrier
model, the frequency-deperident conductivity is completely determined by the dc conductivity
and the dielectric loss strength. The model correctly predicts all qualitative features of ac
conduction in disordered solids, and a comparison to experiment on a large number of solids
shows that the model is also quantitatively satisfactory.

I. INTRODUCTION

One of the most characteristic properties of electrical
conduction in disordered solids is a strong dispersion of the
conductivity. At low frequencies one observes a constant
conductivity while at higher frequencies the conductivity be
comes strongly frequency dependent, varyiflg approximate
ly as a power of the frequency. The increase in conductivity
usually continues up to phoflon frequencies. This behavior is
seen in a wide variety of nonmetallic disordered solids and
has been studied extensively during the last 30 years. The
classes of disordered solids investigated include amorphous
semiconductors, 1-5,75 ionic conductive glasses,9 ionic or
electronic conducting polymers,4”°’1’ organic semiconduc
tors,’2 nonstoichiometric or highly defective crystals,’3 or
doped semiconductor single crystals at helium tempera
turesi4 Even highly viscous liquids behave as typical disor
dered solids as regards ac ionic conductivity.

All disordered solids show similar behavior with respect
to their ac properties. This is true flot only for the frequency
dependence of the conductivity but also for the temperature
dependence. Here one observes a strongly temperature-de
pendent (usually Arrhenius) dc conductivity, while the ac
conductivity depends much less on temperature and be
comes almost temperature independent as T— 0. This uni
form behavior of u(a, T) for quite different solids has been
pointed out a number ofyears ago,2’3’5”5 but is still flot gener
ally appreciated. And indeed, the fact that ionic and elec
tronic conductiflg solids show similar behavior is quite sur
prising. Apparently, it means that we canfiot expect to learn
much about details of the conduction mechaflism from mea
suring the frequency or temperature dependence of the con
ductivity.

As witnessed by the large number of publicatiofis and
the continued interest in the field, ac conduction in disor
dered solids is a subject of interest on its own. More often,
however, the focus is Ofi dc transport only. Evefi then, a
proper understanding ofac conductiofl is important in order
to arrive at a correct picture of the dc transport. This is be
cause dc and ac conduction are both due to the same mecha

nism, as shown in Sec. II. In particular, this implies that a
new interpretatiofi of the dc conductivity activation energy
is flecessary. The dc conductivity activation energy is, it
turns out, the maximum ofa whole range ofactivation ener
gies fleeded to account for the frequency dispersion (Sec.
IV). We believe this fact is importafit for a genuine ufider
standing of dc transport in disordered solids. It implies that
most present models for dc conduction, thermopower, Hall
effect, etc., in disordered solids, are probably too simple to be
realistic.

The simplest and indeed the most common explaflation
for a conductivity which increases with frequency is the exis
tence ofone or the other kind of ifihomogeneities in the solid.
This assumptiofl is consistent with the fact that a strong fre
quency dispersion of the conductivity is observed only in
disordered solids. The inhomogeneities may be of a micro
scopic or a more macroscopic nature, a question which is not
yet settied. In this paper, hopping models will be discussed.
In hopping models one makes the assumption of inhomoge
neity on the atomic scale by assuming randomly varying
jump frequencies for the charge carriers. It is the purpose of
the paper to show that a simple hopping model is able to give
a qualitatively correct picture ofac conduction in disordered
solids. By taking some care in deriving the model, it is hoped
that the paper may contribute to make hopping models more
popular among experimentalists. The paper, which sum
marizes, clarifies, and extends recent work by the au
thor,’9 has the following outline: Sec. II briefly reviews
the history ofac conduction in disordered solids. In Sec. III a
general discussiofi of hopping models is givefi. It is argued
that in order to arrive at realistic hopping models, any effect
ofa cutoif at largejump frequencies should be elimiflated. Ifl
Sec. IV we discuss what is probably the simplest possible
model consistent with observations, a model based on the
assumption of randomly varying free-energy barriers for
jumps. The model is solved in the continuous time rafidom
walk approximation and in the effective-medium approxi
mation, afid it is shown that the two solutions are almost
identical. Also, the model is compared to experiments on a
number ofquite different disordered solids. Fiflally, ifl Sec. V
a discussion is given.
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II. ac CONDUCTION IN DISORDERED SOLIDS: A BRIEF
REVIEW

Frequency-dependent conduction in disordered solids is
a very broad field and probably nobody has a full general
view of it. Different schools have emerged within the field.
Though using different terminology, these schools discuss
quite similar experimental facts. In reviewing the field, how
ever, it is convenient to ignore this and follow the terminol
ogy of the different schools.

Historically one can distinguish two schools depending
on the preferred way of presenting data.5 The “dielectric”
school uses the dielectric constant, E( tro) = E’ (&) — k” (a),
while the “semiconductor” school prefers to speak about the
conductivity, u(a)) = u’(o) + io”(co). These two quanti
ties are related by

E0E((O) = [u(co) — u(0) ]/iû),

where E0 is the vacuum permittivity. More recently it has
become popular, in particular in the field of ionic conduc
tion, to present data in terms of the electric modulus,
M(Û)) =M’(a)) +iM”(co),defined20by

M(&) =

The use ofM(a) has the advantage that there is no contribu
tion to M” (a)) from electrode capacitances. Also, it is not
necessary as in Eq. (1) to subtract cx(0) from a(cû) in order
to get peaks in the imaginary part (“loss peaks”). Finally,
the impedaflce, Z(û,) = Z’(o) — iZ”(Û)), is sometimes
used for presenting data, usually plotted in a so-called com
pleximpedaflcediagramwherex = Z’(a) andy = Z “(w)7

The first systematic studies of ac conduction in disor
dered solids were carried out by workers within the dielec
tric school about 30 years ago. The systems considered were
ionic conductive oxide glasses.6’2’ These solids were studied
much because of technological interest; an understanding of
the dielectric loss in glass as a function of frequency and
temperature became important for the electrics industry ifl

the 1950s when one started to construct large transmitting
valves, x-ray tubes, and similar products.22 Since dielectnc
loss in liquids had already been studied for many years, it
was natural to report observations ifl terms of the dielectric
loss. In glasses, however, it is necessary to subtract the non
zero dc conductivity in order to get proper dielectric loss
peaks [Eq. (1)]. This was done without further justifica
tion, although it was soon discovered that there is a ciose
correlation between dc conduction and dielectric loss.23

The main features of dielectric loss in ionic conductive
glasses, as established by the end of the 1950s,6’21’23’24 are (1)
very broad dielectric loss peaks with a temperature-indepen
dent shape and an almost frequency-independent loss at high
frequencies, and (2) an Arrhenius temperature-dependent
dielectric loss peak frequency &m with the same activation
energy as the dc conductivity. Point (2) means that a, and
a(0) are proportional. As pointed out by Isard, the constant
of proportionality is almost universal, varying only weakly
with temperature and glass composition.24 A doser analysis
of the proportionality was carried out by Barton, Nakajima,
and Namikawa2527 who found the following equation to be
valid for most glasses:

(1)

a(0) =PEO(0m. (3)

Here IE is the dielectric loss strength, i.e., 1E

E (0) — E ( lYD), and p is a temperature-independent numeri
cal constant ciose to one. At ordinary temperatures E is
usually flot very much different from one, thereby explaining
the approximate universality of U(0)/COm. Equation (3),
which applies also for electronic conducting disordered sol
ids,28’29 will be referred to as the BNN relation.’9 It carries
very important information, implying that ac and dc don
duction are closely correlated and must be due to the same
mechanism. A number of models have been proposed to ex
plain the BNN relation but none of these models can explain
at the same time the observed very broad dielectric loss
peaks.’9 The random free-energy barrier model, to be dis
cussed below, is consistent with both these experimental
facts.

Perhaps the earliest model for ac conduction of ionic
glasses is Stevels’ and Taylor’s random potential energy
model.21’23’3° This model was only qualitative and did flot
discuss the BNN relation. In the model, it is assumed the
ions feel a more or less randomly varying potential energy

(2) deriving from the random network structure of the glass.
For dc conduction the largest energy barriers have to be
overcome, while lower barriers are involved for ac conduc
tion since only a limited distance has to be traveled. Though
quite attractive, it was generally believed this model is incon
sistent with the experiment. It was thought that, since Ûm is
determined from ac properties, the model predicts a lower
activation energy for û)m than for a(0). Also, it was believed
that a distribution of activation energies implies a tempera
ture-dependent shape of the loss peak.7’8”5 Both things are
wrong as becomes evident in Secs. IV and V where the ran
dom free-energy barrier model is discussed; this model is
essentially nothing but Stevels’ and Taylor’s old random po
tential energy model.

Work within the semiconductor school started in 1961
when Pollak and Geballe measured the ac properties of n
type doped crystalline silicon at very low temperatures.14
They observed an approximate power law for the ac conduc
tivity,

o-’(û) IXÛ.)S (4)

with an exponent s close to 0.8. Since then it has been cus
tomary to speak about power-law frequency dependencies,
inferred from straight lines in log-log plots. However, even
almost perfectly straight lines does not mean that u’ (û.) is an
exact power law; log-log piots may be deceptive. This is flot
always remembered and equations like (4) have created
some confusion in the field by being taken literally. To avoid
this, one should preferably only speak about approximate
power laws.

During the 1 960s, the study of amorphous semiconduc
tors emerged as a new and exciting field within semiconduc
tor physics. As regards ac properties it was soon found that
ali amorphous semiconductors obey Eq. (4), and for most
systems studied, one found values ofs ciose to 0.8. A simple
model for this is the pair approximation which was advanced
by Austin and Mott in 1969,’ generalizing an idea ofPollak
and Geballe.’4 The pair approximation assumes that ac
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losses are due to tunneling between pairs of localized states.
For a random distribution of tunneling distances one finds
an approximate power-law ac conductivity with an exponent
given by31

s = i + 4/ln(rh)

where Tph is a typical phonon time. For ordinary laboratory
frequencies Eq. (5) gives sO.8. Despite this success, it
turns out that the pair approximation has a number of prob
lems, and this approach cannot be regarded as a serious can
didate for explaining experiments: Eq. (5) predicts s is a
weakly decreasing function of frequency whereas experi
mentally s is, ifit varies at ali, weakly increasing.32 Also, the
pair approximation cannot explain the transition to frequen
cy-independent conduction at low frequencies; an expres
sion of the form a’(c) = cr(0) + Aa does flot fit data at
low frequencies where a loss peak appears, showing that ac
and dc conduction are due to the same mechanism.5’29 Final
ly, it has been found that s0.8 is not universally valid, for
instance, s always converges to one as the temperature goes
to zero.32’33

More refined modeis were suggested in the 1970s and
early 1980s when hopping models, i.e., random waiks in sys
tems with spatially randomly varyiflgjump frequencies, be
came popular. This approach was developed by Scher and
Lax in 1973, building on earlier ideas of Miller and Abra
hams.35 Scher and Lax suggested caiculating a(û) in a hop-
ping model by approximating the spatially inhomogeneous
markovian rafidom walk by a homogeneous norimarkovian
Montroll—Weiss-type continuous time random walk
(CTRW).36 Today the CTRW approximation is recognized
as the simplest possible flofitrivial meafi-field approximation
for caiculating u(û) in random media, although the original
derivatiofi is ificonsistent (Sec. III). Aroufid 1980 the coher
ent potential approximation37’38 was introduced ifito the
field indepefidently by several workers, where it became
known as the effective-medium approximation (EMA) 3912

Attempts were also made to improve the pair approxima
tion. The correlated barrier hopping model is a version of the
pair approximation which predicts s— i as T— Alter
natively, by returflifig to the original Miller—Abrahams
equivalent circuit, Summerfield afid Butcher ifl the exteflded
pair approximatiofl (EPA) succeeded ifl joining the pair ap
proximatiofi smoothiy to the dc coflductiofl.44 Ifl practical
applicatiofls the EPA is very similar to the EMA and both
approximations lead to self-coflsisteflcy equations for u( w).

Hoppifig models are markovian, i.e., the charge carrier
jump probabilities are assumed to be time ifidepefidefit. This
leads to simple exponential decays of the probability for a
charge carrier to stay at a givefi site in the solid. The observed
proflouficed frequeflcy dispersion of the coflductivity is thefl
attributed to spatial disorder in the solid, resultifig ifl a broad
distribution of relaxation times (waiting times). A com
pletely differefit approach to the problem is possible, how
ever, flamely to assume the fundamental hoppifig process is
itseif nonexpoflefltial.45’46 Models alofig these lines have flot
yet come up with useful predictions about o(Û)). Tt is impor
tafit to note that the assumption of nofimarkoviafi jumps
does flot in itseif imply the coflductivity is frequency depen

dent. Correlations in the directions of subsequeflt jumps are
needed to ensure u(û) u(0) (see Sec. III). At present
there seems to be no reason to assume nonmarkovian pro
cesses to lie behind the ac conduction, and only models based
on simple exponential decays will be considered in this pa

(5) per.
The dielectric and the semiconductor schools not only

present data in terms of different quantities but they also
have different emphasis.5 Workers from the dielectric school
were always mainly interested ifl the loss peaks and did flot
put much effort into an investigation of the region of fre
quencies much larger than the loss peak frequency where the
dielectric loss is almost constant. In contrast, this region has
always been regarded as of main interest by the semiconduc
tor school. This is because no frequency dependence analo
gous to Eq. (4) is found in single-crystal semiconductors
where a(a)) = u(0) up to microwave frequencies. Also, ex
perimentalists within the semiconductor school traditional

ly assumed the ac conduction to take place by a mechanism
completely different from that behind the dc conduction,
thereby makiiig irrelevant any detailed investigation of the
frequency regiofi where the transition to dc conduction oc
curs.

As regards the question of the best way of presenting
data, we suggest a ( a) is to be preferred compared to E ( w) or
M( Û)). The use of M( o) may have serious problems (see
Sec. V). The conductivity is the more fundamental quantity,
being directly related to equilibrium current-current fluctu
ations via the Kubo formula47

u()
= 3kBTVJ0

(J(0)J(t))e’dt, (6)

where J is the total current in volume V, and k and T have
their usual meaning. Reflecting also the fundamental nature
of the conductivity is the fact that the dissipation per unit
time and unit volume is a’ (& ) /2 times the absolute square of
the current density. Finally, because of the nonzero dc con
ductivity there is no simple interpretation ofE(w) ifl terms of
fiuctuating dipole moments. A focus on the dielectric loss
does have some ment, though. The very fact that peaks ifl

E” (û) are seen at ali is very important since this, in conjunc
tion with the BNN relation, demonstrates that dc and ac
conduction are both due to the same mechanism. Thus, the
early discovery of the BNN relation for ionic glasses was due
to the dielectric school while the analog for amorphous semi
conductors only much more recently has been firmly estab
lished.28’29’48

We end this section by listing the general features of ac
conduction ifl disordered solids which are observed almost
without exception and which a satisfactory model should
exp1ain6’29’32’75: (1) For o’(a) one observes at high fre
quencies an approximate power law with an expoflent s less
than or equal to one, and usually ciose to one. If any devi
atiofl from a power law is seen, it corresponds to a weakly
increasing s ( &) . (2) At lower frequencies there is a gradual
transition to a frequency-independent conductivity. The
transition takes place around the loss peak frequency. (3)
Whenever the dc conductivity is measurable there is always
a dielectric loss peak. The loss peak frequency satisfies the
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BNN relation IEq. (3)1. When there is no measurable de
conductivity the exponent s is very ciose to one. (4) As re
gards their temperature dependence, u(O) and w,7 are usual
ly Arrhenius with the same activation energy although more
complicated temperature dependencies are occasionally ob
served, e.g., in group-IV amorphous semiconductors. (5)
The shape of the loss peak is temperature independent. (6)
The ac conduetivity is much less temperature dependent
than the de conductivity (when considered in the usual log
log plot of Fig. 1). Fors very ciose to one the ac conduetivity
is practically independent oftemperature. (7) The exponent
s increases as the temperature decreases, and for T—+ 0 one
finds s — 1. Thus, the ac conductivity becomes almost tern
perature independent as T—O. (8) Even though a(O) may
vary by many orders of magnitude, the ac conduetivity var-
jes only relatively little (one or two orders ofmagnitude) for
different solids and different temperatures. In Sec. IV a sim
ple hopping model will be considered which can explain
these facts, but first a general discussion ofhopping models is
given.

III. HOPPING MODELS

Though a complete model for glass ionic conductivity
does flot exist today, it is seldom questioned that the basie
transport mechanism is thermally activated hopping across
an energy barrier, a process described by Eyring’s rate theo
ry.49 Being a stochastic theory, rate theory leads to a simple
exponential decay for the probability for an ion to stay at an
energy minimum. Conductivity described by rate theory is
usually referred to as hopping conductivity. While ionic con
ductivity is a classical thermally activated process, elec
tronic conductivity is of quantum-mechanical nature. The
fact that the two kinds ofconduction in disordered solids are
quite similar in their frequency and temperature depen
dence, is surprising and must provide an important piece of

og(a’(w))

Log(w)
FIG. 1. Sketch of the real part of the frequency-dependent conductivity ina
disordered solid at three different temperatures T1 <T, < T. At low fre
quencies the conductivity is constant and equal to the dc conductivity, while
at higher frequencies the conductivity obeys an approximate power law.
The characteristic frequency marking the onset ofac conduction, the dielec
tric loss peak frequency co,, increases with increasing temperature. Note
that in this logarithmic plot, the ac conductivity is Iess temperature depen
dent than the dc conductivity.

information. The simplest explanation is that even electronic
conduction in disordered solids is to be described by hopping
models. Actually, hopping between pairs of localized states
has always been assumed to account for ac conduction in
amorphous semiconductors, while de transport, with the im
portant exceptions of impurity conduction and Mott’s vari
able range hopping model,4 traditionally is assumed to take
place via extended state conduction. But since de and ac
conduction are due to the same mechanism (Sec. II), it
seems that this approach must be abandoned and one has to
assume de conduction is due to hopping as well. The trans
port mechanism is probably quantum-mechanical tunneling
between localized states. To ensure energy conservation the
tunneling must be phonon assisted, thus destroying any
quantum coherence effects. Accordingly, electronic hopping
is ofa stochastic nature just as ionic hopping.

Electrons are fermions, of course, but even ions behave
as fermions as regards their hopping properties. This is be
cause the Couiomb repulsion between ions and the finite ion
size imply there is only room for one ion in each potential
energy minimum in the solid. In the equation describing
hopping fermions, it is usually assurned that transitions in
volve only hops ofa single ferrnion. Even then, the equation
is very complicated and further simplifications must be in
troduced to arrive at a tractable model. By assuming the site
occupation numbers do flot fluctuate in time it is possible to
“project” the equation into three dimensions, in effect get-
ting rid of ali interactions between the particies, inciuding
that induced by fermistatistics.5° The resulting equation, to
be discussed below [Eq. (7)], describes hopping of nonin
teracting “quasi-particies” and this is what is usually meant
by a hopping model. It is important to remember, however,
that hopping models are built on mean-field assumptions
which are far from obvious and cannot be justified in gen
eral.5’ Hopping rnodels have recentiy been reviewed by Nik
lasson in a paper emphasizing fractal aspects of conduction
in disordered solids.52

The very basie fact about ac conduction in disordered
solids is that a’(&) is an increasing function of frequency.
Any hopping model has this feature.53 This is flot surprising,
since by hopping backwards and forwards at piaces with
high jump probability a quasi-particle may sizably contrib
ute to the ac conductivity, while the de conductivity is deter
mined by overcorning of unfavorable places in the solid for
the formation of a continuous “percolation” path between
the electrodes. The higher the frequency of the electric field,
the larger is the ac conductivity because better use is made of
the piaces with very largejump probability. As illustrated in
Fig. 2, the increase in conductivity continues as long as the
frequency of the field is lower than the maximum quasi-par
ticlejump frequency (jump probability per unit time) in the
solid. For larger field frequencies the conductivity stabilizes
and becomes constant.

In order to arrive at a conductivity which increases for
many decades of frequency, one must assume the jump fre
quency distribution also covers many decades. In cornpari
son, the jump distances vary only relatively little. For near
est-neighbor hopping, for instance, the jump distance
typically varies a factor of 2 or 3. It is commonly believed

EV
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tog (o’(w))

1og(w) tog(F) iog(w)

FIG. 2. Typical behavior ofa (co) ina hopping model. In hopping models
a’(co) is always an increasing function offrequency (Ref. 53), just as in
experiment. The saturation ofa ‘(co) at high frequencies takes place when co
is close to the maximum jump frequency Only in this region, typically
ciose to 10’ 2 Hz, is the pair approximation valid. The onset ofac conduction
at low frequencies takes place around the loss peak frequency co,,,, which is
the lowest effectivejump frequency of the system, corresponding to the ion
gest waiting time at a lattice site.

that this variation is insignificant. Following this, al! jump
distances may be assumed to be equal by considering the
quasi-particle random walk to take place on a simple cubic
lattice. The stochastic “equation of motion” for a quasi-par
tide is now the following master equation:

åP(s,t) ,

a =
— yP(s,t) + F(s —s)P(s ,t),

where P(s,t) is the probability to find the particle at the
lattice site s at time t, F(s’—*s) is the jump frequency for
jumps from site s’ to s (F is usually assumed to be nonzero
only when s’ and s are nearest neighbors), and

= F(s—s’)
s

To mimic the disorder of the solid, the F’s are assumed to
vary randomly according to some probability distribution
p(F). The problem of calculating a(o)) from p(F) is not
easy and suitable approximations have to be done. Below,
the derivation of the CTRW and the EMA approximations
is briefly sketched.

Adopting the bra and ket notation ofquantum mechan
ics, Eq. (7) can be rewritten as

fIb=Hb

where b) = P(s) s) is the state with probability P(s) of
finding the particle at site s, and the “Hamiltonian” H is
given by

H= —yis)(s +F(s’-*s)s>(s’. (10)

The formal solution of Eq. (9) is 4b(t)) =

exp(Ht) jØ(t = 0)). By two partial integrations, the Kubo
formula for o(co) [Eq. (6)] reduces to

=
— nq22 C (R2(t))e_1wtdt,

6kBTJ0

where q and n are charge respective density of the quasi
particles and (R2(t)) is the mean-square dispiacement ofa
particle in time t. A convergence factor iim0 exp ( — Et) is
implicitly understood in the integral. If ali sites are equally
populated in thermal equilibrium, i.e., have the same free
energy, Eq. (9) in conjunction with Eq. (11) implies

nq2Û)21 ‘2=

— 6kBTN
(s — s ) (sG(lû.))s ) , (12)

where Nis the number of lattice sites and G is the resolvent or
Green’s function operator for H:

G= l/(ico—H). (13)

The Green’s function depends on the actual values of the F’s.
Hopping systems in three dimensions are believed to be self
averaging, implying that different samples with different H ‘s
have the same bulk o-(co). This property simplifies matters
considerably since only the average of G over all possible
H’s, (G),needstobeevaluatedinordertofindu(a). (G) is
translationally invariant and we flow make the ansatz

(G) = 1/(iw—H), (14)

where H = H (a) is a “coherent” Hamiltonian deter
mined by a coherent jump rate F, (co) in the following way:

= F(co)( —6 s)(s +

where the double sum is over nearest neighbors only. It is flot
hard to show from Eqs. (12) and (14), and is indeed intu

(7) itively obvious, that u(co) is proportional to F,, (co).54 For
simplicity from now on we adopt the unit system in which
the constant of proportionality is one, i.e., where
a(co) =

To derive the CTRW approximation we write
H = H0 + V where H0 is the diagonal part and V the off
diagonal part ofH. If G0 is the Green’s function for H0, the

(8) standard perturbatiofi expansiofl is37

G = G0 + G0VG0 + G0VG0VG0 +«. (15)

The CTRW approximation is now to assume that all aver
ages of products ifl G are equal to products of averages, i.e.,

(G) = (G0) + (G0)(V)G0) + . . ., (16)

which implies (Go) (G ) —‘ + (G0) V) = 1. Taking a diag
oflal element of this operator identity we get the CTRW ap
proximatiofi for u(co) in our rationalized unit sys
tem34’42’54’55

(9) 1
/‘

1

6u(co)+ia) \y+ico
(17)

The origiflal derivation of the CTRW approximation was
made for a nonmarkovian random wa!k in a homogeneous
medium characterized by a so-cal!ed waiting time distribu
tion function.34 This derivatiofi is inconsistent, however,
sinde the assumption ofspatial homogeneity implies the dur-
rent autocorrelation function is a delta function, and thus
u(w) = u(0) from Eq. (6).5657 Note that this criticism ap
plies to any nonmarkovian hopping in a homogeneous medi
um; a nontrivial frequency dependence of the conductivity

(11) only comes about ifthere are correlations in the directions of
subsequentjumps. The derivation ofEq. (17) given above is

2460 J. Appi. Phys., Vol. 64, No. 5, 1 September 1988 Jeppe C. Dyre 2460



due to Odagaki and Lax42’54; here the CTRW approximation
appears as the simplest possible nontrivial mean-field ap
proximation which is also referred to as the Hartree approxi
mation.

The magnitude of the dc conductivity is usually quite
wrong in the CTRW approximation, throwing doubt on this
approach.58 A more reliabie way of evaluating a(a)) is the
EMA.392 Here the idea is to focus on a particular link of the
lattice, say the link between site s and s’. Assuming, as above,
that ali site free energies are equai, the principle of detailed
balance implies F(s — s’) = f(s’ —+ s). The link is considered
to be embedded in an average medium described by the (G)
of Eq. (14) and one now requires seif-consistency so that,
on the average, the system of link plus average medium
is described by (G>: Writing the effective Hamiltonian
for the system, Her, as Heff = H + V where
V= [a(a)) — r(s—s’)] ja>(aj with ja> = s> — js’>, the
standard perturbation expansion Eq. (15) yieids for the
Green’s function for Heff

Gy(G>+(G>TG>, (18)

where

T=V+V(G)V+»=V(1—(G)VY’.

The seif-consistency requirement, (Geif> = (G>, now leads
to (T> = 0. A straightforward caiculation with 2 x 2 matri
ces referring to site s and s’ shows that (T> = 0 is equivalent
to40’42

/ f—a(a))
\ i — 2( (sj (G > s>

— (si (G > Is’>) (cr(w) — f) /

This is the EMA equation for a(a)); it can be simplified
somewhat by noting that

(sj(G)js) — (sj(G)js’)
= —ia)(sl(G>Is> (21)

which follows from evaluating the diagonal element of Eq.
(14) written as (ia

— H ) (G) 1.
As mentioned already, the real part of the conductivity

is always an increasing function of frequency. The increase
continues until one reaches the region offrequencies around
the maximum jump frequency of the model, where the con
ductivity stabiiizes (Fig. 2). In experiments the conductivity
usually increases until ü) 1012 Hz. At these high frequen
cies the stochastic assumption of hopping models cease to be
valid and one enters a region characterized by various reso
nance effects. At even higher frequencies the conductivity
starts decreasing. The stabilization of Fig. 2 predicted by
hopping models is thus seldomly observed in experiment
which suggests that, for the construction of reaiistic hopping
models, one should try to eliminate completely all effeets of
the maximum jump frequency. This phiiosophy is followed
below.

IV. THE RANDOM FREE-ENERGY BARR lER MODEL
Equipped with the tools of Sec. III we flow address the

problem of formulating the simplest possible realistic model
for ac conduction in disordered solids. For most solids the de
conductivity is thermaily activated: u(0) cxexp(

—

kB T). As illustrated in Fig. 1, the ac conductivity is less
temperature dependent than o-(0), suggesting that ac con
duction is dominated by processes with activation energies
smaller than EdC. A doser analysis shows that the ac con
duetivity activation energy depends on frequency and tern
perature so it is natural to assume that, consistent with the
disorder of the solid, a whole range of activation energies is
involved. This idea goes back in time at least to 1946 (Refs.
30 and 59) and it is the basie ingredient in Stevels’ and Tay
lor’s model from 1957 21,23 It should be emphasized that,
even without any microscopic picture of the transport mech
anism, resuits like Fig. 1 strongly suggest that any model for
ac conduction should somehow be built on the assumption of
a distribution of energy barriers. Hopping models, ofcourse,
fit nicely into this since it is realistic to assume the quasi
particie jumps are thermally activated over an energy bar
rier. More generally, one speaks about free-energy barriers49
and writes

/ zFP=F0expi —
‘ kBT

(22)

where f0 is the so-called attempt frequency, and the free-
(19) energy barrier, iF = — TiS, is composed of an energy

barrier iEand an entropy barrier iS. Quantum-mechanical
tunneling may be thought ofas providing a negative entropy
barrier proportional to the tunneling distance. In this ter
minology it is possible to speak about ionic and electronic
conduction in a unified language which, incidently, also cov
ers the possibility of thermally activated electron or polaron
jumps over energy barriers.

(20) In modeling a disordered solid, the simplest possible as
sumption is that ali free-energy barriers are equally likely.
Sincep(P) =p(tF)(dtF/dr) this implies

p(P)ccf. (23)
The model defined by Eq. (23) will be referred to as the
random free-energy barrier model. To solve this model with
in the CTRW approximation [Eq. (17)], the distribution of
y’s needs to be caiculated. Since yis a sum of f”s [Eq. (8) J,
p(y) is a convolution ofp(F) with itselfa number of times.
The result is a complicated function, equal to y times
some logarithmic terms. These terms are not very important
compared to the y ‘term, so we approximate p ( y) simply
by y ‘.Substituting this flow into Eq. (17) leads to

1/ . ia)1n2
6\ ln[(1 + &/ym )/(l + ÛV2’max)1

(24)

where two cutofi’s have been introduced, and
2 = 7’max /Yrnin According to the philosophy of Sec. III any
influence of the high-frequency cutoif should be elirninated.
For Yrnax the second term of Eq. (24) dominates, and
for frequencies ( Yrnax we thus have

a(a)) =, [ia)1n2/ln(l +icor)], r=y;. (25)

From this we get

cr(0)=ln2/6r, (26)

which substituted into Eq. (25) finally gives16

o(a)) =u(0)[ia)r/ln(1 +i&r)]. (27)

6u(&)
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By regarding this expression as a formula for o-( (JJ) with two
free parameters, o-(0) and T, any influence of Ymax has nowbeen formally eliminated. 

The random free-energy barrier model predicts a uni­
versal shape of the conductivity curve plotted in the usual
log-log plot.16 In Fig. 3 the model is compared to experi­
ments on a number of different solids.65

-
71 Though exact

universality is not observed, the model is in rough agreement
with experiment. The model implies a high-frequency be­
havior which is very close to a power law, reminding us of
the danger of deducing fundamental power laws from log­
log plots. For 103 

< (JJT < 106 one finds s�0.8, which offers a
possible explanation for the frequently observed exponents
around 0.8.4 For (JJT► 1 the exponents is given by the expres­
sion

s = 1 - 2/ln((JJT). (28)
This can be easily proved from o-' ( (JJ) o:: (JJT/ln 2 

( (JJT) , which
is valid whenever wr► 1. In general, the model predicts ex-

41og(Rea<W)/cro) 

(a) 0 

+ 

0 .. t 

� + 
+ 

5 log(w-c) 

log (cr'(w)/cr(O))
4.---------------------------. 

( b) 

3
2

-1 0 2 3 4 5 6 

log(WT) 

FIG. 3. CTRW solution of the random free-energy barrier model [Eq. 
(27)] compared to experiment on a number of solids [ (a) is reproduced 
from Ref. 16). The data represent conduction in (a) n-doped crystalline 
silicon ( X ), sputtered films of arsenic (e), sodium silicate glasses (0), 
glow-discharge silicon (t.), silicon monoxide ( + ), amorphous germani­
um (□), Mn 1 .8 Ni0_6 Co0_6 O4 (V), monolayer of stearic acid (0); and (b) 

a - As2Se3 at 370 K ( X) (Ref. 65), viscous 0.4Ca(NO3)i-0.6KNO3 at
338.5 K (e) (Ref. 66), viscous HZnC13•4H2O at 154.5 K (0) (Ref. 67), 
illuminated polycrystalline zinc oxide ( t,) ( Ref. 63), vanadium phosphate 
glass at 167 K ( +) (Ref. 68), AsF5-doped polyphenylacetate at 271 K 
(□) (Ref. 69), flux-grown single-crystal alumina inc direction at 873 K
(V) (Ref. 70), 81% tungsten phosphate glass at room temperature (0)
( Ref. 71). For all data the characteristic time r has been adjusted to fit the
theory as well as possible; r varies between 10-7 and 103 s. 
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ponents between 0. 7 and 1.0, which is exactly the interval in
which one finds the vast majority of reported exponents.32 

Also in agreement with experiments is the fact that s((JJ) is a
weakly increasing function of (JJ. 

For the dielectric loss one finds by substituting Eq. (27)
into Eq. (1 ) , 
€" ( (JJ) = 2d€ ( arctan ( (JJT) __ 1_) 

[lnJl + ((JJ-r)2 ]2 + [arctan((JJT)] 2 (JJT ' 

where dE is the dielectric loss strength given by
€0d€ = ½o-( 0) T. 

(29)

(30)
Equation (29) implies a very broad loss peak with a tem­
perature independent shape. The loss peak is shown in Fig. 4
together with data for a typical sodium silicate glass. There is
a qualitative, but not exact, agreement between theory and
experiment. The BNN relation is satisfied by the model. A
numerical analysis of Eq. (29) shows that the loss peak fre­
quency is given by (J)mT = 4.71.19 Combining this with Eq.
(30) and the definition of the BNN p parameter in Eq. (3)
we get

PcTRW = 0.42. (31) 

This number is not as close to one as required by experiment,
but in comparison to the many orders of magnitude varia­
tions in u(O) and (J)m for the solids where the BNN relation
has been found,27 this is not a serious objection to the model.

Writing Eq. (30) in the form
(32)

implies an interesting scaling principle which has recently
been discussed by Summerfield48 and which was also used by
Scher and Lax in their 1973 papers. 34 The scaling principle,
which is just the BNN relation in conjunction with the time­
temperature superposition principle (i.e., the existence of a
universal conductivity curve), allows one to plot different
experiments onto a master curve. To make use of the scaling
principle, one may use, e.g., experiments on one solid at dif­
ferent temperatures, as illustrated by Pollak and Geballe's
original experiments replotted in Fig. 5 (a) 14 and a similar

log(e:'1/e:�x l 

0 

-1
. / 

/ 

-2
' . .
' 

' -3 ' 

-4 ' 

' 

-1 0 2 3 4 5 6 

log(w/wm) 

FIG. 4. Dielectric loss of the random free-energy barrier model according to 
Eq. (27) and data for a typical sodium-silicate glass (reproduced from Ref. 
19). The dashed curve is the Debye dielectric loss peak. There is a qualita­
tive, but not exact, agreement between theory and experiment. 
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— log(at0Qcm)—7 4

FIG. 5. Applications of the scaling principle, i.e., the BNN relation in con
junction with the time-temperature superposition principle. In the model,
the scaling principle is expressed by Eq. (32) and the fact that the conduc
tivity relative to u(0) is a function only of ûn. In (a) and (b) data for a
single sample at different frequencies and temperatures are plotted, making
use of F.q. (32) and the Curie law equation (33). The data are compared to
the CTRW solution of the random free-energy barrier model [Eq. (27)].
(a) considers the original data by Pollak and Geballe on heavily n-doped
crystalline silicon at low temperatures, taken from Fig. 5 of Ref. 14. The
data were obtained at the following temperatures: 2, 2.5, 3, 3.5, 4.5, 5.5 K at
0.1 kHz (ts), I kHz (0), 10 kHz ( + ), 100 kHz (X). (b) considers data
on a vanadium phosphate glass taken from Fig; 2 of Ref. 72. The data was
obtainedat83, 100,125, 167,and25OKatO.1 kHz (El), i kHz (7), 10kHz
(z3j, 100 kHz (0), 8 MHz ( + ), 3.6 GHz (x ). The gigahertz data devi
ates from the master curve, signaling a breakdown of the theory at very high
frequencies. In both Ca) and (b) the constant C is a fitting parameter,
C= l.9x 10—I2 for (a) and C=2.1x10’° for (b) in units of
(tl cm)’ K/Hz. In (c) data for different chaicogenide glasses at a fixed
frequency are compared to Eq. (27). It is assumed that the different sam
ples have the same dielectric loss strength c which becomes a fitting pa
rameter (E = 0.6). The data were obtained at 300 K by several workers
[see the references in the paper by Davis and Mott who compiled the data
(Ref. 73)].

88.5K
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i
og (w/2itHz)

FIG. 6. Comparison between the prediction ofEq. (27) and measurements
on amorphous germanium at various temperatures by Long and Balkan
(Ref. 74) (reproduced from Ref. 16). The data were fitted by Eq. (27) at 77
K and then displaced according to the scaling law [Eq. (32)] taking into
account Eq. (33). At the two lowest temperatures the de conductivity is
unknown and was treated as a fitting parameter.
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figure for measurements by Mansingh and co-workers [Fig.
5(b) ] Alternatively, measurements at the same frequency
on different solids assumed to have the same c[Fig. 5(c)]
may be used.73

In connection with the scaling principle we remind that
lE experimentally varies with temperature according to the
Curie law

IExT’, (33)

a fact which is also predicted by the CTRW treatment
though here, it has been hidden by the rationalized unit sys
tem. Figure 6 illustrates the use of the scaling principle in
conjunction with Eq. (33) for measurements by Long and
Balkan on amorphous germanium.74 Except for the weak
temperature dependence ofIE, Eq. (32) predicts the univer
sal conductivity curve of Eq. (27) to be dispiaced in the
direction 45° to the log(co) axis when the temperature is
changed. As the temperature is lowered, u(O) —O, which
implies that measurements at a fixed frequency in effect
probes larger and larger cor on the universal conductivity
curve. Since s— i as ar—. , the model thus predicts s— i as
T— 0, which is in agreement with experiment. Substituting
cr(O)cxcexp X(—FdC/kBT) viaEq. (32) intoEq. (28)
we find as T— 0 for the exponent s, measured in a fixed range
of frequencies,

s=i—T/T0, kBTo=EdC. (34)

According to the theory, the temperature dependence of the
ac conductivity is much weaker than that of the dc conduc
tivity. Note that the temperature dependence almost vanish
es whenever s approaches one. This is predicted and ob
served for all systems at low temperatures, but 0-’ (û.) may
also become almost temperature independent at room tern

Iog(Reo()) (arb. units) a— 6 e

-1 0 i 2 3 L 5 67 8 9 10

Log([j)

iog
(Reawio’z)a(O)

(c)

As2S3

Te, s3SiGe
I I

2
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perature for solids with a very low, perhaps unmeasurable, a(O) iû) 1 o-(0)’\
31n mf

de conductivity. ()
In experiment one finds that, while a(0) may vary

max 3
many orders of magnitude between different solids, the ac + in ( ‘1 — —

_____

conductivity varies only relatively little (one or two orders a() 2a(0)) 2
= 0. (42)

U(c)

ofmagnitude).2 This can be understood from the model: For The second term is unimportant compared to the first term
two different solids, (1) and (2), we find from Eqs. (27) and and may be ignored, leading to
(30) U(CL)) 1o(a))mf I=icr, (43)

u’1(û) a’(0)r (1) cr(0) \ cr(0) )
lim = = (35)

,

(2)
iE (2) where

Since the dielectric loss strength varies only relatively little
T =

‘max
—

• (44)between different solids, Eq. (35) explains the small spread 3u(O) I 2o(0)) 2 i
in ac conductivity.

Turning flow to the problem of solving the random free- Equation (43) was first derived by Bryksin for electrons

energy barrier model by the effective-medium approxima- tunneling between nearest neighbors in a solid with electron

tion, we first substitute Eq. (21) into Eq. (20) and get sites randomly located in space.39 The jump frequency prob
ability distribution of this model is more complicated than

(36) P , but in the limit 1’max —
the frequency-dependent

where conductivity is the same in the two models. It is quite un
usual that the EMA leads to such a simple equation. Thisx=3(1 —ia)(sI(G)js)) —1. (37)
equation will henceforth be referred to as Bryksin’s equa

It is straightforward to caiculate the average appeariflg in tion.
Eq. (36) when the distribution of T’s is given by Eq. (23); In Fig. 7 the solutiori to Bryksin’s equation is compared
the result is to the CTRW solution of the random free-energy barrier

/ Fmax +, ) (r’max) model [Eq. (27)1. The two are quite similar, lending some
(1+)lnf =ln (38)

\ ‘min + ,y° 1’m1n
‘ credit to the simple CTRW expression for a(a)). AlI features

of the CTRW solution are shared by the solution of Bryk
which is a rather complicated equation for o(a)). However, sin’s equation. In particular, the BNN relation is satisfied by
according to the philosophy of Sec. III we are only interested the EMA solution, although Eq. (30) is now replaced by
in the limit of very large ‘max In this limit an important
simplification occurs, as pointed out by Bryksin.39 In the E4c u(0)r. (45)

whole range of frequencies much smaller than rmax we have The loss peak frequency is given by CVm r = 1.709 and for the
u( a)) . In this region one may therefore expand

‘
to BNN p parameter one finds

firstorderina/u(a)):
PEMA =0.59. (46)

This value is in better agreement with the experimentally%=2+[iw/u(a))1 + ..., (39)
foundpl thanthepCTRW =0.42. Butforotherpurposes
the two solutions are practically identical and one may use

where is a numerical constant given by39’6°

Log(a’(w)/a(O)

dx dy dz
X = 0.253.

i —.[cos(x) +cos(y) +cos(z)]
(40)

The expansion in Eq. (39) is only possible in three or more
dimensions where the Green’s function for diffusion is well
behaved as a—*0. By putting = 2 in Eq. (38) it is easy to
see that in the frequency region of iflterest
1’min I0(co) Thus, the ln term on the left-hand side
of Eq. (38) may be replaced by lfl(fmax /ya). Equation
(38) now becomes, by equating thea) = a and thew = 0 on
the left-hand side,

2

0

(3 +
la)

‘hn(
Fmax/2J(CO)

u(a)) 1+[ia)/u(a))J
) 31n(

l’max )2u(0)
(41)

which expanded to first order in a)/u(w) reduces to

—i 0 i 2 3 4 5 6
log(wT)

FIG. 7. Comparison between the CTRW and the EMA solution of the ran

dom free-energy barrier model. The full curve is the CTRW solution [Eq.
(27)] and the dots mark the EMA solution [Eq. (43)]. The two solutions

are shown for the same value ofu(0) and ewhich, according to Eqs. (30)

and (45), implies TEMA = 2TCTRW. The CTRW and EMA solutions are
almost indistinguishable, lending credit to the simpler CTRW approach
from the more reliable but also more involved EMA.
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Eq. (27) just as well as Bryksin’s equation, which has to be
solved numerically before it can be compared to experiment.

V. DISCUSSION

Looking back on the history of ac conduction in disor
dered solids, it strikes one that a handful of glass technolo
gists established very early the general features ofglass ionic
conductivity, while only much more recently the same fea
tures have been established also for electronic conductive
disordered semiconductors. A likely explanation for this is
the fact that electronic conductivity was always thought to
be much more complicated than transport in ionic conduc
tive solids, which obviously proceeds via thermally activated
charge carrier jumps over barriers. The pair approximation,
which seems to have delayed a proper understanding ofelec
tronic transport, was never really applied to ionic glasses,
where one also needs a mechanism for the dc conduction
which very early was known to be closely related to the ac
conduction. On the other hand, the traditional ion glass re
searchers never managed to explain both the BNN relation
and the broad dielectric loss peaks,’9 and the more successful
random walk models were first solved by workers within the
semiconductor school. Despite extensive theoretical work,
these models have flot yet become popular among experi
mentalists. This is perhaps because the models usually end
up with complex equations which have to be solved numeri
cally and which are far from transparent in their interpreta
tion. But this is flot necessarily the case, and one purpose of
this paper has been to show that simple random walk models
do exist and to encourage their use.

The justification of hopping models comes from the fact
that dc and ac conduction are both due to the same mecha
nism. This is the message of the BNN relation which is cen
tral to the whole subject. It is of crucial importance that
genuine loss peaks are observed. Otherwise, even when ac
and dc conduction are totally unrelated, one may find a
BNN-like relation of the form a(0) cx a where a is the
characteristic frequency for the onset of ac conduction; this
is the case, e.g., ifa’(u) = u(0) +Aw. In experiments one
does indeed find loss peaks in all disordered solids, though
this is not always as carefully checked as one might wish.

Given that conduction in disordered solids is to be de
scribed by hopping models, the only possible explanation for
the ion-electron analogy is that the same jump frequency
distribution applies for both cases. The simplest guess for the
common distribution is that corresponding to randomly
varying free-energy barriers for jumps, Eq. (23). One may
argue for this distribution directly from experiments’ 8: Since
the shape of the u’ (co) curve is temperature independent and
s— i as T—+0, it can be conciuded that s— 1 as co—* oo on the
master curve; the simplest jump frequency distribution con
sistent with this is p( P) cx f 1 18 At low frequencies, when
the cutoif at (Om starts to play a role, one expects it to de
crease the frequency dependence of the conductivity slight
ly, i.e., to push s below one. This is exactly what happens in
the random free-energy barrier model [Eq. (28) ]. While the
assumption of completely randomly varying free-energy
barriers is probably the simpiest realistic choice, other bar
rier distributions may also be useful. This has been discussed

in detail by Macdonald in recent papers.6’ He adopts a more
macroscopic point of view to ac conduction but the math
ematics developed by him is quite similar to that of hopping
models.

In hopping models it is possible to distinguish different
characteristic regions of frequency.39’5° At low frequencies
the conductivity is constant. Here transport takes place on
infinite “percolation” paths. Then comes a region of fre
quencies where the conductivity increases strongly with fre
quency (compare Fig. 2); here transport is dominated by
contributions from hopping in finite ciusters. Finally one
encounters the region where the high-frequency cutoffstarts
to play a role and s(co) decreases to zero with increasing
frequency. This is where the pair approximation gradually
becomes valid, i.e., where the conductivity is made up of
contributions from independent pairs of sites connected by a
link with a particularly large jump rate. The division into
three regions of frequency is suggestive but not really based
on exact theory. The validity of the pair approximation at
high frequencies is an exact result, though.5° To estimate
where the pair approximation sets in, let us use the jump
frequency distribution of Sec. IV [Eq. (23)1 which gives
equal weight to each decade ofjurnp frequencies. In order for
a link to be “isolated” from its surroundings, its jump rate
must be larger than those of the 10 other links which it is
directly connected to on the cubic lattice. Since the random
free-energy barrier model weighs all decades of jump fre
quency equally, on the logarithmic frequency axis the pair
approximation will be valid in the final 10% of the interval
between Erni,. and max Equation (38) implies for the dc
conductivity a(0) cx TÇF which via the BNN relation
implies co,,, (X P. Thus the pair approximation is val
id only in the final third of the (logarithmic) interval
between o,,, and maX• In order to fit experiment max must
be at least 1012 Hz, so the pair approximation is seldom of
relevance at typical laboratory frequencies (unless at very
low temperatures), and we may safely follow the philosophy
of Sec. III and eliminate any influence of ‘max. In the result
ing “renormalized” hopping models, the physics is a conse
quence of the low-frequency cutoif at ‘rnin This is comple
mentary to the pair approximation where the physics is a
consequence of the high-frequency cutoif [Eq. (5)].18

When applying the renormalization philosophy to the
random free-energy barrier model, one finds in the CTRW
approximation a simple formula for a(co) [Eq. (27)] and in
the EMA a simple transcendental equation for a(w) [Eq.
(43)]. As illustrated in Fig. 7, these two solutions are almost
identical. Since the dc conductivity in the CTRW approxi
mation generally may be wrong by several orders of magni
tude,58 while the EMA value is probably much more accu
rate, the similarity between the two solutions is far from
obvious and must be regarded as an empirical fact. Appar
ently, the CTRW is saved by our prescription of eliminating

max, which leaves a(0) as a free parameter in the model.
Recently, it has been shown by Summerfield that several

different modeis solved in the EPA have almost the same
frequency dependence in the region of frequencies where the
high-frequency cutoif is irrelevant.48 He refers to this phe
nomenon as “quasi-universaiity.” The solutions of the mod-
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els discussed by Summerfield are quite ciose to the solution
of the random free-energy barrier model. This supports a
hypothesis of “quasi-universality” among ali modeis and not
only among EPA models as originally suggested. Though
further investigation of this hypothesis is necessary, a pre
liminary conciusion is that ali realistic models in the
‘‘max limit gives more or less the same frequency-depen
dent conductivity. Equation (27) provides a simple analyti
cal representation of the quasi-universal conductivity.

In the limit ‘‘max CTRW approximation is rep
resented by the electricai equivalent circuit shown in Fig.
8(a).17 In the circuit ali capacitances are equal while the
resistances vary. The impedance Z(1ü) is given by

Z(a) = l/(R + koC)),

where the average is over the distribution ofresistances. Cor
responding to randomly varying free-energy barriers, the re
sistance probability distribution varies as R , the analog of
Eq. (23), and thus, the characteristic time t = RCis distrib
uted according to t —‘. If the maximum value of t is denoted
by -r and the minimum vaiue is zero, we flow get

0 0 0

R, R R1

(a)

C R1

FIG. 8. Electrical equivalent circuits for (a) the CTRW approximation in
the max limit and (b) the pair approximation. Note that the pair ap
proximation does flot have any dc conduction. This figure shows that the
two approaches are, in a serise, complementary. This is also reflected by the
fact that the exponent s in the pair approximation is a function of the loga
rithmic distance from w to the high-frequency cutoif [Eq. (5)], while s ifl

the CTRW case is a function of the Iogarithmic distance to the effective low
frequency cutoif at co,.,, [Eq. (28)].

t cJ l+it
Since t —‘ is not normalizable, the constant K is unknown
and must be determined seif-consistently. When this is done
after the integration has been carried out, Eq. (48) reduces
to Eq. (27). Note that it is straightforward to actually build
the equivalent circuit in the laboratory, since the ordinary
resistance scale is logarithmic just as the distribution used in
Eq. (48).

The physical interpretation of the circuit is not quite
obvious. Intuitively, one may argue that the one-dimension-
al circuit gives a satisfactory representation ofconduction in
three dimensions because the broad distribution of jump

(47) rates implies that conduction is dominated by contributions
from certain optimal paths, the “percolation” paths.’8
Usually, the circuit of Fig. 8(a) is not related to hopping
models but applied to conduction in a solid with macroscop
ic inhomogeneities with different dc resistances.20’62’63 In
such models the frequency dispersion of the conductivity is
described by a generalization of the Maxwell—Wagner theo
ry of inhomogeneous dielectrics, as flrst suggested by
Isard.24 The reduetion from three to one dimension has nev
er really been justified.

The equivalent circuit of the renormalized CTRW ap
proximation is complementary to the equivalent circuit of
the pair approximation shown in Fig. 8(b). In the pair ap
proximation conduction takes place in parallel channeis cor
responding to additive admittances, while in the CTRW case
the impedances are additive, intuitively expressing the fact
that charge carriers on the percolation paths have to over-
come a sequence of barriers.

The random free-energy barrier model is essentially
identical to Stevels’ and Taylor’s 1957 “random potential
energy model” for glass ionic conductivity.21’23 This model
was never generaliy accepted because it was thought to con
tradict experiment on two important points7’8”5: It was be
lieved that a model based on a distribution of energy barriers
can never give temperature-independent loss peaks, and also
that the BNN relation implies the ac conducting ions to have
the same activation energy as those behind dc conduction.
These objections are incorrect, however.’9 If all barriers are
equaliy likely, the jump frequency distribution is propor
tional to F ‘ at ali temperatures, yielding a temperature
independent loss peak, and there is certainly no problem in
having a whole range of activation energies involved in the
conduction process. Actualiy, from figures like Figs. i and 6
one can conciude that ac conduction must have a smaller
activation energy than dc conduction. Thus, the experimen
tal facts seem to more or less force one to base the theory for
ac conduction on a distribution of energy barriers, where the
dc conductivity activation energy is the maximum activation
energy involved in the conduction process. Corresponding
ly, the loss peak frequency, which marks the onset ofac con
duction, must be essentially the minimum jump rate in the
solid: On a time scale larger than - the conductivity is
frequency independent so the solid “boks” homogeneous to
the quasi-particles. This can only come about if Om is the
effective minimum jump frequency so that many jumps nec
essarily are involved for times Note that, since both

(b)
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dc conduction and loss peak frequency are determined by
the maximum energy barriers, the proportionality between
a(0) and Ûm in the BNN relation becomes obvious from this
analysis of experimental facts, without any calculation.

The random free-energy barrier model predicts a fre
quency dependence ofa’(cü) that is very close to a power law
(Fig. 3). This may seem surprising since there is no power
law hidden in Eq. (27), but it is just another illustration of
the old truth that “anything is a straight line in a log-log
plot.” Because ofthis, care must be taken in deducing power
laws from apparently straight lines in log-log plots, though it
may still be convenient to discuss measuremerit and theory
in terms of the “exponent” s.

At the end of Sec. II was listed in eight points the univer
sally found experimental facts mi ac conduction in disor
dered solids, and in Sec. IV it was shown that the random
free-energy barrier model explains all eight points. Here we
want to point out that these facts are flot independent but
closely interrelated, as becomes evident when they are dis
cussed in light of the model. The fact that u’(û) has a tem
perature-independent shape implies that, at lowering the
temperature, one measures further and further out on the
master curve which is known to exist. Consequently, since
s(w) — i as cüi-— , the exponent s measured ina fixed range
offrequencies converges to one as T—0. The BNN relation
implies that u(0) and Wm are proportional [apart from the
factor of T ‘in lE (Eq. (33)]. Thus, if the temperature is
lowered, the conductivity curve is displaced in direction 450

to the x axis in the log-log plot. It is now obvious that the ac
conductivity is less temperature dependent than the de con
ductivity and that, for exponents very close to one, the ac
conductivity must be practically temperature independent.
In particular, this is aiways the case at low temperatures.

The BNN relation implies a convenient scaling princi
ple which allows one to construct a master curve from mea
surements at different temperatures at a fixed frequency. In
the random free-energy barrier model, the scaling principle
is reflected by the fact that the whole ofu(û,) is determined
from a knowiedge of the two numbers cr(0) and ZE. Note
that, experimentally, IE is usually flot very far from one so it
is possible to get a rough idea of the magnitude ofcr’(a) just
from a knowledge of the de conductivity: Putting IE i in
Eq. (30) we get 1-E0/a(0) which, when substituted into
Eq. (27), determines u’ (w). In particular, at large frequen
ciesF.q. (27) implies a’(û) a(0)[or/ln2(a.r)] so a rough
estimate of u’ (a) here is

u’(&)E0a)/in2(Û)E0/u(0)). (49)

To summarize the paper, an important point is the irrel
evance of ‘max for a(&) in realistic situations. Letting 1’max
go to infinity, one arrives at “renormalized” hopping models
for which the pair approximation never becomes valid at
high frequencies. In a sense the pair approximation is com
plementary to the renormalized CTRW approximation, as
illustrated in Fig. 8. The frequency-dependent conductivity
of the random free-energy barrier model is quite similar to
that ofa number of models discussed by Summerfield.48 This
supports the hypothesis of quasi-universality: All models
based on a broad jump frequency distribution yield almost

identical o-(a) in the rmax —* co limit. Thus, Eq. (27) is rep
resentative for many modeis. This equation is in reasonably
good agreement with experiment. It seems, however, that
the spread among experiments is larger than among theories
and one cannot really say quasi-universality applies to ex
periments. More work has to be done to explain this. Since
quasi-universaiity seems to appiy among the hopping mod
els described by Eq. (7), it is possible that these linearized
models are too simple and that interactions have to be taken
into account, inciuding that due to Fermi statistics, to ex
plain experimental deviations from quasi-universality.

The fact that ali disordered solids have similar ac prop
erties means that only little can be learned about a solid from
measuring its frequency-dependent conductivity.32’48’64 Pol
lak and Pike have suggested that details of any particular
conduction mechanism should be contained in deviations
from linearity in the frequency dependence, i.e., from
s = .“ But as is clear from the model discussed in this pa
per, there are significant deviations from linearity 10 or more
decades above the loss peak frequency, deviations that are
solely a consequence of the low-frequency cutoif and which
provide no important microscopic information. Tentatively,
we instead suggest that details of any particular conduction
mechanism in principle could be inferred from deviations
from Eq. (27), which may be regarded as a zero-order ap
proximation to reality, but more theoretical work is needed
before microscopic details about the conduction mechanism
can be inferred from the measured o’(Û)).

As regards the question of the best way to present data
we recommend the use of a’ (co). This quantity is fundamen
tal, being directly related to the equilibrium current-current
fluctuations.6’ The use of the frequency-dependent dielectric
constant has one virtue, though: namely, that it reveals loss
peaks, the existence of which is crucial to prove that de and
ac conduction are indeed due to the same mechanism. The
electric modulus is not recommended because this quantity
mixes iii effects of E which, if the ideas advanced here are
correct, are independent of and unrelated to the ac conduc
tivity. In the present approach, the total admittance is a sum
of a hopping contribution and a purely imaginary dielectric
contribution from the atomic polarizability (Fig. 9).

_ahop(w)

FIG. 9. Total admittance Y for a semiconducting disordered solid accord
ing to hopping models. The admittance is a sum of the hopping contribution
discussed in the present paper, and a totally unrelated purely imaginary
contribution from the atomic polarizability given by the high-frequency di
electric constant c . If this picture is correct, the use of the electric modulus
in representing data is inconvenient since it mixes in effects of ç that are
independent of, and unrelated to, the hopping admittance.
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Finally, it should be emphasized again that an under
standing ofac conduction and its relation to dc conduction is
important, even if one is only interested in steady-state trans
port properties like dc conductivity, Hall resistance, thermo
power, etc. From the present paper it seems it can be con
ciuded that a whole distribution of energy barriers is
involved in dc transport in disordered solids. Theories which
do flot take this into account are incomplete.
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