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ABSTRACT: This paper introduces the fundamental continuum theory
governing momentum transport in isotropic nanofluidic systems. The theory is
an extension of the classical Navier−Stokes equation, and includes coupling
between translational and rotational degrees of freedom as well as nonlocal
response functions that incorporate spatial correlations. The continuum theory
is compared with molecular dynamics simulation data for both relaxation pro-
cesses and fluid flows, showing excellent agreement on the nanometer length
scale. We also present practical tools to estimate when the extended theory
should be used. It is shown that in the wall−fluid region the fluid molecules
align with the wall, and in this region the isotropic model may fail and a full
anisotropic description is necessary.

I. INTRODUCTION

Nanoscale devices can now be fabricated with channels where the
smallest dimension is just a few nanometers,1 and the develop-
ment of nanofluidic theory1−3 is more relevant than ever.
Consider the following example. Perrson et al.4 used a series of
rectangular nanochannels with widths ranging from 14 to 300 nm
to connect two microscale chambers. By means of capillary
filling, fluid from one chamber fills up the channels and thus
connects the two chambers. The filling rate was measured for
different channel widths and for both Milli-Q water (filtered
deionized water) and an electrolyte solution of sodium chloride.
The rate did not follow the Washburn equation for channel
widths smaller than 100 nm. The Washburn equation is based
on the classical continuum picture3 using Poiseuille’s law of fluid
motion, which includes the Newtonian (or macroscopic) shear
viscosity. For widths larger than 100 nm the Washburn equation
correctly predicts the filling rate. These findings are in accordance
with the common understanding that the discrete nature of the
fluid at small scales destroys the continuum picture.5,6 In fact,
many researchers categorize continuum physics as physics on the
macroscopic scale; see for example ref 7. Several questions imme-
diately arise: When exactly does the classical continuum picture
fail? How is this breakdown manifested? Does the length scale of
the breakdown depend on the specific problem? Can one improve
the continuum description such that it applies on small scales?
Demanding sufficient smoothness of the macroscopic

quantities with respect to time and position and using a simple
statistical argument, Lautrup7 estimates that the smallest volume
accessible to the continuum description must contain at least
104 molecules. This corresponds to a length scale of 8−80 nm,

depending on the density. For steady flows the temporal fluctua-
tions can be averaged out and the accessible volume is much
smaller. This is illustrated in Figure 1, where we have performed
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Figure 1. Comparison between atomistic simulations (blue filled
circles) and the continuum prediction (red lines) for a methane fluid
undergoing a Poiseuille flow. The flow is generated by an external force
field with magnitude F = 50 TN, pointing along the x direction. The
Navier−Stokes equation predicts a velocity profile of ux(z) = ρF/
(2η0)(h

2− z2) + uw, where ρ = 270 kg m
−3 is the mass density, η0 = 9.3±

0.6 μ Pa·s is the Newtonian shear viscosity, and uw = 62 ms−1 is the fluid
slip velocity at the wall surface. The two lines represent the interval
associated with the standard error in the viscosity.8 The width of the slit
pore is approximately 10 molecular diameters or 3.3 nm.
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an atomistic simulation (data given by blue filled circles) of a
methane fluid confined between two graphene sheets under-
going Poiseuille flow. The slit pore has a width of approximately
3.3 nm, and the flow is driven by an external force field. The
classical continuum prediction is plotted as two red lines
illustrating the maximum and minimum profiles allowed
within statistical uncertainty on the Newtonian shear viscosity.8

Only the fluid slip velocity at the wall surface is used as a fitting
parameter. For this system the continuum theory gives a
satisfactory description of the fluid steady state velocity profile on
a length scale of a few nanometers. Apparently, even on these
small length scales the molecular structure and degrees of
freedom can be coarsened into simple transport coefficients such
as the viscosity. For water undergoing a steady flow it has been
shown by atomistic simulations that the continuum description
holds for channel widths of just 6−10 nm.1,9 These results
contrast earlier assumptions about the validity of the continuum
picture and the statement that continuum physics is physics on
the macroscopic scale.5,7 Interestingly, it was later argued by
Thamdrup et al.10 that the disagreement between the experiment
by Persson et al.4 and the Washburn prediction is due to pinned
microbubles resulting in an increase in hydraulic resistance.
At some point the classical continuum description will of

course break down. To mention two examples, Travis et al.11

showed that for atomic fluidic systems the velocity profile features
modulations for confinements on the order of 5 atomic diameters.
Decheverry and Bocquet12 analyzed the effect of thermal fluc-
tuations on the mass transport of fluid through a nanotube. When
the classical continuum theory fails, the dynamics is frequently
quantified by different transport coefficients compared to those of
the bulk system, and effective transport coefficients are introduced
into the continuum constitutive relations.13,14

The main point of this paper is that the observation of
a breakdown need not be a failure of the continuum picture
itself but rather a result of inadequate modeling wherein
important dynamical processes are not accounted for by classical
theories. A very well understood example is the effect of the
Debye screening layer in electrolyte microflows.3 Two other
physical mechanisms that become important on the nanoscale
are often ignored in the literature, however, and this paper will
treat these in detail: (i) In classical hydrodynamics the fluid’s
local rotation is determined uniquely by the fluid streaming
velocity. One can quantify the rotation from the local angular
velocity field which is one-half the vorticity, that is, one-half the
curl of the streaming velocity itself.6 However, if the couple force,
that is, the force component producing pure rotation, is large,
then the rotationmust be treated as an independent variable. The
extended description is known as Cosserat (or micropolar)
continuum mechanics,15,16 first formulated by the Cosserat
brothers17,18 in the late 19th century. Cosserat continuum theory
is used in various areas such as liquid crystal studies19 and blood
flows20 and was studied intensively in the 1950s to 1970s; see
refs 21−27. For some reason it is not, however, adopted by the
nanofluidic community. We show that Cosserat theory must
also be used for fluid flows in extremely small confinements
where the molecular structure becomes important. (ii) Classical
hydrodynamics is based on local constitutive relations relating
fluxes to thermodynamic forces. For shear flow the stress at some
point depends on the strain rate at that particular point. If the
stress depends linearly on the strain rate, then this leads to the
Newtonian law of viscosity.6 A more general linear constitutive
relation is to let the stress be a function of the entire strain rate
history and spatial distribution, i.e., given by a spatial and tem-

poral convolution integral of a viscosity kernel and the strain
rate.28 This is the approach of generalized linear response
theory.29,30 The viscosity kernel accounts for the characteristic
length scale of the spatial correlations;31,32 we show later that this
must be taken into account in order to arrive at the correct fluid
response on molecular length scales.
Our presentation is based on comparisons of continuum

predictions with atomistic molecular dynamics (MD) simulation
data. These two descriptions are fundamentally different in two
ways. First, in MD the system is characterized by discrete
particles where the path of each individual particle constituting
the fluid is traced out through classical mechanics;33 i.e., the
particle interactions must be known. The discretization of matter
is, of course, in strong contrast to the fundamental assumptions
of continuum mechanics. Second, the continuum description
applies constitutive relations to form mathematical closed
problems. No such models are enforced in the standard MD
simulations. Any discrepancy between MD and the continuum
description may therefore be a result of a breakdown of the
constitutive relation rather than a breakdown of the continuum
theory as such. Our basic conjecture is that MD acts as an
idealized numerical experiment, and if a given continuum theory
agrees with the MD data, then the theory correctly accounts for
the phenomena we study.
Let us specify more accurately what is meant by continuum

theory. Basically, one refers to deformable fluid volumes
characterized by quantities which are continuous at any point r
over the entire volume and at any time t.6 This means that these
quantities are described mathematically by field variables. The
basic continuum hypothesis is that one can associate a given
fluid subvolume (or “fluid particle”) with the same characteristic
quantities of the entire deformable fluid volume, no matter
how small the subvolume.5,6 Lautrup7 suggests a lower limit
on the order of 104 molecules as stated previously, but averag-
ing allows an arbitrarily small fluid particle volume as seen in
Figure 1. One field variable is the streaming velocity, which is the
mass-weighted average velocity of the individual molecules in
the fluid particle around a given point.3 The fluid’s dynamics is
governed by balance (or conservation) equations. In general the
balance equation for some quantity per unit mass, ϕ = ϕ(r, t),
reads in the Eulerian differential form as24

ρϕ ρ ϕ σ∇ ∇∂
∂

+ · = − ·ϕ ϕt
u J

( )
( )

(1)

where ρ is the mass density, σϕ is a production term, u is the
streaming velocity, and Jϕ is the flux of ϕ. Here ϕ can be a scalar
or vector quantity. For ϕ = u, the right-hand side of eq 1 is the
sum of the body force and the surface force densities, that is,
forces per unit volume and eq 1 is the momentum balance
equation. The body force density can be a gravitational-like force
driving the flow as in Figure 1, and the surface force density is the
pressure tensor Ju = P.30 A special case is the mass balance
equation for which ϕ = 1. Since rotation is treated as an
independent variable, a balance equation in the form of eq 1must
be formulated for rotation; this is done in the Supporting
Information (SI). Importantly, in the extended Cosserat description
the pressure tensor P need not be symmetric21−24 as in the classical
continuum theory.
A comparison between the continuum description and MD

simulation data is carried out for molecular fluidic systems at
equilibrium as well as for steady flows in a slit pore. Here we
investigate four molecular fluids: a methane fluid, a generic
diatomic (dumbbell) fluid, liquid butane, and liquid water. For

Langmuir Invited Feature Article

DOI: 10.1021/acs.langmuir.5b02237
Langmuir 2015, 31, 13275−13289

13276

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.5b02237/suppl_file/la5b02237_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.5b02237/suppl_file/la5b02237_si_001.pdf
http://dx.doi.org/10.1021/acs.langmuir.5b02237


methane 75% of the mass is centered in the carbon nucleus,
and methane is treated here to be a simple spherical point-mass
molecule, as was done in Figure 1. Water will, on the other hand,
be treated differently using the flexible SPC/Fw water model34

that accounts for the molecular structure and hydrogen bonds
and thus for the structure of liquid water. The butane model is a
coarse-grained model where the methyl and methylene groups
are each represented by a united atomic unit, i.e., a spherical point
mass. Details about the butane model can be found in ref 35;
however, here flexible bonds are implemented with parameters
from the generalized Amber force field.36 The simulations are
done using the seplib library.37

Nanofluidic flows are often associated with fluid slippage at the
wall boundary.38 Just like the effect of the fluid−fluid interactions
is lumped into a single parameter, e.g., viscosity, the effect from
the fluid−solid interaction can be modeled into a friction co-
efficient determining the boundary slip. The slippage has a large
effect on the flow rate in extreme confinement and is usually
quantified by the slip length Ls. For a Hagen−Poiseuille flow in a
tube with radius R, the relative flow enhancement ΔErel due to
the slip is given as39

Δ = +E
L
R

1
4rel s

(2)

Ls is typically on the order of a few nanometers. Thus, for a given
nonzero slip length the flow enhancement increases hyperboli-
cally as the tube radius decreases. The slip is always present but
has an insignificant effect on the flow rate for tube radii greater
thanmicrometers. Ls is normally independent of system size; that
is, it is not an intrinsic nanofluidic phenomenon and is therefore
not addressed in this paper. Slippage is modeled here in an ad hoc
fashion as was done in Figure 1.
In the SI we derive the Cosserat extended continuum theory

from the microscopic point of view using a microscopic hydro-
dynamic operator. The derivation, which is based on the funda-
mental definition of the macroscopic field variables in terms
of the corresponding molecular quantities, follows the ideas of
Irving and Kirkwood40 and Evans and Morriss;30 see also ref 41.
The derivation leads to a molecular interpretation of the fluxes
entering eq 1. The final dynamical system of equations is some-
times referred to as the extended Navier−Stokes (ENS) equa-
tions; these are given by

σρ η
η

η η η

η

∇ ∇ ∇

∇ Ω

= − + + − · + + ∇

+ ×

⎜ ⎟⎛
⎝

⎞
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u u
3
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2
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2
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Ω
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⎛
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⎞
⎠⎟I

D
Dt

u2 ( 2 )
3

( )

( )

S r v
0

r

0 r
2 (3b)

whereD/Dt is the material operator,Ω is the spin angular velocity
field,∇p is the pressure gradient, and I is themoment of inertia per
unit mass. Transport coefficients ηv, η0, and ηr are the bulk, shear,
and rotational viscosities, respectively, and ζv, ζ0, and ζr are the corre-
sponding spin viscosities. Finally, inertia per unit mass. σu and σS
represent production terms of linear and spin angular momentum,
respectively. We refer the reader to the SI for a derivation and
discussion of eq 3.
The theory is strictly correct only for isotropic systems, and we

study such nanofluidics cases in sections II and III, comparing
theoretical predictions with MD simulation data. Flows in extreme
confinement, nanoflows, are characterized by strong density

inhomogeneities and anisotropy.We study such flows in section IV,
again comparing theory with MD data. Finally, section V gives a
brief summary.

II. COUPLING: MULTISCALE RELAXATION
PHENOMENA IN MOLECULAR FLUIDS

The purpose of this section is to demonstrate the validity of the
ENS equations, eqs 3, by comparing the predictions of different
thermally induced relaxation phenomena with MD simulation
data; \see also refs 42 and 43. We start with this problem instead
of the situation with confining walls as the latter introduces
density inhomogeneities and molecular alignment at the wall−fluid
interface. We return to this more complex situation in section IV.
Rather than investigating the quantities directly, one typically

studies the associated correlations.44 Here we will use the approach
based on Onsager’s regression hypothesis,45 which states that
thermal perturbations on average decay according to the
deterministic hydrodynamic equations of motion. Specifically, we
will compare mechanical spectra obtained from MD simulations
with predictions from eq 3.

A. Stochastic ENS Equations. In equilibrium, a fluctuating
quantity A can be written as A = Aav + δA, where Aav is the
average part and δA is the fluctuating part. In equilibrium, the
average streaming velocity and spin angular velocity are both
zero, so u = δu andΩ = δΩ. The fluctuations are modeled using
the stochastic forcing approach.46 Here an uncorrelated zero
mean stochastic force is added to the constitutive relations; see
the SI. For example, for the antisymmetric pressure the
constitutive relation with stochastic forcing reads

η δ δ δ∇ Ω= − × − +P u P( 2 )
ad

r

ad

where δ P
ad
is the stochastic fluctuating part of the flux.

To a first-order approximation in the fluctuation we have on
the left-hand side of eq 3

ρ δρ δ ρ δ+ ≈ ∂
∂

D
Dt t

u u
( )av av (4)

and

ρ δρ δ δ ρ δΩ Ω+ + ≈ ∂
∂

I I
D

Dt
I

t
( )( )av av av av (5)

In Fourier space the stochastic ENS equations read to first order
in the fluctuations for wave vector k

ρ δ η
η

η δ η η δ
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(6b)

due to the properties of the divergence operator. The Fourier
transform is defined by eq 2 SI. It is convenient here to introduce
the following coefficients

η η η ζ ζ ζ ζ ζ
ζ

= + = + = +, , and
4

3t 0 r t 0 r l v
0

(7)

where subscript t indicates transverse and subscript l indicates
longitudinal. It has been shown27,42 that ζt ≈ ζl, and we write
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both coefficients as ζ. We may then define the susceptibility as

χ η ζ= +k k( ) 42
r

2
(8)

where k2 = k2. We will also drop the subscript av from here on.
We take k = (0, ky, 0) and write out the x component of the

velocity and the z component of the angular velocity

ρ
δ

η δ η δ δ
∂
∂

= − + Ω +
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͠ ͠͠u
t

k u k k P2i ix
x y z y yxt

2
r (9a)

ρ
δ

χ δ η δ δ δ
∂ Ω

∂
= − Ω − + +͠
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͠ ͠I

t
k k u k Q P( ) 2i i 2z

z y x y yz z
2

r

ad

(9b)

These two components are both transverse components to the
wave vector and are coupled. We also investigate the longitudinal
angular velocity component δΩ͠y which is given through

ρ
δ

χ δ δ δ
∂ Ω

∂
= − Ω + +

͠͠
͠ ͠I

t
k k Q P( ) i 2y

y y yy y
2 ad

(10)

Note that this longitudinal component is unaffected by the
coupling between the linear and spin angular momenta.
We define the following three correlation functions

δ δ
=

⟨ − ⟩͠ ͠
⊥C t

u t u
V

k
k k

( , )
( , ) ( , 0)

uu
x x

(11a)

δ δ
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δ δ
=
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ΩΩC t

t

V
k

k k
( , )

( , ) ( , 0)y y

(11c)

which we denote the transverse velocity autocorrelation function
(TVACF), the transverse cross-correlation function (TCCF),
and the longitudinal angular velocity autocorrelation function
(LAVACF), respectively. By assumption, the fluctuating fluxes
are uncorrelated with the velocity and angular velocity, e.g.,
δ δ⟨ ⟩ =͠ ͠P u 0yx x . Thus, by multiplying eqs 9a and 9b by δux(−k, 0)
and ensemble averaging, we arrive at the differential equation
system for the TVACF and the TCCF

ρ η η
∂
∂

= − +
⊥

⊥
Ω
⊥C

t
k C k C2iuu

uu y ut
2

r (12a)

ρ χ η
∂

∂
= − −Ω

⊥

Ω
⊥ ⊥I

C
t

k C k C( ) 2iu
u y uu

2
r (12b)

Similarly, by multiplying eq 10 by δΩ −͠ k 0( , )y one has for the
LAVACF

ρ χ
∂

∂
= −ΩΩ

ΩΩI
C

t
k C( )2

(13)

upon ensemble averaging. Now, eqs 12 and 13 can be solved,
yielding to second order in the wave vector

ρ
= − + +ω ω ω⊥ − − −C t
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where the characteristic frequencies are
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The prefactors in eqs 14c and 14a are calculated from the first-
order approximation in the fluctuations

∑δ
ρ

≈͠ − ·t
m

u k c( , ) e
i

i
k ri

(16)

where m is the molecular mass, c the thermal center-of-mass
velocity, and ri is the center-of-mass position of molecule i.
This comes from the definition of the linear momentum density
(SI eq 14). Likewise, to a first-order approximation in density
fluctuations and moment of inertia ρS ≈ ρIΩ, and from SI eq 29

∑δ
ρ

Ω Ω≈͠ − ·t
m

k( , )
3
2

e
i

i
k ri

(17)

as I = 2Ip/3 where Ip is the principle moment of inertia.47 By
applying the equipartition theorem, one arrives at the prefactors.
Equations 16 and 17 also provide a first-order method to
calculate the correlation functions in the MD simulations; this
method is used here.
It is informative to work in the frequency domain, i.e., to

predict the peak frequencies in the corresponding spectra.
Applying the Fourier−Laplace transform defined by

∫ω = ω
∞
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From eq 19b we can make a very important conclusion,
namely,

ω → →Ω
⊥C k k 0( , ) 0 foru (20)

This means that the coupling can be ignored on long length
scales. This is also expected as the classical Navier−Stokes theory
holds for macroscopic systems where no coupling effect is
observed. The relaxation of spin is still governed by the rotational
viscosity, but this relaxation does not affect the relaxation of
linear momentum controlled by the usual viscous dissipation
processes. If we define ωc as

ω ω
η

ρ
= =

→ I
lim

4
k 0

c 0
r

(21)
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then LAVACF and TVACF are, in the limit of zero wave vector,

ω
ρ ω ω

ω
ρ ω ω

=
+

=
+
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ΩΩ
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k T

I

C
k T

k k 0

( )
9
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( )uu

B
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B
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Furthermore, for the fluids studied here the effect of the coupling
on the TVACF is not large, that is,

ω ω ω ω+
< +

+
Ik Ik

i
4

i

2

1

2

2 (23)

even for wave vectors in the submolecular diameter range, and the
limit in eq 22 need not be taken as a strict limit. It is worth noticing
that the rotational viscosity ηr is a linear function of the moment of
inertia I for sufficiently large I,43,48 so ωc is independent of I here.
B. Comparison with Molecular Dynamics. We first

compare the predictions from the continuum ENS theory
with MD simulation data for the simple diatomic molecule
(the dumbbell model) in the supercritical fluid regime. Transport
coefficients η0, ζ, and ηr are listed in Table 1 in the SI.
Figure 2 shows MD data (symbols connected with lines) for

imaginary parts of the spectra of the TVACF and LAVACF;
normalization is carried out for clarity. The prediction from the
continuum theory is plotted as solid blue lines. It is observed that
for small wave vectors k = 2π/L the continuum prediction is
in excellent agreement with the MD data, but it fails for larger
wave vectors k = 20π/L. We emphasize that no fitting is performed,
and all relevant parameters are taken from SI Table 1 found from
independent simulations and methods. Using typical values for MD
units σ, ϵ, andm, the results show that the continuum theory predicts
the mechanical spectrum for wavelengths on the order of 2−3 nm
and above and time scales on the order of 1−10 ps and above.
For the TVACF, Figure 2(b), the result can be understood from

the fluid stress relaxation at zero wave vector as suggested by
Bocquet and Charlaix.2 From the last equation in eq 15, we can
define a wave-vector-dependent relaxation time τ2 = 2πρ/(η0k

2) .
This relaxation timemust be larger than the characteristic relaxation
time τs at zero wave vector for the predictions to hold for τs < τ2, i.e.,
for the viscosity to be wave-vector-independent. This means that

η τ
πρ

πρ
η τ

< <
k

k
2

1 or
20 s

2

0 s (24)

We refer to this as the Bocquet−Charlaix criterion. Estimates for
the relaxation time τs are given through the shear pressure
(or equivalently stress) autocorrelator

= ⟨ ⟩G t V
k T

P t P( ) ( ) (0)xy xy
B

os os

(25)

where Pxy

os
is the (x, y) component of the trace tess symmetric part of

the pressure tensor. For the dumbbell model G(t) is fully decayed
at τs ≈ 3σ/(m/ϵ)1/2, which gives k < 1.2σ−1. This is in perfect
agreement with the results depicted in Figure 2(b). Alternatively,
the relaxation time can be given through the Maxwell relaxation
time τM = η0/G∞ or the viscous relaxation time49 τv = Ψ1,0/2η0,
where G∞ is the infinite shear modulus and Ψ1,0 is the first
normal stress coefficient. For the diatomic model studied here, τM
≈ τv = 0.05σ(m/ϵ)1/2 giving k < 9.4σ−1, which is not what is
observed. Therefore, the characteristic decay time that should
be used for the Bocquet−Charlaix criterion is the time for the
autocorrelation function G(t) to decay fully.

In the small wave vector regime the relaxation of spin angular
momentum is dominated by the coupling mechanism between
linear and angular momenta as the peak is located at ω0 ≈ ωc =
4ηr/(ρI) . The relaxation of linear momentum, Figure 2(b),
is on the other hand due to usual viscous mechanisms seen by the
peak frequency ω2 = η0k

2/ρ. For large k the continuum theory
overestimates, by an order of magnitude, the peak frequency for
the LAVACF and TVACF due to overestimation of the effect of
the spin diffusion.

Figure 2. Spectra for the dumbbell model. Blue lines are predictions
from the continuum theory (CT) using the coefficients given in Table 1
in the SI all determind by independent simulations. The arrows indicate
peak frequency behavior with increasing wave vector. (a) The imaginary
part of the spectrum for the longitudinal angular velocity autocorrelation
function (LAVACF). Normalization is carried out for clarity in the
comparison. The dashed line indicates ωc given by eq 21. (b) The same
as in (a) but for the transverse velocity autocorrelation function
(TVACF). The dashed line indicatesω2 given by eq 15 (c). The same as
in (a) but for the transverse cross correlation function (TCCF). The
predictions from the theory, eq 14b, for small wave vectors k≤ 2π/L are
shown. Typical orders of magnitude for the MD units are σ = 1 Å, m =
10−26 kg, and ϵ/kB = 102 K. L = 13.17σ.
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Figure 2(c) depicts the TCCF for the dumbbell model. Again,
the theory performs very well for small wave vectors (k ≤ 2π/L)
but fails for larger ones. It is worth noticing that the amplitude of
the TCCF is a nonmonotonic function with respect to the wave
vector, having a maximum at around k = 4π/L. This behavior is
also captured by the ENS theory. To illustrate that the amplitude
is a decreasing function of wave vector, the TCCF for k = π/L and
k = π/(2L) is plotted as predicted by the theory. Recall in the limit
k → 0 that the coupling vanishes.
Next we apply the theory to liquid butane. As discussed in SI

the butane model is not uniaxial or rigid; however, from the
principal moment of inertia we argue in SI that the theory should
be a good approximation. The result is shown in Figure 3. For the
LAVACF one observes a peak frequency at around 9 THz, and the
relaxation process is extremely fast. This fast mode is not precisely
captured by the theory with ωc = 6.6 THz. Interestingly, the peak
frequency is almost independent of the wave vector for the range
studied here. This indicates that for these fast modes the diffusion
of spin is less important for the relaxation processes. For the slower
relaxation of linear momentum, we see that the peak frequency is
predicted well by the theory, the MD result isω = 1.0 THz, and the
predicted one is around ω2 = 0.92 THz for the lowest wave vector.
Again, for larger wave vectors the prediction fails as expected.

III. NONLOCAL RESPONSE

The classical linear constitutive relations are local in the sense that
the flux depends only on the local and instantaneous thermo-
dynamic force. This is in general not the case; rather the response
depends on the entire force distribution in the system as well as its
history. One can model this phenomenologically by introducing
frequency- and wave-vector-dependent transport coefficients.30

The generalized transport coefficients are referred to as kernels.
In the homogeneous isotropic case, assuming space and time
invariance, the linear nonlocal constitutive relation for the sym-
metric part of the pressure tensor reads30,50

∫ ∫ η γ= − − ′ − ′ ̇ ′ ′ ′
−∞ −∞

∞
t t t t tP r r r r r( , ) ( , ) ( , ) d d

tos

(26)

γ̇ = ∇t tr u r( , ) ( , )
os

is the trace-less symmetric part of the velocity
gradient, i.e., the strain rate. Fourier transforming with respect to
space and Fourier−Laplace transforming with respect to time
yields

γω η ω ω= − ̃ ∼̇∼
P k k k( , ) ( , ) ( , )
os

(27)

from the convolution theorem.

The shear viscosity kernel η ω̃ k( , ) can be found from the
TVACF as it is now shown. Here we focus on molecules with
small moments of inertia and small wave vector regimes, i.e.,
small Ik2. In this limit eq 19a can be rearranged to give

η ω
ωρ ω

ω
̃ =

− ⊥

⊥
k T C

k C
Ikk

k

k
( , )

i ( , )
( , )

(small )uu

uu

B
2

2

(28)

In particular, we have at zero frequency

η ̃ = ⊥
k T

k C
Ikk

k
( , 0)

( , 0)
(small )

uu

B
2

2

(29)

This approximation holds even for large values of k2 as discussed
above (eq 23). For molecules that can be regarded as point
masses, say methane, the moment of inertia is zero and eq 28 is
exact. In Figure 4(a) the viscosity kernel at zero frequency is
plotted for the methane, dumbbell, butane, and water systems
using eq 29. One immediately notices that for k≈ 1σ−1 the wave-
vector-dependent viscosity approaches the zero wave vector
limit. This is in good agreement with the Bocquet−Charlaix
criterion (eq 24). Interestingly, this is independent of the specific
fluid studied here, and the local constitutive relations can be
applied on length scales down to approximately 2π/k≈ 2−2.5 nm.
Is this a general result that applies to all fluidic systems? The

answer is no! In Figure 4(b) the zero-frequency viscosity kernel is
plotted for the asymmetric dumbbell model for different temp-
eratures. The asymmetry arises due to the mass and Lennard-
Jones parameter differences between the two constituent atoms.
The asymmetric dumbbell model allows one to probe the
dynamics in the highly viscous regime without crystallization
occurring.52 The result shows that for relatively high temper-
atures the kernel has the same wave vector dependency, but on
approaching the viscous regime (lower temperature) the kernel
reaches the Newtonian viscosity only at longer length scales. This
indicates that the dynamical processes behind the viscous response
take place on longer length scales in accordance with the
cooperative motion in supercooled liquids.53 The nonlocal viscous
response has also been studied for highly viscous two-component
Lennard-Jones systems and polymer melts (refs 31 and 32).
The failure of the local constitutive relation, that is, of Newton’s

law of viscosity, is very clearly illustrated by Todd et al.54 for a
point-mass Weeks−Chandler−Andersen (WCA) system.55 In
real space the nonlocal description amounts to a convolution of
the viscosity kernel and the strain rate distribution (eq 26). In
the homogeneous situation where the fluid undergoes a steady
shear in the x direction with varying amplitude in the z direction
we have one nonzero shear component in the pressure tensor,

Figure 3. Liquid butane. Molecular dynamics results for (a) the LAVACF spectrum and for (b) the TVACF spectrum. The dashed lines indicate ωc,
eq 21, and ω2, eq 15. The arrow indicates peak frequency behavior with increasing wave vector. L = 32.95 Å.
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namely, the Pxz component. In this steady situation eq 26
reduces to

∫ η γ= − − ′ ̇ ′ ′
−∞

∞
P z z z z z( ) ( ) ( ) dxz (30)

where γ(̇z) = ∂ux(z)/∂z. If the shear is induced by an external
force field Fe(z) = F0 cos(kz), then the fluid flow is ux(z) = ux̃

k

cos(kz), where ux̃
k is the excited Fourier mode amplitude of the

velocity field. We assume that this is the only mode excited, i.e.,
the force amplitude must be sufficiently low.56 Also, this ensures a
linear response as well as constant temperature and density. The
strain rate is then

γ ̇ = − ̃z ku kz( ) sin( )x
k

(31)

For simplicity we shall assume that the kernel is given by a
Gaussian function

η η α
π

= α−z( ) e z
0

2

(32)

such that 1/α1/2 gives a characteristic decay length. The kernel
must fulfill54 (i) ∫ −∞

∞ η(z) dz = η0, and (ii) η(z) is an even
function. Substituting eqs 31 and 32 into eq 30 we have upon
integration

η= ̃ α−P z ku kz( ) e sin( )xz x
k k

0
/42

(33)

If η(z) = η0δ(z) then the model is local, corresponding to
Newton’s law of viscosity, that is, for the local model

η γ η= − ̇ = ̃P z ku kz( ) sin( )xz x
kL

0 0 (34)

The system can be simulated using the sinusoidal transverse
force (STF) method,57 and it is possible to evaluate ux̃

k for
different external force fields and wave vectors. The two different
predictions can be compared to the actual shear pressure Pxz

A ,
which is found directly from the momentum balance equation
that for the steady flow reads

ρ∂
∂

=
z

P z F( )xz
A

e (35)

Upon integrating we obtain

ρ
=P z

F
k

kz( ) sin( )xz
A 0

(36)

The comparison is made in Figure 5. Clearly, the local prediction
fails for the larger wave vector (Figure 5(b)), whereas the
nonlocal prediction agrees with the actual shear pressure. From
the nonlocal model we conclude that spatial correlations result in
a reduced shear pressure.
From eqs 33 and 34 we can quantitatively evaluate the effect of

spatial correlations on the stress. Specifically, we have the relative
difference given by

Δ = − = − α−P
P
P

1 1 exz
xz

xz

krel
L

/42

(37)

For the WCA system studied here τs ≈ 0.6σ(m/ϵ)1/2, and the
Bocquet−Chairlaix criterion gives k < 2.8σ−1, which corresponds
to an error in the local stress up to around 32% according to eq 37.
The Gaussian function does not fit perfectly to the kernel

data. Nevertheless, this simple functional form captures the
nonlocal response well due to the smoothing of the convolution.

Figure 5. Pressure profiles for the Weeks−Chandler−Andersen point-mass system under periodic shearing force at state point (ρ, T) = (0.685σ−3,
0.765ϵ/kB). α = 4.81σ−2 is found from the best fit to data given in ref 56. Input data for the theory is taken from Todd et al.54 (a) Small wave vector:
k = 0.357σ−1, u ̃xk = 0.887(ϵ/m)1/2, F0 = 0.15ϵ/(σm)1/2. (b) Large wave vector: k = 3.57σ−1, u ̃xk = 0.027(ϵ/m)1/2, F0 = 0.225ϵ/(σm).

Figure 4. (a) spatial viscosity kernels for the dumbbell model, butane, water, andmethane. For butane, water, andmethane σ = 3.9233, 3.166, and 3.80 Å,
respectively. (b) Viscosity kernel for the asymmetric dumbbell model at different temperatures. The Newtonian viscosity values are η0 = 3.2(mϵ)1/2/σ2

for T = 2.0ϵ/kB and η0 = 46(mϵ)/σ2 for T = 0.2 ϵ/kB. For (a) and (b) the dashed lines are best fit to the empirical form η̃(k) = η0/(1 + αkβ)51 and are
included to guide the eye.

Langmuir Invited Feature Article

DOI: 10.1021/acs.langmuir.5b02237
Langmuir 2015, 31, 13275−13289

13281

http://dx.doi.org/10.1021/acs.langmuir.5b02237


Other more complicated functions have been suggested; see
refs 31, 51, and 58.
Todd and Hansen59 showed that the nonlocal response is

relevant only for flows where the strain rate is nonlinear with
respect to position. Couette and Poiseuille flows are then not
affected by nonlocality. To illustrate this consider any functional
form for the kernel which fulfills the criteria given above: its
integral gives the zero wave vector viscosity, and it is an even
function with respect to z. First, making the change in variables
u = z − z′, eq 30 reads

∫ η γ= − ̇ −
−∞

∞
P z u z u u( ) ( ) ( ) dxz (38)

Assuming a strain rate of the form γ(̇z) = αz, we have

∫ ∫α η α η αη= − + = −
−∞

∞

−∞

∞
P z z u u u u u z( ) ( ) d ( ) dxz 0

(39)

because the integrand in the second integral is an odd function.
This result is the same as the local prediction. In general, if a
Taylor expansion of the strain rate γ ̇ = a0 + a1z + ... + anz

n + ...
exists, then using the properties of odd and even functions one
can verify that the nonzero nonlocal effects of the strain rate can
be determined by the even moments of the kernel59

∫ η= >
−∞

∞
M z z z n( ) d ( 0 and even)n

n (40)

In the case of Couette and Poiseuille flows the Taylor expansion
terminates at zeroth and first order, respectively, and there are no
nonlocal effects.
Finally, the spin and rotational viscosity kernels can be found

by simply rearranging eq 19c to give the generalized susceptibility

χ ω
ωρ ω

ω
̃ =

− ΩΩ

ΩΩ

k T IC

C
k

k

k
( , )

i ( , )

( , )

9
4 B

(41)

Our group recently42,43 conjectured that the rotational viscosity
ηr governs the fast wave vector independent relaxation processes
as indicated in Figures 2(a) and 3(a). This transport coefficient is
therefore only frequency-dependent. We then have

χ ω η ω ζ ω̃ = ̃ + ̃ kk k( , ) 4 ( ) ( , )r
2

(42)

and therefore

η ω χ ω ζ ω
χ ω η ω

̃ = ̃ ̃ =
̃ − ̃

→ k
k k

k
( )

1
4

lim ( , ) and ( , )
( , ) 4 ( )

k 0r
r

2

(43)

We called this the generalized extended Navier−Stokes (GENS)
theory. FromMD simulations one can calculate the LAVACF (as
shown above) and from there find the kernels. For dense fluids ζ ̃
is characterized by a sharp peak around zero wave vector42 since
the diffusive contribution to the relaxation of the LAVACF is very
small for k > 2π/L; see Figures 2(a) and 3(a). The spin viscosity
kernel has the same properties as the shear viscosity kernel, and
for this reason we do not expect any nonlocal effects for flows
where the gradient of the angular velocity is constant or linear.

IV. NANOFLOWS
Until now we have only considered isotropic and unconfined
systems. We will use the information gathered in the next study
where the fluids flow in extreme confinements.

A. Poiseuille Flow. We first study a Poiseuille flow; the
geometry is shown in Figure 1. In experiments this flow can be
achieved by the application of a constant pressure gradient.
Generating a pressure difference in simulations with, for example, a
piston and using molecular reservoirs can cause density variations
in the direction of the flow and other inlet/outlet effects. We
therefore use a constant force field acting on each pointmass in the
fluid to drive the flow. The wall particles are arranged on a simple
cubic lattice and are allowed to vibrate around their initial lattice
site using a simple restoring spring force. The viscous heating
generated in the fluid is removed by thermostatting the wall
particles. This method resembles a real physical experiment and is
therefore often referred to as direct nonequilibrium molecular
dynamics. The interested reader is referred to ref 11 for further
details. To get a satisfactory signal-to-noise ratio in the MD
simulations, unrealistically large external forces are typically
applied to drive the system, and the resulting flow rates are very
large, typically on the order of 10−100 m s−1. Despite these large
flow rates the Reynolds number is usually less than unity due to
the extremely small characteristic length scales involved. It is very
important to ensure that the simulations are carried out in the
linear regime, which is discussed below.

1. Continuum Predictions. In the linear regime and for the
geometry shown in Figure 1 the ENS equations form a two-point
boundary value problem in the steady state

ρ η η+ −
Ω

=F
u
z z

d
d

2
d

d
0x y

e t

2

2 r (44a)

η ζ− Ω +
Ω

=
⎛
⎝⎜

⎞
⎠⎟

u
z z

2
d
d

2
d

d
0x

y
y

r

2

2 (44b)

for−h≤ z≤ h. Recall that ηt = η0 + ηr and ζ = ζ0 + ζr. Introducing
z′ = z/h, −1 ≤ z′ ≤ 1, and applying no-slip boundary conditions,
ux(−1) = ux(1) = 0 and Ωy(−1) = Ωy(1) = 0, Eringen23 solved
this, yielding

η
η

′ = − ′ + ′ −
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟u z u z

Kh
Kh

Khz
Kh

( ) 1
2 coth( ) cosh( )

cosh( )
1x c

2 r

t

(45a)

Ω ′ = ′ − ′
⎛
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⎞
⎠⎟z

u
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z( )
sinh( )
sinh( )y

c

(45b)

with the following definitions of uc and K

ρ
η

η η
ζη

= =
⎛
⎝
⎜⎜

⎞
⎠
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h F
K

2
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4
c

2
e

0

r 0

t

1/2

(46)

The application of the no-slip boundary condition is not justified.
A correct treatment applies the Neumann boundary condition
for both the velocity and angular velocity fields; however, this is
not straightforward in that the two fields are likely coupled.While
the boundary condition for the velocity field has been studied in
great detail (e.g., refs 60−62), very little is known about the spin
boundary condition. Recently De Luca et al.63 showed that the
spin field does possess slippage, and Badur et al.64 used spin slip
to account for flow enhancement. As mentioned in the
Introduction, we treat the problem in an ad hoc fashion and
set the angular velocity slip in accordance with the MD data.
If one ignores the coupling, ηr = 0, the solution for the stream-

ing velocity, eq 45a, reduces to the classical Poiseuille flow solution

′ = − ′u z u z( ) (1 )x c
2

(47)

Langmuir Invited Feature Article

DOI: 10.1021/acs.langmuir.5b02237
Langmuir 2015, 31, 13275−13289

13282

http://dx.doi.org/10.1021/acs.langmuir.5b02237


In this classical situation the angular velocity is found from the
vorticity, Ωy = (1/2)∂ux/∂z, that is,

ρ
η

Ω ′ = − ′ = − ′z
u
h

z
h F

z( )
2y

c e

o (48)

in agreement with eq 45b for ηr → 0. As the classical treatment
does not allow for the specification of the spin boundary con-
dition, eqs 45b and 48 differ by order of hρFe/(2η0) at the walls.
From eq 45a one can see that the maximum velocity, located

at z′ = 0, is lowered as a result of the coupling since from the
last term we have 1/cosh(Kh)− 1 < 0 and thus ux(0) < uc. A way
to quantify this effect is to evaluate the volumetric flow rate Q3

∫ ∫ ∫= =
− − −

Q u z z y w u z z( ) d d 2 ( ) d
w

w

h

h

x
h

h

x (49)

wherew is the half length in the y direction. This gives the relative
volumetric flow rate reduction

η
η

Δ = − = −
−

Q
Q

Q
Kh Kh

Kh Kh
1

3 (tanh( ) )

tanh( )( )
rel

class

r

t
2

(50)

Equation 50 is plotted in Figure 6 for the dumbbell fluid, liquid
butane, and water. The relevant coefficients can be found in SI

Table 1. For water flowing in a channel with a width of 9 nm
the flow rate is reduced by about 10% due to the coupling.
As the channel width increases, the flow rate approaches that
of the classical predictions, and the effect of the coupling can be
ignored.
From eq 50 the relative flow rate reduction increases as the

product Kh decreases. From this observation, one can define
a characteristic fluid length scale lc

65 below which the effect
of the coupling becomes significant. To this end we write the
parameter K as

η
η

ζ
η

= =K
l

l
2

with
c

0

t
c

r (51)

From SI Table 1 it is seen that η0 > ηr and K ≈ 2/lc. Thus, a
significant flow-rate reduction occurs for fluids with a large
critical length scale lc. For water, lc = 3.5 nm, and for butane, lc =
0.5 nm in agreement with the relative large flow rate reduction
observed for water and low reduction for butane.
2. Comparison with Molecular Dynamics Simulations.

First we compare MD data with continuum predictions for the
dumbbell system. Before the comparison, however, the linear
Newtonian response regime should be identified, at least for t

he bulk fluid region. To this end one can apply the SLLOD
algorithm developed by Evans and Morris.66 Basically the method
imposes a constant strain rate (linear velocity profile) on the system
while ensuring a homogeneous density and isokinetic temperature.
To achieve this the equations of motion are reformulated according
to the Gaussian principle of least constraint; see also refs 30 and 41.
Performing a series of SLLOD simulations it is found that the
Newtonian regime occurs in the range of 0 < γ ̇ < 0.05((m/ϵ)1/2)−1
for the dumbbell fluid. The upper limit for the external force
field can then be approximated by rewriting eq 48 to γ ̇ ≈ 2Ωy =
−2uc/hz′, givingFe < 2η0γṁ/ρh, with γṁ = 0.05σ((m/ϵ)1/2)−1. Note
that in the wall−fluid region the velocity may feature rapid changes,
and here the linearity is not guaranteed.
On the basis of the SLLOD approach, Delhommelle67

developed a method to calculate the rotational viscosity ηr as a
function of the spin angular velocity. See also Edberg et al.68 To
our knowledge no synthetic or controlled method exists to study
the spin viscosity dependency of the gradient of the spin
or the rotational viscosity dependency on the strain rate. We
will therefore assume here that the linear regime is identical to
the Newtonian regime, i.e., in the regime where the viscosity is
independent of the strain rate.
The classical description predicts that the Poiseuille flow is a

local flow according to section III. Also, from Figure 6 we expect
the flow-rate reduction due to the coupling to be very low for the
dumbbell model. Thus, based on the theory we expect the
classical description to be a good approximation for this system.
The time-averaged velocity and spin angular velocity profiles
are shown in Figure 7(a) for the dumbbell model where the
pore width is approximately 14.8 atomic diameters. The profiles
are sampled after the system reached the steady state. The
temperature profile (not shown) is constant, and the temper-
ature is T = 4.0ϵ/kB throughout the channel. The predictions
from the classical Navier−Stokes theory, eqs 47 and 48, are also
plotted using the shear viscosity from SI Table 1. Velocity
slippage at the wall−fluid interface is allowed, ux(z) = uc(1 −
(z/h) 2) + uw; uw is then the only fitting parameter in the
comparison. The agreement between MD data and classical
continuum predictions is excellent, except at the wall−fluid
interface. This is highlighted by the shear pressures plotted in
Figure 7(b). According to the classical theory the shear pressure

Pxz

os
is linear; however, at the wall−fluid interface this is not the

case. Also, the classical theory assumes a zero antisymmetric part

of the shear stress Py

ad
. This is clearly not fulfilled near the wall.

To understand the disagreement at the boundary, we
analyze the fluid ordering. It is well known that the wall induces
a density variation in the fluid.69 The density profile is shown in
Figure 7(c) (black dots). It is seen that the density varies in a
region approximately one atomic diameter away from the wall.
The transport properties are expected to be functions of density,
and one should expect a variation in the viscosities here.
Furthermore, one can evaluate the molecular alignment ordering
through the parameter70

θ= −p
3
2

cos ( )
1
2

2
(52)

where θ is the angle between the molecular bond and the (x, y)
plane. For perfect parallel alignment, p = −1/2; that is, the
molecules closest to the wall are, on average, aligned with the wall.
For distances of around one atomic diameter the molecules are
slightly normal to the wall as p > 0. The extremes are illustrated

Figure 6. Relative volumetric flow rate for the dumbbell fluid, liquid
butane, and liquid water. σ = 3.92 Å and 3.17 Å for butane and water,
respectively.
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with the two molecules in the lower left corner in Figure 7(c).
For p = 0, the molecules have random orientations, which is the

case in the interior of the channel. This means that the system
possesses a degree of anisotropy in the wall−fluid region. To fully
account for the density variation and ordering one should
therefore describe the transport properties through a position-
dependent tensorial shear viscosity.
Figure 8(a) shows the velocity and density profiles for a butane

flow where the pore width is just 6 nm. For such extreme
confinements the fluid layering stretches over the entire pore.
The order parameter profile, Figure 8(b), shows that the
molecular orientation is strongly anisotropic. Finally, the mean
square molecular end-to-end distance Re

2 also varies, showing
that the butane molecule on average is elongated in the fluid-wall
region by around 2%. Such a complex system is not modeled
appropriately by the classical or extended theories presented
here. This is not an indication of a breakdown of the continuum
picture but an incomplete modeling. It is worth noting that the
fluid ordering and layering are constant over a large range of
external forces including zero force (Figure 8) and is thus not
flow-induced.
As pointed out by Bitsanis et al.,71 the velocity profile features

surprisingly small modulations considering the density profile:
one should expect the transport properties to vary significantly
across the channel, having large effects on the flow profile. The
authors suggested the local average density model (LADM)
wherein the transport properties at a point z are functions of
the average density around that point. In the current geometry,
where the density is constant in the plane parallel to the wall, the
local average density is

∫ρ ρ̅ =
Δ

′ ′
− Δ

+ Δ
z z z( )

1
( ) d

z

z

1
2

1
2

(53)

whereΔ defines the region of averaging. The agreement between
the LADM and simulation data can be very good, especially if
one introduces a nonuniformweighting function.72 However, the
LADM cannot predict the shear pressure response in Figure 5 as
the density is constant. Also, the LADM model is not capable of
predicting the strain rate reversal observed by Travis et al.11,73

To account for the observed velocity profile one can write
the position-dependent (inhomogeneous) nonlocal constitutive
model as

∫ η γ= − − ′ ̇ ′ ′
−

P z z z z z z( ) ( , ) ( ) dxz
h

hos

(54)

The position dependency reflects the varying density in
the wall−fluid region. The application of this relation is not
straightforward74,75 as it is unclear how the convolution should
be performed at the wall where the support of the kernel goes

Figure 7. (a) Velocity and angular velocity profiles for the dumbbell
model undergoing Poiseuille flow. Symbols represent MD data, and
lines represent the classical predictions where slippage is included. (b)
Corresponding shear pressures. Pxz is calculated by the integration of the
momentum balance equation using the density profile given in (c). The
antisymmetric pressure is calculated from constitutive relation SI eq 40
using MD data as input. (c) Density and order parameter profiles. The
molecules in the lower left corner illustrate (exaggerated) the molecular
ordering near the wall.

Figure 8. (a) Density and velocity profiles for butane in a slit pore of width 6 nm. The prediction from the theory breaks down and is not shown.
(b) Corresponding order parameter and square end-to-end distance profiles.
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beyond the boundary and is unknown.74,75 Recently, Dalton et al.76

used a sinusoidal longitudinal force (SLF), also introduced by
Hoang and Galliero,72 to control the density variation in a
periodic system. Due to the periodicity, the boundary problem
can be eliminated. The density profile can be controlled to
such an extent that it resembles that seen in confined systems.
The fluid can then be driven by an STF. The authors showed
that the nonlocal response is capable of predicting the strain
rate reversal observed by Travis et al.11,73 as well as the rela-
tive small modulation in the velocity profile. A rigorous and
general implementation of eq 54 into the balance equations for
confined systems is still lacking.
For the dumbbell and butane models the coupling between

the linear and spin angular velocities has little effect on the flow.
From Figure 6, however, the effect is significant for water flow
in a channel with widths below 5 nm. In Figure 9(a) MD data
for the velocity profile for water is plotted where the channel
width is approximately 10 water molecule diameters. Also shown
are the predictions from the classical NS and ENS theories.
Density and order parameter profiles (not plotted here) show
little density variation and molecular alignment, except within
3−4 Å of the wall. The slip velocities are estimated by fitting
a second-order polynomial (dashed lines) to the velocity
profile, excluding the wall−fluid region where the fluid is
slightly anisotropic and inhomogeneous; this then amounts to
the apparent slip length77 and is the only fitting parameter used
in the comparison. It is seen that the classical prediction fails,
while the ENS theory much better captures the flow profile.
Note that the fit of the profile data to the classical description
will result in the wrong viscosity no matter how many data
points in the wall−fluid region are included. No shift in
the profile will change this. An extra source of dissipation
must be present. Furthermore, note that a complete description
involves a position-dependent nonlocal anisotropic modeling
of the wall−fluid region.
To remove any effect in the boundary region one can evaluate

the curvature in the channel midpoint, z = 0. The predictions are
simply found from the second-order derivatives of eqs 45a and 47.
The relative difference is

η
η η

Δ = −
+

C
Kh Kh

Kh
1

coth( )

( )cosh( )
rel r

r 0 (55)

ΔCrel is plotted in Figure 9(b) together with the results from the
MD simulations. Within statistical uncertainty the ENS theory
and MD simulation results agree. As the channel width increases,
the relative curvature difference vanishes and the classical descrip-
tion is recaptured.
The particular model applied is parametrized with respect

to the liquid state, and the wall is a Lennard-Jones cubic lattice;

see ref 9. The fluid structure near the wall and its effect on the
dynamics will be affected by the different models, choice of
model parameters, and wall details. However, it is not the aim
here to critically review the fine fluid structure near the wall but to
investigate the effect of the coupling.

B. Inserting Torque. Perhaps the most clear illustration of
the translational−rotational coupling is seen by introducing an
external torque into the system while having a zero production
term for the linear momentum. In general, if the resulting torque
density ρΓe is sufficiently small, then for the geometry in Figure 1
we have

η η−
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=
u
z z

d
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2
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Upon integrating eq 56a we get dux/dz in terms of Ωz, which is
substituted into eq 56b, resulting in a second-order inhomoge-
neous differential equation for Ωz. From this and eq 56a and by
application of Dirichlet’s no-slip boundary conditions one has
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where C0 and C1 are integration constants. One can show that C1
goes rapidly to zero as h increases. In this limit the spin angular
velocity is
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and the velocity profile is linear with a slope given by the last term
in eq 57a. Figure 10 depicts the two profiles for the butane liquid
using Γe = 413 m2 s−2. From this, one sees that the external
torque produces a significant local flow; the average flow is zero
due to the system symmetry.
In 2009, Bonthuis et al.78 showed that the coupling between

the linear momentum and spin could be exploited in order
to pump water through carbon nanotubes by the application
of a rotating field. The theory was based on the ENS equations
and it was noted that in order to obtain a nonzero mean flow,
asymmetric boundary conditions must be employed which
can be achieved by confining the fluid between two walls with
different hydrophobicities in the case of water pumping. Recently
De Luca et al.63 performed extensive MD simulations of the

Figure 9. (a) Velocity profiles of water undergoing Poiseuille flow. (b) Relative profile curvature difference at z = 0. From ref 9 with modifications.
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mechanism under experimentally feasible conditions, indicating
that the mechanism is functional. This could prove to be a way to
overcome the large hydraulic resistance characterizing nano-
fluidic flows. Felderhof showed in 2011 that the coupling can also
be utilized to perform plane-wave pumping79 and even propel
microrobots.80

V. SUMMARY
We have derived the relevant dynamical equations for isotropic
nanofluidic flows. The formulation is based on the basic
definition of a macroscopic field variable from the correspond-
ing microscopic or molecular variable, and it includes the
underlying molecular structure. Two intrinsic nanofluidic
phenomena were discussed, namely, (i) the coupling between
the spin angular momentum and (ii) the linear momentum and
the nonlocal fluid response. The important points are the
following.
(1) The effect of the coupling between the linear and spin

angular velocities can be estimated through the characteristic
length scale, lc, eq 51. For large lc, a significant flow rate reduc-
tion is observed, partly explaining the “increased” or “effective”
viscosity reported in the literature.13,14 For polar molecular
systems such as water, lc ≈ 3−4 nm, and the coupling must be
considered on these length scales. For the nonpolar fluids studied
here lc is below 1 nm, and the coupling effect is very small in most
situations.
(2) In general any fluid response can be described

phenomenologically through a transport kernel that incorporates
the spatial and temporal correlation effects. A method for
calculating the shear viscosity kernel was presented. This showed
that for nonhighly viscous fluids the Newtonian limit is reached
on length scales of a few nanometers. This is in agreement
with the Bocquet−Charlaix criterion if the complete decay time
for the stress autocorrelation function is applied as the relaxation
parameter. Importantly, nonlocal effects are not present in
simple flows where the strain rate is linear with respect to the
spatial coordinate, which is the case for Couette and Poiseuille
flows. For nonlinear flows the nonlocal response significantly
affects the fluid stress for strain-rate variations on the atomic
length scale.
(3) For highly confined fluids, molecular alignment pheno-

mena and molecular deformation can occur along with fluid
layering; see Figure 8. Simple classical continuum theory does
not include or account for such complex fluid structure. It would
be interesting to investigate this in more detail, for example, using
the theory for liquid crystals.70,81

We conclude that continuum theory is applicable even on
the nanoscale if the relevant physical processes are modeled
appropriately.
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(46) de Zaŕate, J. M. O., Sengers, J. V. Hydrodynamic Fluctuations;
Elsevier: Amsterdam, 2006.
(47) Sarman, S. Flow properties of liquid crystal phases of the gay-
berne fluid. J. Chem. Phys. 1998, 108, 7909.
(48) Moore, R. J. D.; Hansen, J. S.; Todd, B. D. Rotational viscosity of
linear molecules: an equilibrium molecular dynamics study. J. Chem.
Phys. 2008, 128, 224507.
(49)Hartkamp, R.; Daivis, P. J.; Todd, B. D. Density dependence of the
stress relaxation function of a simple liquid. Phys. Rev. E 2013, 87,
0321551.
(50) Puscasu, R. M.; Todd, B. D.; Daivis, P. J.; Hansen, J. S. An
extended analysis of the viscosity kernel for monatomic and diatomic
fluids. J. Phys.: Condens. Matter 2010, 22, 195105.
(51) Hansen, J. S.; Daivis, P. J.; Travis, K. P.; Todd, B. D.
Parameterization of the nonlocal viscosity kernel for an atomic fluid.
Phys. Rev. E 2007, 76, 041121.
(52) Schrøder, T. B.; Pedersen, U. R.; Bailey, N. P.; Toxvaerd, S.; Dyre,
J. C. Hidden scale invariance in molecular van der waals liquids: A
simulation study. Phys. Rev. E 2009, 80, 041502.
(53) Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 2009,
476, 51.
(54) Todd, B. D.; Hansen, J. S.; Daivis, P. J. Nonlocal shear stress for
homogeneous fluids. Phys. Rev. Lett. 2008, 100, 195901−195904.
(55) Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive
forces in determining the equilibrium structure of simple liquids. J.
Chem. Phys. 1971, 54, 5237−5247.
(56) Hansen, J. S.; Daivis, P. J.; Todd, B. D. Local linear viscoelasticity
of confined fluids. J. Chem. Phys. 2007, 126, 144706.
(57) Gosling, E. M.; McDonald, I. R.; Singer, K. On the calculation by
molecular dynamics of the shear viscosity of a simple fluid. Mol. Phys.
1973, 26, 1475.
(58) Travis, K. P.; Searles, D. B.; Evans, D. On the wavevector
dependent shear viscosity of a simple fluid. Mol. Phys. 1999, 97, 415.
(59) Todd, B. D.; Hansen, J. S. Nonlocal viscous transport and the
effect on fluid stress. Phys.Rev.E 2008, 78, 051702.
(60) Navier, C. L. M. H. Memoire sur les Lois du Mouvement des
Fluids. Memoires de l’Academic Royale des Sciences de l’Institut de France
1823, 6, 389−440.
(61) Bocquet, L.; Barrat, J.-L. Hydrodynamic boundary conditions,
correlations functions, and Kubo relations for confined fluids. Phys. Rev.
E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1994, 49, 3079−
3092.
(62) Hansen, J. S.; Todd, B. D.; Daivis, P. J. Prediction of fluid velocity
slip at solid surfaces. Phys. Rev. E 2011, 84, 016313.
(63) de Luca, S.; Todd, B. D.; Hansen, J. S.; Daivis, P. J. Molecular
dynamics study of nanoconfined water flow driven by rotating electric
fields under realistic experimental conditions. Langmuir 2014, 30, 3095.
(64) Badur, J.; Ziolkowski, P.; Ziolkowski, P. On the angular velocity
slip in nano-flows. Microfluid. Nanofluid. 2015, 19, 191.
(65) Hansen, J. S.; Daivis, P. J.; Todd, B. D. Viscous properties of
isotropic fluids composed of linear molecules: Departure from the
classical Navier-Stokes theory in nano confined geometries. Phys. Rev. E
2009, 80, 046322.
(66) Evans, D. J.; Morris, G. P. Nonlinear-response theory for steady
planar couette flow. Phys. Rev. A: At., Mol., Opt. Phys. 1984, 30, 1528.

Langmuir Invited Feature Article

DOI: 10.1021/acs.langmuir.5b02237
Langmuir 2015, 31, 13275−13289

13288

https://code.google.com/p/seplib/
http://dx.doi.org/10.1021/acs.langmuir.5b02237


(67) Delhommelle, J. Rotational viscosity of uniaxial molecules. Mol.
Phys. 2002, 100, 3479−3482.
(68) Edberg, R.; Evans, D. J.; Morriss, G. P. On the nonlinear Born
effect. Mol. Phys. 1987, 62, 1357.
(69) Toxvaerd, S. The structure and thermodynamics of a solid-fluid
interface. J. Chem. Phys. 1981, 74, 1998−2005.
(70) Gennes, P. G. D., Prost, J. The Physics of Liquid Crystals; Claredon
Press, 1993.
(71) Bitsanis, I.; Vanderlick, T. K.; Tirrell, M.; Davis, H. T. Tractable
molecular theory of flow in strongly inhomogeneous fluids. J. Chem.
Phys. 1988, 89, 3152.
(72)Hoang, H.; Galliero, G. Shear viscosity of inhomogeneous fluids. J.
Chem. Phys. 2012, 136, 124902.
(73) Travis, K. P.; Gubbins, K. E. Poiseuille flow of lennard-jones fluids
in narrow slit pores. J. Chem. Phys. 2000, 112, 1984.
(74) Zhang, J.; Todd, B. D.; Travis, K. P. Viscosity of confined
inhomogeneous nonequilibrium fluids. J. Chem. Phys. 2004, 121,
10778−10786.
(75) Cadusch, P. J.; Todd, B. D.; Zhang, J.; Daivis, P. J. A non-local
hydrodynamic model for the shear viscosity of confined fluids: analysis
of homogeneous kernel. J. Phys. A: Math. Theor. 2008, 41, 035501.
(76) Dalton, B. A.; Daivis, P. J.; Hansen, J. S.; Todd, B. D. Effects of
nanoscale density inhomogeneities on shearing fluids. Phys. Rev. E 2013,
88, 052143.
(77) Lauga, E., Brenner, M., Stone, H. Microfluidics: The No-Slip
Boundary Condition. In Springer Handbook of Experimental Fluid
Mechanics; Tropea, C., Yarin, A. L., Foss, J. F., Eds.; Springer, 2007.
(78) Bonthuis, J. D.; Horinek, D.; Bocquet, L.; Netz, R. R.
Electrohydraulic power conversion in planar nanochannels. Phys. Rev.
Lett. 2009, 103, 144503.
(79) Felderhof, B. U. Efficiency of magnetic plane wave pumping of a
ferrofluid through a planar duct. Phys. Fluids 2011, 23, 092003.
(80) Felderhof, B. U. Self-propulsion of a planar electric or magnetic
microbot immersed in a polar viscous fluid. Phys. Rev. E 2011, 83,
056315.
(81) Sarman, S.; Evans, D. J. Statistical mechanics of viscous flow in
nematic fluids. J. Chem. Phys. 1993, 99, 9021−9036.

Langmuir Invited Feature Article

DOI: 10.1021/acs.langmuir.5b02237
Langmuir 2015, 31, 13275−13289

13289

http://dx.doi.org/10.1021/acs.langmuir.5b02237

