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Lennard-Jones (LJ) systems exhibit strikingly invariant structure and dynamics when energy
polydispersity is introduced [Ingebrigtsen and Dyre, J. Phys. Chem. B 127, 2837 (2023)]. For
instance, at a given state point the radial distribution function and the mean-square displacement
as a function of time are virtually unaffected by energy polydispersity, which is in contrast to what
happens when size polydispersity is introduced. We here argue – and validate by simulations of
up to 30% polydispersity – that this invariance reflects an approximate invariance of the constant-
potential-energy hypersurface. NV U dynamics is defined as geodesic motion at constant potential
energy; because this dynamics is equivalent to Newtonian dynamics in the thermodynamic limit,
the approximate invariance of the constant-potential-energy hypersurface implies virtually the same
structure and dynamics of energy polydisperse LJ systems as for the single-component version. In
contrast, the constant-potential-energy hypersurface is shown to be significantly affected by the
introduction of size polydispersity.
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I. INTRODUCTION

The term polydispersity is typically used for models characterized by a continuous distribution of parameters in the
interaction potentials. This is relevant for describing the jamming of granular media, e.g., sand, which can be modeled
by introducing a distribution of particle sizes [1–10]. Polydispersity is also relevant in the modeling of glass-forming
liquids by allowing for fast equilibration via swap dynamics [11].

Size polydispersity is typically introduced via a distribution of the size parameter of the pair potential. If the
“size” of particle i is σi, the Lorentz-Berthelot mixing rule states that the interaction with particle j involves the
length parameter (σi + σj)/2 [12]. While size polydispersity is most commonly studied [1, 2, 4, 6–9, 13–18], a few
publications have investigated the effects of energy polydispersity [19–22]. Using the Lorentz-Berthelot mixing rule
for energies [12], Refs. 19 and 21 studied energy-polydisperse Lennard-Jones (LJ) fluids in 2d and found only very
small differences at a given thermodynamic state point between the average properties of polydisperse systems and
those of the single-component LJ fluid with the same average interaction energy. This was recently confirmed in a
study of 3d energy-polydisperse LJ mixtures, demonstrating virtually invariant structure and dynamics when varying
the degree of polydispersity [22]. Energy-polydispersity invariance is robust; thus Ref. 22 demonstrated that, except
for the case of extreme energy polydispersity, the invariance property is maintained when varying the state point, the
mixing rule, the energy probability distribution, or the pair potential. The question we address in this paper is: Why
does the introduction of energy polydispersity not affect the structure and dynamics to any significant degree?

Before proceeding we note that the above-mentioned findings are consistent with the prediction of the so-called
conformal solution theory [23] based on the idea that a mixture may be represented by a single-component liquid
[24, 25]. This does not work well for size polydispersity, however [26]. According to the van der Waals mixing rule of
conformal solution theory, the energy parameter of the one-component fluid representing the mixture is the average
of the ij particle interaction energies ⟨εij⟩. For the box distribution of particle energies εi studied in Ref. 22 this
results in an average close to that obtained from the Lorentz-Berthelot mixing rule (and identical if one uses a linear
energy-mixing rule, which also leads to invariant physics [22]).

In order to throw light on the energy-polydispersity invariance of structure and dynamics this paper adopts an
NV U point of view. NV U dynamics replaces Newton’s second law by Newton’s first law – the law of inertia – by
considering geodesic motion on the constant-potential-energy hypersurface in 3N dimensions where N is the number
of particles [27, 28]. In the thermodynamic limit (N → ∞) this gives rise to a time evolution that result in the same
structure and dynamics as standard Newtonian dynamics [27, 28]. In fact, when NV U dynamics is discretized for
numerical implementation, this leads to the leap-frog algorithm with a varying time step the relative fluctuations of
which go to zero for N → ∞ [28]. The conjecture investigated in this paper is that energy-polydisperse LJ mixtures
have approximately the same constant-potential-energy hypersurfaces as those of the single-component LJ system.
If validated, this would explain the observed invariance of structure and dynamics upon the introduction of energy
polydispersity.

(a) (b)

FIG. 1. Average structure and dynamics of LJ systems of different energy polydispersity at the state point (ρ, T ) = (0.85, 0.70),
which is close to the triple point of the single-component LJ system. (a) shows the average radial distribution function (RDF),
g(r), for polydispersities up to 40%. (b) shows the average incoherent intermediate scattering function, Fs(q, t), where the solid
lines represent data for the wave vector of the first peak of the static structure factor of the monodisperse system (q = 7.2)
while the dashed lines represent data for the wave vector corresponding to the box length (q = 0.19). For both structure and
dynamics we find results that are virtually independent of the degree of polydispersity. These findings confirm those of Ref.
22.
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FIG. 2. Structure of LJ systems with energy polydispersity varying between 20% and 50% as quantified via the RDF. (a) For
each polydispersity the particles are divided into four categories according to their energy as illustrated in the inset of the first
panel. With increasing polydispersity the energy-resolved RDFs increasingly differ. (b) shows snapshots for each polydispersity
in which the red particles have large energy and the blue have small energy.

II. APPROXIMATE INVARIANCE OF STRUCTURE AND DYNAMICS

This section sets the stage by detailing the systems studied and how they were simulated, giving results for the
structure and dynamics confirming those of Ref. 22. We simulated energy-polydisperse Lennard-Jones (LJ) liquids
in the NV T ensemble using “rumdpy” [29], an in-development Python version of the “Roskilde University Molecular
Dynamics” (RUMD) GPU Molecular Dynamics software [30]. The LJ pair potential between two particles at distance
r, v(r), is given by

v(r) = 4ε
(
(r/σ)−12 − (r/σ)−6

)
. (1)

Here ε is a characteristic energy and σ a characteristic distance (the “particle size”). For polydisperse systems these
parameters vary between different particle pairs, usually according to a continuous probability distribution. This paper
focuses on energy polydispersity. Thus σ is the same for all particles (and set to unity), whereas the characteristic
energy of pair interaction ij follows the Lorentz-Berthelot mixing rule [12] and is given by εij =

√
εiεj where each

particle has been assigned an energy εi chosen randomly from a box distribution centered around unity; in practice
we operated with 256 different particle energies. The energy polydispersity δε is defined as the standard deviation
over the mean of this distribution, which in the case of mean energy equal to unity becomes δε ≡

√
⟨ε2⟩ − 1.

Systems of N = 32000 particles of mass unity were simulated with standard Nose-Hoover NV T dynamics at the
state point (ρ, T ) = (0.85, 0.70), which is close to the triple point of the single-component LJ system. This is the state
point studied throughout. The time step used was 0.0025 (in LJ units used henceforth where ε = σ = 1 in Eq. (1)). A
standard shifted-potential cutoff at 2.5 was used, but we also simulated the same systems with a shifted-force cutoff
at 1.5 [31], leading to virtually identical results for the structure and dynamics (Appendix).

Figure 1 shows the structure and dynamics for the energy polydispersities δε = 0%; 10%; 20%; 30%; 40%. The
first case corresponds to the single-component LJ system; the next four correspond to particle energies varying
between 0.83 and 1.17 (10% polydispersity), between 0.65 and 1.35 (20% polydispersity), between 0.48 and 1.52
(30% polydispersity), and between 0.31 and 1.69 (40% polydispersity) (the case of 50% polydispersity studied in
Fig. 2 corresponds to particle energies varying between 0.13 and 1.87). These are quite significant polydispersities.
Nevertheless, the average radial distribution function (RDF), g(r), (Fig. 1(a)) and the average incoherent intermediate
scattering function, Fs(q, t), (Fig. 1(b)) are virtually the same for all five systems.

To which degree the neighborhood of a given particle correlates with its energy is analyzed in Fig. 2 for polydisper-
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FIG. 3. Potential-energy relaxation after an instantaneous change of energy polydispersity. (a) Jumping from the equilibrium
single-component system to different polydispersities. (b) Jumping from the equilibrium 30% polydispersity system to different
polydispersities. In most cases little happens. This is consistent with the assumption that the system is in equilibrium
immediately after the degree of polydispersity was changed, which is as expected if the constant-potential-energy hypersurface
is invariant. For jumps to 50% polydispersity this is not the case, however, and the data confirm the phase separation observed
as this system eventually is equilibrated (Fig. 2(b)). For the jumps to 40% polydispersity there is a slight tendency of a similar
behavior.

sities going up to 50%. For each polydispersity we divided the particles into four categories according to their energy,
each of which contains one quarter of the particles (inset). Figure 2(a) shows that as the polydispersity is increased,
the energy-resolved RDFs increasingly differ, i.e., the neighborhood of each particle depends more and more on its
energy. As shown in Fig. 2(b), the case of 50% polydispersity self-organizes by continuously phase separating into
high (red) and low (blue) energy particles [22].

To investigate this effect further, we study in Fig. 3 how the potential energy relaxes toward equilibrium after
polydispersity is introduced at t = 0. The idea is that if there is phase separation deriving from self-organization, the
energy will relax slowly toward its equilibrium value. Figure 3(a) shows the time evolution of the average potential
energy per perticle, U , after jumps at t = 0 from the single-component system to polydispersities up to 50%, while (b)
shows similar data for jumps starting from 30% polydispersity. In both cases the jumps to and from 30% polydispersity
and below equilibrate quickly, while jumps to 50% polydispersity show a slow relaxation toward equilibrium. This
confirms that self-organization takes place in the latter case. The jumps to 40% show a slight hint of the same
behavior. Hence we leave out the two highest energy polydispersities (40% and 50%) from the below analysis.

III. DIGRESSION: NV U DYNAMICS IN BRIEF

This section briefly reviews NV U dynamics [27, 28, 32–34], which is an alternative molecular dynamics characterized
by strict conservation of the potential energy (which does not apply, of course, for Newtonian dynamics). For systems
of many particles, these two dynamics lead to the same structure and dynamics; this is because in the thermodynamic
limit of Newtonian dynamics the relative fluctuations of the potential energy U go to zero. This has been shown
theoretically and numerically for both atomic [27, 28] and molecular [32] models.

Consider a system of N particles in three dimensions with periodic boundary conditions. It is convenient to
introduce the 3N -dimensional configuration vector R ≡ (r1, ..., rN ) in which ri is the position of particle i. A
constant-potential-energy hypersurface Ω is defined by the value of the potential energy U0,

Ω = {R |U(R) = U0} . (2)

Equation (2) defines a 3N − 1 dimensional so-called level surface, which in this case is a submanifold of the 3N
dimensional torus of all particle positions corresponding to periodic boundary conditions. The hypersurface Ω has
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(a) (b) (c)

(d) (e) (f)

FIG. 4. Potential energies of configurations as a function of the degree of energy polydispersity. (a) and (b) show the
potential energies of 32 independent configurations taken from an equilibrium simulation at 0% and 30% energy polydispersity,
respectively. Once the configurations have been selected (marked by the vertical dashed line), the degree of polydispersity is
changed in the expression for U (i.e., no further simulations are carried out). A closer look at the crossings is provided in (d)
and (e) that show the relative potential-energy variations of the data of (a) and (b). The observed rare crossings mean that
energy polydisperse LJ systems to a good approximation conform to Eq. (3), which is equivalent to having invariant Ω. For
comparison, (c) and (f) show the effect of introducing size polydispersity.

the metric inherited from Euclidean space and is thereby a Riemannian manifold. This makes it possible to define
geodesics as curves of minimum length or, more accurately, of stationary length in the sense that the length does
not change for small curve perturbations keeping endpoints fixed. NV U dynamics is defined as geodesic motion on
Ω [27]. This motion proceeds with constant velocity, so both the potential and the kinetic energy is conserved in
NV U dynamics. In physical terms, NV U dynamics may be thought of as embodying friction-less motion on a curved
surface in high dimensions, i.e., as expressing the law of inertia for motion on the curved hypersurface Ω.

It follows that systems with identical constant-potential-energy hypersurfaces have the same structure and dynamics,
also for standard Newtonian dynamics. This fact motivated us to investigate whether the Ω hypersurfaces change only
little when energy polydispersity is introduced, which would offer a simple rationalization of the observed invariance
of the physics after introducing even sizable energy polydispersity.

IV. APPROXIMATE INVARIANCE OF THE CONSTANT-POTENTIAL-ENERGY HYPERSURFACES

Returning to the invariance of structure and dynamics when energy polydispersity is introduced, the observations
of Fig. 1 would, as mentioned above, be explained if the constant-potential-energy hypersurfaces Ω are independent –
or almost independent – of the energy polydispersity. We proceed to investigate whether this is the case. Note first,
however, that there is no theoretical reason a given Ω is completely unaffected by the degree of energy polydispersity.
Thus any two configurations, which have identical potential energy at one polydispersity, will most likely have different
potential energies for another polydispersity. This means that checking invariance of the identity U(Ra) = U(Rb) is
not a useful way to investigate the potential (approximate) invariance of the constant-potential-energy hypersurface.
Instead, we take inspiration from isomorph theory that considers invariance of the inequality U(Ra) < U(Rb) under
changing conditions (in that case when configurations are scaled uniformly). Specifically, comparing two potential-
energy functions corresponding to different energy polydispersities, U1(R) ≡ U(R, δ

(1)
ε ) and U2(R) ≡ U(R, δ

(2)
ε ), we

wish to investigate numerically how well the following logical implication is obeyed
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(a) (b) (c) (d)

FIG. 5. Correlation coefficient R between the potential energy of configurations sampled from the equilibrium state of the
potential U1 corresponding to some polydispersity, subsequently evaluated with respect to a different polydispersity resulting
in the potential energy U2. (a) Correlation between the single-component system, U1, and 30% energy polydispersity, U2. (b)
The reverse of (a); configurations were here selected from a 30% energy polydispersity simulation and subsequently evaluated
with respect to zero polydispersity. The strong correlations observed in (a) and (b) stand in contrast to what happens for size
polydispersity; thus (c) shows the analogous correlation between the potential energies of the single-component system and
that of 30% size polydispersity. Finally, (d) shows how R varies as a function of polydispersity for the two cases of energy
polydispersity (blue and green, corresponding to (a) and (b), respectively) and size polydispersity (yellow). Note that in the
latter case the correlation drops quickly.

U1(Ra) < U1(Rb) =⇒ U2(Ra) < U2(Rb) . (3)

If this were to apply rigorously for all configurations, one could conclude that U1(Ra) = U1(Rb) =⇒ U2(Ra) =
U2(Rb), i.e., that system 1 and 2 have the exactly same Ωs. If one more realistically observes that Eq. (3) applies for
most configurations though not always, the corresponding constant-potential-energy hypersurfaces are not identical,
merely almost identical. In the latter case, by reference to NV U dynamics one expects approximately invariant
structure and dynamics.

To check Eq. (3) numerically we proceeded as follows. We sampled several configurations from an equilibrium
simulation of system 1, e.g., the single-component LJ system. The configurations were sampled at times separated
enough that they were statistically independent. For each configuration, we then evaluated the potential energy
corresponding to a different degree of polydispersity and monitored how this quantity changed, i.e., no further MD
simulations were carried out. Plotting these potential energies as a function of the polydispersity yields a figure
confirming Eq. (3) if none of the curves cross each other (Ref. 35 did this first by uniformly scaling configurations to
test for the hidden scale invariance that forms the basis of isomorph theory).

Figure 4(a) shows such a plot in which the configurations were selected from an equilibrium simulation of the single-
component system, while (b) shows the analog if configurations are selected from an equilibrium simulation at 30%
energy polydispersity (in which case the new polydispersities were obtained by a uniform scaling of the energies relative
to unity). The first thing one notices is that the value of the potential energy changes only a little. Moreover, there
are only few curve crossings, which to a significant degree validates Eq. (3). Figures 4(d) and (e) study the crossings
in more detail by plotting the relative variation of the potential energy as a function of the degree of polydispersity,
i.e., after the average of U has been subtracted and the data subsequently normalized to unit variance. In all panels,
the vertical dashed lines mark the polydispersity of the system simulated to generate the configurations.

For comparison, Figure 4(c) shows the same when size polydispersity is introduced. While for energy polydispersity,
there are only few crossings, and when two curves do cross they generally stay close, neither of these observations apply
for size polydispersity. A further conclusion is that there is little difference between selecting the configurations from
the single-component LJ system and then introducing polydispersity, (a) and (c), and selecting the configurations at
30% energy polydispersity and subsequently removing entirely the polydispersity, (b) and (d). This confirms that the
configurations remain equilibrium configurations to a good approximation after changing the polydispersity (which in
fact follows from the approximate invariance of Ω).

Figure 4 features several instances of “weak” crossings in the sense that the two potential energies stay close even
if they cross at some energy polydispersity. Intuitively, one expects this must imply a less severe violation of the
proposed invariance of Ω than if, e.g., the energies vary wildly as in the case of size polydispersity, Fig. 4(f). How to
quantify this? A simple possibility is to calculate how the Pearson correlation coefficient between the initial and final
potential energies, U1 and U2, vary. Figure 5(a) shows a plot of the δε = 0 data of Fig. 4(a) versus its δε =30% data,
and Fig. 5(b) shows the reverse correlation plot. In both cases there is a strong correlation (note that this plot involves
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FIG. 6. Correlation between the individual particle forces in the x-direction, Fx, of a single configuration sampled from the
equilibrium state of some polydispersity, subsequently evaluated with respect to a different polydispersity. (a) Correlation be-
tween the single-component system and 30% energy polydispersity. (b) The reverse of (a); configurations were here equilibrated
at 30% energy polydispersity δϵ = 0.3 and the forces were subsequently evaluated with respect to 0% polydispersity. In both
cases there is a strong correlation. This is in contrast to what happens in the case of size polydispersity; thus (c) shows R
between the single-component system and 30% size polydispersity, while (d) shows how R varies as a function of polydispersity
for the two cases of energy polydispersity (blue and green, respectively corresponding to (a) and (b)) and size polydispersity
(yellow). In the latter case the correlation drops quickly.

(a) (b) (c) (d)

FIG. 7. Correlation between the configurational temperatures Tconf of configurations sampled from the equilibrium state of
some polydispersity and Tconf evaluated with respect to a different polydispersity. (a) Correlation between the single-component
system and 30% energy polydispersity. (b) The reverse of (a); configurations were here equilibrated at 30% energy polydispersity
and the configurational temperatures subsequently evaluated with respect to 0% polydispersity. In both cases there is a strong
correlation, which is in contrast to what happens in the case of size polydispersity. Thus (c) shows R between the single-
component system and 30% size polydispersity, while (d) shows how R varies as a function of polydispersity for the two cases
of energy polydispersity (blue and green, respectively corresponding to (a) and (b)) and size polydispersity (yellow). In the
latter case the correlation drops quickly.

many more configurations than the 32 of Fig. 4). We take this as a quantitative confirmation of the conjecture that
energy polydispersity leads to only minor modifications of the constant-potential-energy hypersurfaces.

It is instructive to compare to size polydispersity. This is studied in an analogous way in Fig. 5(c) for the data of
Fig. 4(f) starting from the monodisperse LJ system. This time there is a very poor correlation between the original
δσ = 0% polydispersity and δσ = 30% polydispersity. In fact, the correlation coefficient drops quickly as a function
of polydispersity, as is clear from Fig. 5(d) that shows the correlation coefficients as a function of polydispersity for
all three cases.

V. TWO FURTHER APPROXIMATE INVARIANTS

The 3N -dimensional collective force vector composed of all particle forces is minus the gradient of U(R). Two
systems with identical Ω at any given state point will have proportional collective force vectors (normal to Ω), but
not necessarily of same length. A closer analysis, which will not be repeated here, shows that the macroscopic so-
called reduced force vectors [36] are identical, however, leading to the same structure and dynamics even though the
temperatures may differ for two systems at two state points with the same Ω [33, 34]. In the present case of energy
polydispersity with energies that average to unity, there is no need to adjust the temperature, however. Thus one
way to confirm the above finding of closely similar Ωs when changing the energy polydispersity is to look at the
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distribution of the individual particle forces [22].
We carried out such an analysis with a focus on calculating the Pearson correlation coefficient, again changing

between 0% and 30% polydispersity. Figure 6(a) shows a scatter plot of the x-coordinates of all particle forces in the
former case, while (b) shows the reverse change. We find in both cases a strong correlation. The linear-regression
slopes are close to, though not equal to, unity. This suggests that a slight adjustment of the temperature would result
in even better collapse of the RDFs and of the intermediate scattering functions (Fig. 1), but this effect will be minor
and we did not investigate it further. For comparison, we show in Fig. 6(c) the same analysis when going from the
single-component system to 30% size polydispersity. In this case the forces correlate only weakly, and as shown in (d)
a significant “decorrelation” takes effect even when just a minor size polydispersity is introduced (yellow curve).

That the temperatures corresponding to a given Ω are virtually independent of the energy polydispersity can
be validated by considering the so-called configurational temperature Tconf , a quantity that refers exclusively to the
configurational degrees of freedom [34, 37–40]. The configurational temperature is a property of Ω with the convenient
property that Tconf = T for a system in thermal equilibrium, i.e., for a configuration that is “typical” of Ω. Tconf

is defined as a ratio of two canonical averages, kBTconf ≡ ⟨(∇U)2⟩/⟨∇2U⟩. For a large system Tconf can be reliably
evaluated from a single equilibrium configuration because the relative fluctuations of both terms go to zero.

Figure 7 shows plots analogous to those of Fig. 6 with Tconf instead of the individual x-components of the particle
forces. Note that while the latter gives many data points for each configuration, the former yields just a single point,
meaning that several configurations are needed to make the plot, just as for U in Fig. 5. The results, however, are
quite similar to those of Fig. 6: Going from 0% to 30% energy polydispersity or the reverse, the configurational
temperatures correlate strongly, which is not the case when size polydispersity is considered.

VI. SUMMARY

We have shown that the constant-potential-energy hypersurfaces of energy polydisperse LJ systems are virtually
independent of the degree of polydispersity in the range 0%-30% and therefore almost identical to those of the single-
component LJ system. By reference to NV U dynamics, this explains why structure and dynamics are not affected
by energy polydispersity to any significant degree. This is different from what happens when size polydispersity
is introduced, in which case the constant-potential-energy hypersurfaces are not invariant and both structure and
dynamics change dramatically [22]. – It would be nice to have analytical arguments for the approximate Ω invariance
when energy polydispersity is introduced, a challenge we leave for future considerations.
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APPENDIX

We here present results corresponding to those of the main paper using instead a shifted-force cutoff. This cutoff
is defined by modifying the pair force below the cutoff radius by adding a constant ensuring that the pair force at
the cutoff radius is zero [31]. In NV E simulations, this results in a much better energy conservation than a shifted-
potential cutoff. It has been demonstrated for the single-component LJ system that a shifted-force cutoff at just 1.5
is enough to obtain as accurate results as those of a shifted-potential cutoff at 2.5 [31]; this is the case even although
the LJ pair force is 30 times larger at distance 1.5 than at distance 2.5. This fact allows for a speed up of simulations
of a factor of four.

This Appendix repeats the analysis of the main paper, using a shifted-force cutoff at 1.5. The overall findings of
the main paper are confirmed and no new conclusions are arrived at.

(a) (b)

FIG. A1. Average structure and dynamic of LJ systems of different energy polydispersity simulated with a shifted-force cutoff
at 1.5 at the state point (ρ, T ) = (0.85, 0.70). This figure is the shifted-force analog of Fig. 1. (a) shows the average RDF
for polydispersities up to 40%. (b) shows the average incoherent intermediate scattering function where solid lines represent
the wave vector of the first peak of the static structure factor of the single-component LJ system (q = 7.2) and dashed lines
represent the wave vector corresponding to the box length (q = 0.19). For both structure and dynamics, as in Fig. 1 we find
results that are virtually independent of the degree of polydispersity.
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(a)

(b)

𝜀

𝑃(𝜀)

FIG. A2. Structure of LJ systems with energy polydispersity varying between 20% and 50% simulated with a shifted-force
cutoff at 1.5 at the state point (ρ, T ) = (0.85, 0.70). This figure is the shifted-force analog of Fig. 2. (a) The particles are
divided into four categories according to their energy as illustrated in the inset of the first panel. With increasing polydispersity
these energy-resolved RDFs differ more and more. Interestingly, the difference is less pronounced than for the shifted-potential
simulations of the main paper. (b) shows snapshots for each polydispersity in which the red particles have large energy and
the blue have small energy. In contrast to the findings of the main paper, there is no clearly visible phase separation at the
highest polydispersity.
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(a) (b) (c)

(d) (e) (f)

FIG. A3. Potential energies of configurations as a function of the degree of polydispersity. This figure is the shifted-force
analog of Fig. 4. Note that the potential energy used here differs from that of the main paper (reflecting the fact that the
pair forces are modified below the cutoff). (a) and (b) show the potential energies of 32 independent configurations taken from
an equilibrium simulation at 0% and 30% energy polydispersity, respectively. A closer look at the crossings is provided in (d)
and (e) that show the relative potential-energy variations of the data in (a) and (b). The observed rare crossings mean that
energy polydisperse LJ systems to a good approximation conform to Eq. (3), which is equivalent to having invariant Ω. For
comparison, (c) and (f) show the effect of introducing size polydispersity.

(a) (b) (c) (d)

FIG. A4. Correlation between the potential energy of configurations sampled from the equilibrium state of the potential U1

corresponding to some polydispersity, subsequently evaluated with respect to a different polydispersity resulting in the potential
energy U2. This figure is the shifted-force analog of Fig. 5. (a) R between the single-component system, U1, and 30% energy
polydispersity, U2. (b) The reverse of (a); configurations were here equilibrated at 30% energy polydispersity and subsequently
evaluated with respect to zero polydispersity. In both cases there is a strong correlation. The strong correlations observed in (a)
and (b) stand in contrast to what happens in the case of size polydispersity for which (c) shows R between the single-component
system 30% size polydispersity. Finally, (d) shows how R varies as a function of polydispersity for the two cases of energy
polydispersity (blue and green) and size polydispersity (yellow). In the latter case the correlation drops quickly.
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FIG. A5. Correlation between the individual particle forces in the x-direction, Fx, of a single configuration sampled from
the equilibrium state of some polydispersity, subsequently evaluated with respect to a different polydispersity. This figure is
the shifted-force analog of Fig. 6. (a) Correlation between the single-component system and 30% energy polydispersity. (b)
The reverse of (a); the configuration is here an equilibrium configuration at 30% energy polydispersity and the forces were
subsequently evaluated with respect to 0% polydispersity. In both cases there is a strong correlation, which is in contrast to
what happens in the case of size polydispersity; thus (c) shows the correlation between the single-component system and 30%
size polydispersity. Finally, (d) shows how R varies as a function of polydispersity for the two cases of energy polydispersity
(blue and green) and size polydispersity (yellow). In the latter case the correlation drops quickly.

(a) (b) (c) (d)

FIG. A6. Correlation between the configurational temperatures Tconf of configurations sampled from the equilibrium state of
some polydispersity and the configurational temperature evaluated with respect to a different polydispersity. This figure is
the shifted-force analog of Fig. 7. (a) Correlation between the single-component system and 30% energy polydispersity. (b)
The reverse of (a); configurations were here equilibrated at 30% energy polydispersity and the configurational temperatures
subsequently evaluated with respect to 0% polydispersity. In both cases there is a strong correlation, which is in contrast to
what happens in the case of size polydispersity. Thus (c) shows the correlation between the single-component system and 30%
size polydispersity. Finally, (d) shows how R varies as a function of polydispersity for the two cases of energy polydispersity
(blue and green) and size polydispersity (yellow). In the latter case the correlation drops quickly.
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