
Even strong energy polydispersity does not affect the average

structure and dynamics of simple liquids

Trond S. Ingebrigtsen1, ∗ and Jeppe C. Dyre1, †

1Glass and Time, IMFUFA, Department of Science and Environment,

Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark∗

Abstract

Size-polydisperse liquids have become standard models for avoiding crystallization, thereby

enabling a study of supercooled liquids and glasses formed, e.g., in colloidal systems. Purely

energy polydisperse liquids have been studied much less, but do provide an interesting alternative.

We here study numerically the difference in structure and dynamics introducing these two poly-

dispersities separately into systems of particles interacting via the Lennard-Jones and EXP pair

potentials. To very good approximation, the average pair structure and dynamics are unchanged,

even for strong energy polydispersity, while this is not the case for size-polydisperse systems.

Even when the system at extreme energy polydispersity undergoes a continuous phase separation

into lower and higher particle-energy regions whose structure and dynamics are different from

the average, the average structure and dynamics still virtually the same as for the monodisperse

system. Our findings are consistent with the fact that the distribution of forces on the individual

particles do not change when energy polydispersity is introduced (while they do change in the

case of size polydispersity). A theoretical explanation of our findings remains to be found.
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I. INTRODUCTION

Polydispersity is often introduced in models of supercooled liquids and glasses as a means

to avoid crystallization and hence facilitate the formation of the glass phase1–40. In colloidal

fluids size polydispersity has been utilized to destabilize the crystal phase12, and for obtain-

ing optimal metallic glass formers four or five different components are often introduced41.

As other examples, Debenedetti and coworkers studied polydisperse systems in connection

with determining the connectivity, volume, and surface area of the void space of sphere

packings42,43, as well as the formation of microspheres following rapid expansions of super-

critical solutions44.

Size polydispersity has mostly been studied, but recently purely energy polydisperse

systems have become the target of investigations as they pose interesting model systems,

although their glass-forming ability are not enhanced compared to that of size-polydisperse

systems45. Previous studies46–48 found that energy polydisperse systems self-organize after

the specific energy value, an effect that becomes more pronounced with decreasing temper-

ature. Energy (and size) polydispersity have also been studied45,49,50 with respect to their

isomorphs, which are curves in the thermodynamic phase diagram along which structure

and dynamics are invariant to a good approximation51,52.

In this paper we compare size and energy polydispersity with respect how they affect the

structure and dynamics of simple liquids (primarily Lennard-Jones systems). In contrast to

well-known effects for size polydispersity, we find that the average structure and dynamics are

largely unchanged when introducing energy polydispersity, a result that applies even under

strong phase separation. We argue that this finding is related to the fact that the average

force distribution also is virtually unchanged by the introduction of energy polydispersity,

which is not the case for size polydispersity.

The next section provides details on the models studied and the simulations used, after

which the size vs. energy polydispersity comparison is presented.

II. SIMULATIONS AND MODEL

We studied size and energy polydisperse liquids in the NVT ensemble using the RUMD

package53 for efficient GPU-based simulations. In most of this paper the interaction potential
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between particle i and j is the well-known Lennard-Jones (LJ) pair potential,

vij(r) = 4εij

[(σij
r

)12
−
(σij
r

)6]
(1)

in which σij and εij are a length and energy parameter, respectively. We shall (mostly)

assume that the standard Lorentz-Berthelot mixing rule54 applies, i.e., that

σij =
σi + σj

2
, (2)

εij =
√
εiεj, (3)

where σi and εi are length and energy parameters associated with particle i. Unless nothing

else is stated, the flat (box) distribution is assumed for both size and energy polydispersity.

N = 32,000 particles were simulated. Following the convention in the field, for the

probability distribution p(x) the polydispersity δx is defined45 by δ2x = (〈x2〉 − 〈x〉2)/〈x〉2;

in words δx is the ratio between the standard deviation and the average. Throughout the

paper we use the unit system in which 〈ε〉 = 1, and m = 1. In these units the time step is

given by ∆t = 0.0025. We always employed a cut-and-shifted potential with cut-off at rc =

2.5σij for the ij particle interaction.

The changes in structure and dynamics introduced by polydispersity are probed via the

average radial distribution function (RDF) and the average self-part of the intermediate

scattering function (ISF).

III. THE AVERAGE STRUCTURE AND DYNAMICS OF POLYDISPERSE LJ

SYSTEMS

Figure 1 shows the LJ pair potentials for the highest size and energy polydipersities

studied, δ ∼= 40%, by giving the extremes of the flat (box) distribution. One notes that the

potentials vary significantly in both cases. Compared to most experiments, δ = 40% is a

sizable polydispersity that covers a range of sizes/energies of more than a factor of five.
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FIG. 1. Size and energy polydisperse LJ potentials. (a) LJ pair potentials at 40% size polydis-

persity, showing the two extremes as blue and green, respectively, as well as an in-between case

(orange). (b) LJ pair potentials at 40% enegy polydispersity, showing again the two extremes

as blue and green and an in-between case. Note that in this case, all three pair potentials have

minimum at the same pair distance marked by the vertical line (at r = 21/6σ).

Next, we present data for the average pair structure and dynamics at the state point

(ρ, T ) = (0.85, 0.70) in which ρ is the particle density and T the temperature. For the

single-component LJ system this is a typical liquid state point located near the triple point.

Figure 2 shows how the average RDF is affected by increasing polydispersity in the two

cases; polydispersity is introduced such that the average σ and ε, respectively, equals unity,

i.e., the box distributions are symmetrical around unity. Figure 2(a) shows the effect of

introducing size polydispersity, which strongly influences the average RDF. In contrast, (b)

shows that for energy polydispersity there is almost no change in the average RDF.

That size polydispersity affects the average RDF (Fig. 2(a)) is not unexpected. In fact,

because we keep the particle density constant and vary σ according to a box distribution

with fixed mean, a larger polydispersity leads to a larger packing fraction. This is not the

whole explanation, however, since even when keeping the packing fraction constant one still

observes a strong variation of the average RDF (Fig. 2(c)).

4



0 1 2 3 4 5
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
g(

r)
(a)

= 0
= 11.55
= 23.09
= 34.64
= 40.41

0 1 2 3 4 5
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

g(
r)

(b)

= 0
= 11.55
= 23.09
= 34.64
= 40.41

0 1 2 3 4 5
r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

g(
r)

(c)

= 0
= 23.09
= 34.64
= 40.41

FIG. 2. Effect of size and energy polydispersity on the average RDF at the state point (ρ, T ) =

(0.85, 0.70). (a) Size polydispersity. (b) Energy polydispersity; here the average RDF is virtually

independent of the degree of polydispersity. (c) Effect of size polydispersity at a constant packing

fraction instead of a constant density.

Turning to the dynamics, Fig. 3 presents data for the incoherent intermediate scattering

function (ISF) that in the figure is denoted by Fs(q, t) where “s” signals the self part, q is

the wave vector, and t is the time. The results are quite similar to those of Fig. 2 with

substantial changes in the dynamics for size, but not for energy polydispersity. We note a

significant slowing down for large size polydispersity, which undoubtedly is caused by the

above discussed increased packing fraction.

5



10 3 10 2 10 1 100 101 102 103 104

t

0.0

0.2

0.4

0.6

0.8

1.0

F s
(q

,t
)

(a)

= 0
= 11.55
= 23.09
= 34.64
= 40.41

10 3 10 2 10 1 100 101 102 103 104

t

0.0

0.2

0.4

0.6

0.8

1.0

F s
(q

,t
)

(b)

= 0
= 11.55
= 23.09
= 34.64
= 40.41

FIG. 3. Effect of size and energy polydispersity on the incoherent intermediate scattering function

(ISF) Fs(q, t) at the state point (ρ, T ) = (0.85, 0.70) for the wave vector corresponding to the first

peak of the static structure factor of the monodisperse system. (a) Size polydispersity. (b) Energy

polydispersity.

Figure 4 displays the distribution of the x-components of the particle forces. Figure

4 shows that this distribution is visibly affected by size polydispersity ((a)), but little by

energy polydispersity ((b)). This suggests that not only is the average pair structure and

dynamics invariant, so are all other average structural and dynamical quantities because

one expects the average force to determine these quantities (this is consistent also with the

fact that the RDF gives the potential of mean force).

Probing the energy-resolved force distribution in Fig. 4(c) for the case of energy poly-

dispersity, we observe a dependence on the identity of the particles. That is not surprising

because one expects larger forces on particles of larger energies εi, which is precisely what

is seen. This only serves to emphasize the mystery, however, of why the average force is

insensitive to the introduction of energy polydispersity.
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FIG. 4. Effect of size and energy polydispersity on the distribution of x-components of the particle

forces, Fx. (a) Size polydispersity. (b) Energy polydispersity. (c) Energy-resolved force distribution

for the highest energy polydispersity (40%). In (c) higher-energy particles have a broader force

distribution than lower-energy particles. The orange histogram is the average force distribution.

IV. RESULTS FOR OTHER STATE POINTS, MIXING RULES, DISTRIBU-

TIONS, PAIR POTENTIALS, AND A BINARY MIXTURE

This section investigates the generality of the above findings for the LJ pair potential.

A. Results at three other state points

Are our finding of little effect of energy polydispersity particular to the state point stud-

ied? Figure 5 displays the average RDFs for the densities ρ = 0.10, 0.30, 0.50 at T = 1.3.

We find little effect of introducing energy polydispersity, whereas size polydispersity has a
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huge effect on the average RDFs (results not shown). The ρ = 0.30 state point is just above

the critical point for the monodisperse system, but this proximity to a second-order phase

transition only minutely influences the finding.
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FIG. 5. Effect on the average RDF of different energy polydispersities at T = 1.3 at three different

densities. (a) ρ = 0.50. (b) ρ = 0.30, which is close to the critical point of the monodisperse LJ

system. (c) ρ = 0.10. In all cases the energy polydisperse systems have an average RDF virtually

identical to that of the monodisperse system.

We plot in Fig. 6 the average ISF at the same state points. The same conclusion is

reached as for the structure: energy polydispersity leads to little change from the results of

the monodisperse system.
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FIG. 6. Effect on the average ISF of different energy polydispersities at T = 1.3 at three different

densities. (a) ρ = 0.50. (b) ρ = 0.30. (c) ρ = 0.10.

All results reported in this subsection are for T = 1.3. There is nothing special about

this temperature, however; the average structure and dynamics is independent of the degree

of energy polydispersity also at T = 2 (results not shown).

B. Dependence on the energy mixing rule

What happens if one changes the energy mixing rule to involve the arithmetic mean

instead of the geometric mean of the Lorentz-Berthelot mixing rule? Replacing Eq. (2) by

εij =
εi + εj

2
. (4)

leads to the results of Fig. 7 for the average RDF.
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FIG. 7. The effect of energy polydispersity at (ρ, T ) = (0.85, 0.70) using the “sum mix rule”

arithmetic instead of geometric mean of the particle energies for defining the interaction energy

εij .

We see that, even for this significant change of the energy mixing rule, the average

structure is still independent of the energy polydispersity. The same applies for the dynamics

(results not shown).

C. Using a Gaussian distribution instead of the box distribution of energies

In order to investigate whether there is something special with the box distribution, we

studied the effect of using instead a Gaussian distribution. In this case we have to limit

ourselves to lower polydispersities due to the long tail in the Gaussian distribution.

The results for the average RDF (Fig. 8) and the average ISF (not shown) are entirely

analogous to those of the box distribution.
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FIG. 8. Effect of energy polydispersity at (ρ, T ) = (0.85, 0.70) using a Gaussian distribution.

D. The exponential pair potential

Next we address whether the insensitivity to the degree of energy polydispersity is par-

ticular to the LJ pair potential. A quite different pair potential is the exponential repulsive

EXP pair potential, which has been argued to be the “mother of all pair potentials” in the

sense that the quasiuniversality of simple liquids may be explained in terms of it55,56. The

EXP pair potential is defined by

vij(r) = εij exp(−r/σij) . (5)

For studying the effect of energy polydispersity on the EXP pair potential we return to using

the box distribution and the Lorentz-Berthelot mixing rules. The results for the average

RDFs for size (left) and energy (right) polydispersity are given in Fig. 9
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FIG. 9. Effect of introducing size and energy polydispersity, respectively, at the state point (ρ, T ) =

(10−3, 10−4) for the EXP pair potential. (a) and (c) give results for size polydispersity, (b) and (d)

for energy polydispersity.

As previously, very similar average structure and dynamics is observed with varying

degree of energy polydispersity but not for varying size polydispersity.

E. Results for binary LJ mixtures

An alternative to the LJ energy polydispersity studied in Sec. III is to replace a continuous

polydispersity by a 50:50 AB binary mixtures with large difference in energies. This deviates

from this paper´s focus on continuous distributions, but is nevertheless worthwhile some

attention. Figure 10 shows results for a mixture with a factor of three different particle

energies. We observe a virtually unchanged mean gAB(r) (Fig. 10(a)), while the average

gAA(r) or gBB(r) in this case are affected by the energy polydispersity ((b)).
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FIG. 10. The effect of energy polydispersity on the structure at (ρ, T ) = (0.5, 1.350) for a 50:50

binary mixture with εAA = 1.5, εBB = 0.5, εAB = 1. gAB(r) is plotted in (a), while results for the

AA and BB RDFs are shown in (b).

V. PHASE SEPARATION

Previous studies have established that energy polydisperse systems phase separate into

lower and higher particle-energy regions45,46. An example of this is shown in Fig. 11 for a

very high energy polydispersity (52%). This behavior is not an artifact of the thermostat

since using NV E and Langevin dynamics leads to the same behavior (results not shown).

FIG. 11. Snapshot of a configuration at δε = 52%, corresponding to almost a factor of 20 energy

variation. A strong continuous segregation is observed.
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In the extreme case δε = 52% of Fig. 11 we do find visible changes in the average RDF,

albeit very minor ones (Fig. 12(a)). A possible explanation of these changes could be that

all the energy polydisperse potentials share the same harsh repulsion and can be mapped

onto a hard-sphere system with a similar effective radius. If so, one would expect not only

the average structure, but also the local structure around each particle to be unaffected by

energy polydispersity. Figure 12(b) shows that this is not the case, however; the RDF of a

given particle clearly correlates with its energy εi. This shows that one cannot explain our

results by appealing to an equivalent hard-sphere system.
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FIG. 12. (a) Comparing the average RDFs for no and very high energy polydispersity (52%). (b)

Energy-resolved average RDFs. The local structure around each particle correlates with its energy.

This figure shows data for energy polydispersity δε = 40.41% with the particles binned with ∆ε =

0.1.

VI. DISCUSSION

Polydisperse liquids are intriguing systems with a rich phenomenology. Size polydispersity

is by far the most commonly studied type of polydispersity, but lately energy polydisperse

systems have also gained interest. In this paper we have compared the two different types

of polydispersity in regard to how the average structure and dynamics are affected by intro-

ducing polydispersity. We found that size polydispersity strongly affects both the average
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structure and the average dynamics, whereas energy polydispersity – even for quite strong

polydispersity – has only an insignificant effect. The local structure is, however, affected

also in the latter case for which higher-energy particles tend to cluster and separate spa-

tially from the lower-energy particles. Hence, the low q-range of, e.g., the average static

structure factor cannot be invariant under energy polydispersity. It should be pointed out

that the phase separation eventually leads to crystallization in very long simulations; all

results reported above refer to the average structure and dynamics before there is any sign

of crystallization.

We consider the findings for energy polydisperse systems to be striking and frankly do

not have a good explanation of them. One of our results conforms to the predictions of

the van der Waals mixing rule of conformal solution theory57,58. The idea of the “one-

fluid approximation” of conformal solution theory is that the mixture in question can be

represented as a single-component fluid. For the case of size polydispersity, it is well known

that serious problems arise when characterizing the average RDF of even just moderately

polydisperse fluids by an effective one-component approach59. Various approximations have

been proposed for defining the one-fluid approximation to a given polydisperse system57.

One of the simplest is the so-called van der Waals mixing rule according to which the energy

parameter of the one-fluid that represents the mixture is the average 〈εij〉. For the above

studied cases of a symmetrical energy distribution, assuming the linear energy mixing rule

Eq. (4) is equivalent to the van der Waals mixing rule.

Hopefully, this paper inspires to the development of a theoretical framework explaining

the insensitivity of the physics to the introduction of energy polydispersity. Usually, a

striking finding has a simple explanation, and there seems to be no reason this should not

apply also for energy polydisperse simple liquids.
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