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This paper shows that the configurational temperature of liquid-state theory, Tconf , defines an en-
ergy scale, which can be used for adjusting model parameters of active Ornstein-Uhlenbeck particle
(AOUP) models in order to achieve approximately invariant structure and dynamics upon a density
change. The required parameter changes are calculated from the variation of a single configuration’s
Tconf for a uniform scaling of all particle coordinates. The resulting equations are justified theoret-
ically for models involving a potential-energy function with hidden scale invariance. The validity
of the procedure is illustrated by computer simulations of the Kob-Andersen binary Lennard-Jones
AOUP model, demonstrating lines of approximate invariance of the radial distribution function and
time-dependent mean-square displacement in reduced units.
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I. INTRODUCTION

Any system in thermal equilibrium has a well-defined temperature, and the temperature concept is fundamental
for quantifying a system’s thermodynamic and statistical-mechanical properties. In view of this it is obvious to try to
generalize temperature to characterize also non-equilibrium systems. Excellent reviews of such temperatures proposed
are given in Refs. 1–5. Examples are the effective temperature quantifying deviations from the fluctuation-dissipation
theorem [6–8] and the fictive temperature characterizing a glass’ structure in terms of the temperature at which
the liquid solidified [9, 10]. Non-equilibrium temperatures are generally motivated by the prospect of connecting
properties of the non-equilibrium system to those of the same system in thermal equilibrium. That is not the
background, however, of the below proposed application of liquid-state theory’s configurational temperature [2, 11–13]
to active-matter models.

Active matter is an umbrella term used to describe physical systems whose building blocks can autonomously
perform mechanical work. This includes fluids consisting of self-propelled particles, e.g., suspensions of swimming
bacteria or animal groups, mutually-propelled particles like cytoskeletal filaments or motor proteins, cells in various
contexts, bird or insect flock dynamics, etc [14–21]. Active matter is usually not time reversible. This means that a
multitude of different dynamics may come into play [22], presenting a much more diverse field of study than that of
ordinary time-reversible dynamics [23]. A noted example of the features of active matter is motility-induced phase
separation (MIPS), the intriguing finding that even a purely repulsive system may phase separate into high- and
low-density phases [17, 19, 24–28].

Active matter does not have states of ordinary thermal equilibrium, but there have been suggestions for mapping
active-matter states to equilibrium, implying the existence of a non-equilibrium active-matter temperature. For
instance, Szamel proposed an effective temperature for a single self-propelled particle [29], and Fodor et al. showed
[30] that for active Ornstein-Uhlenbeck particles at small persistence time one can identify an effective temperature
from the analog of the fluctuation-dissipation theorem (see also Refs. 31–33). In a parallel development, Takatori and
Brady formulated a thermodynamic-type temperature for active matter based on the swim-pressure concept [34].

For an ordinary system in thermal equilibrium, the temperature T equals Tconf defined as follows [2, 12]. For a sys-
tem of N particles with collective coordinate vector R ≡ (r1, ..., rN ) and potential-energy function U(R), kBTconf ≡
〈(∇U)2〉/〈∇2U〉 in which kB is the Boltzmann constant, ∇ is the gradient operator in the 3N -dimensional configura-
tion space, and the sharp brackets denote canonical-ensemble averages. The proof that Tconf = T in equilibrium is so
simple that it deserves to be repeated here [11]: If Z is the configuration-space partition function integral, a partial in-
tegration of 〈∇2U〉 =

∫
∇2U(R) exp(−U(R)/kBT )dR/Z leads to 〈∇2U〉 = −

∫
∇U(R) ·∇ exp(−U(R)/kBT )dR/Z =

〈(∇U)2〉/kBT from which Tconf = T follows.

Approaching the thermodynamic limit, the relative fluctuations of both the numerator and the denominator of
Tconf vanish. This means that if one defines an R-dependent configurational temperature by

kBTconf(R) ≡ (∇U(R))2

∇2U(R)
, (1)

the identity Tconf(R) ∼= T applies in the sense that deviations go to zero as N → ∞. We have this limit in mind
throughout and (mostly) ignore that Tconf(R) fluctuates slightly for any finite system. Note that, in contrast to the
“standard” kinetic-energy-based temperature definition, the configurational temperature is not defined for a system of
free particles. Note also that configurations with ∇2U(R) = 0 become less likely as N →∞, so the fact that Eq. (1) is
not defined for such configurations is irrelevant; by the same reasoning one can ignore the existence of configurations
with ∇2U(R) < 0. We return briefly below to a discussion of Tconf fluctuations in simulations (Fig. 3(b)).

Since the derivation of the configurational temperature Tconf is based on the fact that the probability in the canonical
ensemble of configuration R is proportional to exp(−U(R)/kBT ), it would appear that Tconf cannot be relevant for
systems that are far from thermal equilibrium. We show in this paper that Tconf(R) may be used for tracing out
lines of invariant structure and dynamics in the phase diagram of active-matter models with hidden scale invariance.
This is the symmetry that the ordering of configurations according to their potential energy at a given density is
maintained if these are scaled uniformly to a different density (Eq. (6) below), a property that applies to a good
approximation for the liquid and solid phases of a number of well-known pair potentials, including the Lennard-Jones
and Yukawa potentials [35–38], as well as for more complicated interactions [39, 40]. The companion paper (Paper
II) [41] presents a different application of Tconf to active matter by proposing that the ratio of the so-called systemic
temperature [42] to Tconf quantifies deviation from ordinary thermal equilibrium. Both papers focus on active-matter
models without orientational interactions, i.e., based on point particles.
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II. LINES OF APPROXIMATELY INVARIANT PHYSICS IN THE PHASE DIAGRAM OF THE
KOB-ANDERSEN AOUP MODEL

This section studies active Ornstein-Uhlenbeck particle (AOUP) dynamics, which has no momentum conservation
and for which hydrodynamics is not taken into account. All information about the particle interactions is contained
in the potential-energy function U(R) [15, 20, 43]. In configuration space the AOUP equation of motion [30, 44–46]
is

Ṙ = µF(R) + η(t) . (2)

Here µ is the mobility (velocity over force) and the force vector is given by F(R) = −∇U(R). The noise vector η(t)
is colored according to an Ornstein-Uhlenbeck process, i.e., is a Gaussian stochastic process characterized by

〈ηαi (t)ηβj (t′)〉 = δijδαβ
D

τ
e−|t−t

′|/τ (3)

in which i and j are particle indices, α and β are spatial xyz indices, and D and τ are constants. We are interested
in how the physics is affected when density is changed, in particular whether approximately invariant physics can be
obtained by adjusting D and τ (regarding µ as a system-specific constant).
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FIG. 1. Radial distribution functions (RDF) of the Kob-Andersen system with AOUP dynamics at densities between 1.2
and 3.0 for the model parameters D and τ of Table I determined by means of Eq. (1) and Eq. (5). The first column shows
the three partial RDFs along the proposed line of invariance generated from a configuration of the reference state point
(ρ0, D0, τ0) = (1.2, 3000, 10), plotted as functions of the pair distance r. The second column shows the same data as functions

of the reduced pair distance r̃ ≡ ρ1/3r, revealing a good collapse except at the first peak. For comparison, the third column
shows data for the same values of D and τ as the two previous columns at density ρ = 1.2, and the fourth column shows AOUP
data at the reference state point (brown) and standard molecular dynamics (MD) thermal equilibrium data at the density
ρ = 1.2 (indigo) and the MD temperature resulting in the same average potential energy as that of the AOUP simulation,
TMD = 1.57 (the AOUP system’s systemic temperature [42]).
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The dimension of µ is length squared over energy times time. Thus, if l0 is a length unit, t0 a time unit, and e0
an energy unit, the quantity µt0e0/l

2
0 is dimensionless. Likewise, Dt0/l

2
0 and τ/t0 are dimensionless because D has

dimension of a diffusion coefficient and τ of a time. It is reasonable to expect that when the density is changed,
invariant physics can come about only if these three dimensionless quantities do not change – although this criterion
of course depends on the choice of units. As length unit we take the average interparticle spacing, l0 = ρ−1/3 (in 3
dimensions). The colored-noise correlation time τ of Eq. (3) is a natural choice for the time unit, t0 = τ . The idea
is now to investigate the consequences of using for the energy unit the configurational temperature, i.e., of choosing
e0 = kBTconf (Sec. III justifies this choice by reference to the isomorph theory). If the above two dimensionless
quantities are to be invariant when density varies, the following must apply: µ ∝ l20/(t0e0) = ρ−2/3/(τkBTconf) and
D ∝ l20/t0 = ρ−2/3/τ . Since µ is assumed to be constant, this leads to τ ∝ ρ−2/3/kBTconf and D ∝ kBTconf . Thus
the following equations determine D and τ at the different density ρ from their values D0 and τ0 at a reference state
point of density ρ0,

D = D0
Tconf(ρ)

Tconf(ρ0)
,

τ = τ0

(
ρ0
ρ

)2/3
Tconf(ρ0)

Tconf(ρ)
. (4)

We note thatD is proportional to the configurational temperature Tconf(ρ), a result that is analogous to the equilibrium
result D ∝ T in which T is the temperature.
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FIG. 2. Mean-square displacement (MSD) at the same state points as in Fig. 1. The first column shows the MSD of the A and
B particles along the predicted line of invariance, plotted as functions of the time t. The second column shows the same data
in reduced units (defined in the text), revealing a good collapse. The third column shows reduced data for the same values
of D and τ as the previous figures at density ρ = 1.2. The fourth column shows a comparison of the reduced MSD AOUP
data at the reference state point (brown) to the standard reduced MD thermal-equilibrium MSD (indigo) at ρ = 1.2, where
the temperature as in Fig. 1 was determined to result in the same average potential energy as that of the AOUP simulation,
TMD = 1.57.

As mentioned, fluctuations are small for a large system, and in that case Tconf(ρ0) may be evaluated reliably
from a single configuration of a steady-state simulation, R0: Tconf(ρ0) ∼= Tconf(R0). In order to find Tconf(ρ) one
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scales R0 uniformly to the density ρ using R = (ρ0/ρ)1/3R0; the configurational temperature is then identified from
Tconf(ρ) ∼= Tconf(R). When substituted into Eq. (4) this leads to the following recipe for calculating D and τ at
density ρ

D = D0

Tconf
[
(ρ0/ρ)1/3R0

]
Tconf(R0)

,

τ = τ0

(
ρ0
ρ

)2/3
Tconf(R0)

Tconf
(
(ρ0/ρ)1/3R0

) . (5)

To test the predicted invariance of structure and dynamics in reduced units when parameters vary with density ac-
cording to Eq. (5), we simulated the AOUP Kob-Andersen (KA) binary Lennard-Jones (LJ) model in three dimensions
[47]. A KA system of 10000 particles consisting of the standard mix of two spheres, A (80%) and B (20%), was stud-
ied. Writing the LJ pair potential between particles of type α and β as vαβ(r) = 4εαβ((r/σαβ)−12 − (r/σαβ)−6) with
α, β = A or B, the KA parameters are [47] σAA = 1.0, σAB = σBA = 0.8, σBB = 0.88, εAA = 1.0, εAB = εBA = 1.5,
εBB = 0.5. A shifted-force cutoff of vαβ(r) at rcut = 2.5σαβ was used [48]. The simulations employed the time step

∆t = ∆t̃/(D ρ2/3) in which ∆t̃ = 0.4. At the reference density, ρ0 = 1.2, the value of ∆t = 0.0001 was used. The
simulations were carried out on GPU cards; the active-matter simulations used a home-made code while the MD
simulations used the Roskilde University Molecular Dynamics (RUMD) package [49].

Table I shows the resulting values of D and τ for densities ranging from 1.2 to 3.0, starting from the reference state
point (ρ,D, τ) = (1.2, 3000, 10).

ρ D τ Tconf

1.2 3000 10.000 0.2742

1.5 9859 2.622 0.9014

2.0 39160 0.5450 3.580

2.5 105600 0.1741 9.657

3.0 230800 0.0706 21.10

TABLE I. Density ρ and model parameters D and τ along the predicted line of invariance calculated from Eq. (5) in which
Tconf(ρ) is determined from a single configuration R0 by Eq. (1) after scaling it uniformly to density ρ.

The two left columns of Fig. 1 show the three partial radial distribution functions (RDFs) along the predicted line
of invariance shown as a function of the radial distance r and of the reduced radial distance r̃ ≡ ρ1/3r, respectively.
The latter shows good invariance, except that the height of the first peak is not invariant, in particular for the
AB RDF. The third column of Fig. 1 shows the results for the same values of D and τ as previously (Table I) at
the reference-state-point density ρ = 1.2, in which case no invariance is observed. The fourth column compares the
reference density RDFs with those of an equilibrium molecular dynamics (MD) simulation at the reference density and
the temperature at which the average potential energy is equal to that of the reference-state-point AOUP simulation
(TMD = 1.57), showing little resemblance. This “systemic” temperature [42] is, incidentally, quite different from the
configurational temperature, Tconf = 0.27 (which corresponds to a such a deeply supercooled state for the Newtonian
system that the metastable liquid cannot be equilibrated using MD).

Figure 2 shows the mean-square displacement (MSD) of the A and B particles as functions of time. The four
columns are similar to those of Fig. 1 with the time t as the x-coordinate in the first column and the reduced time
t̃ ≡ (Dρ2/3)t ∝ t/τ in the second, where the MSD is also given in reduced units, i.e., multiplied by ρ2/3. The latter
shows approximate invariance of the dynamics. It is instructive to consider the limits of short and long times. For
t→ 0, in the “ballistic” regime, Eq. (2) and Eq. (3) imply that the MSD is proportional to (D/τ)t2, while for t→∞
the MSD is proportional to Dt. Thus the reduced-unit short- and long-time limit MSDs are proportional to ρ2/3Dτt̃2

and ρ2/3Dτt̃, respectively. Since Eq. (5) implies that ρ2/3Dτ is a constant, this means that in these limit the MSDs
are proportional to t̃2 and t̃, respectively. This is confirmed by Fig. 2(b). The third column of Fig. 2 gives the reduced
MSD using the predicted D and τ at the reference density. The fourth column compares the reference state point
MSDs to those of TMD = 1.57 MD simulation. We conclude from Fig. 1 and Fig. 2 that there is an approximate
invariance of the reduced-unit structure and dynamics.

Figure 3 investigates the robustness of the procedure used. Figure 3(a) shows Tconf as a function of ρ in a log-log
plot for selected scaling configuration R0 used in Eq. (5). At high density one finds almost Tconf(ρ) ∝ ρ4, reflecting
the dominance here of the r−12 repulsive term of the LJ pair potential (it follows from Eq. (1) that Tconf(ρ) ∝ ρn/3
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FIG. 3. Variations of the configurational temperature Tconf , D, and τ . (a) shows the configurational temperature Tconf as
a function of the density for the chosen scaling configuration R0. At the highest densities, Tconf is proportional to ρ4 (red
dashed line); this is where the repulsive r−12 term of the LJ pair potential dominates the potential energy. At the lowest
densities, the scaling is approximately proportional to ρ5.3 (blue dashed line), showing that the scaling is nontrivial. (b) shows
the distribution of Tconf(R) for several configurations at the reference state point for a system of N = 10000 particles. The

spread is larger than expected from a simple statistical 1/
√
N argument. The blue star marks Tconf of the chosen reference

scaling configuration R0. (c) shows how D varies according to Eq. (5) for three different configurations: one is the R0 used in
Fig. 1 and Fig. 2 from the center of the distribution in (b) (red), the two others are from the lowest and highest ends of the
distribution (black and blue). (d) shows how τ varies according to Eq. (5) for the same three configurations. No significant
difference are seen for the parameters predicted, meaning that N = 10000 particles are enough for using a single configuation
to determine how to scale the AOUP model parameters to obtain approximately invariant physics.

for a system of r−n inverse power-law pair potentials). At lower densities this does not apply, however, showing that
the invariance of structure and dynamics is not a trivial consequence of the scale-invariant repulsive r−12 term of
the LJ pair potential. Figure 3(b) shows the distribution of configurational temperatures for the system simulated
at the reference state point. We find a fairly broad distribution. This motivates an investigation into how much the
prediction of the invariance line depends on the choice of the R0. Figures 3(c) and (d) show the predictions for D and
τ using three different configurations in Eq. (1). The red curve is for the configuration R0 used above selected from
the center of the distribution in (b), the black and blue curves are for two configurations taken from the lower and
higher ends of the distribution. For both D and τ there is little visible difference; in the two latter cases we indeed
find that the RDFs and MSDs are virtually indistinguishable from those of Fig. 1 and Fig. 2 (data not shown). Only
a ratio of configurational temperatures is present in Eq. (5), and these data suggest that a significant cancellation
occurs. As a consequence, despite a relatively large spread of Tconf , N = 10000 particles are enough for Eq. (4) to be
used for predicting model parameters resulting in approximately invariant structure and dynamics.

III. THEORETICAL JUSTIFICATION OF THE PROCEDURE

How can the characteristic energy kBTconf of the canonical ensemble be relevant for identifying lines of invariant
physics for an active-matter system? While the energy kBTconf per se is not necessarily relevant, we argue below that
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the ratio Tconf(ρ)/Tconf(ρ0) determines the ratio of the relevant energy scales at the two densities. To arrive at this
conclusion, we first summarize the relevant isomorph theory.

The starting point is that the KA model to a good approximation obeys the hidden-scale-invariance uniform-scaling
symmetry defined [36, 38] by the following logical implication for the potential-energy function U(R),

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb) . (6)

Here Ra and Rb are configurations of the same density and λ is a scaling parameter. Physically, Eq. (6) expresses that
the ordering of configurations at one density according to their potential energy is maintained when configurations
are scaled uniformly to a different density. Recall that at a given thermodynamic equilibrium state point, the excess
entropy Sex is defined as the entropy minus the ideal-gas entropy at the same density and temperature [50]. In the
case of ordinary Newtonian mechanics, Eq. (6) implies that structure and dynamics in “reduced” units (defined below)
are invariant along the curves of constant excess entropy [35, 36, 38]. Such curves are termed isomorphs, and systems
with isomorphs are termed R-simple.

Isomorph invariance is exact whenever Eq. (6) applies without exception, but this is not the case for potentials
with both attractions and repulsions. Isomorph invariance is still a good approximation, however, if Eq. (6) applies
for most of the physically relevant configurations at the state points in question. This is the case for the majority of
metals and van der Waals bonded systems, whereas systems with strong directional interactions like hydrogen-bonded
and covalently bonded systems generally do not conform to Eq. (6) and violate isomorph-theory predictions [51] (ionic
and dipolar systems constitute a class in-between). Realistic pair-potential models with approximate hidden scale
invariance include the standard Lennard-Jones model in single-component, binary, and polydisperse versions, as well
as with exponents other than 6 and 12 (Mie potentials), the Yukawa (screened Coulomb) pair potential [36, 52], the
EXP pair potential [53, 54], effective-medium potentials describing metal [55], etc. For systems with inverse-power-law
interactions, the isomorph theory is exact.

For R-simple systems with Newtonian dynamics, the structure and dynamics of the condensed liquid and solid
phases are isomorph invariant to a good approximation when made dimensionless using as “reduced” units the length
l0, energy e0, and time t0 given by (in which m is the particle mass)

l0 = ρ−1/3 , e0 = kBT , t0 = ρ−1/3
√
m/kBT . (7)

The microscopic excess-entropy function is defined [36] by Sex(R) ≡ Sex(ρ, U(R)) in which Sex(ρ, U) is the ther-
modynamic excess entropy of the equilibrium state point with density ρ and average potential energy U . Note that
the function Sex(R) is defined for any configuration of any system, whether R-simple or not. It can be shown that

whenever Eq. (6) applies, Sex(R) depends only on the configuration’s reduced coordinates, R̃ ≡ ρ1/3R [36]. Thus
inverting the relation Sex(R) = Sex(ρ, U(R)) for an R-simple system leads to

U(R) = U(ρ, Sex)|Sex=Sex(R̃) (8)

where U(ρ, Sex) is the average potential energy of the thermodynamic equilibrium state point with density ρ and
excess entropy Sex.

The consequences of Eq. (8) have so far been worked out only for systems with standard time-reversible Newtonian
dynamics [36, 38]. However, Eq. (8) follows from Eq. (6) that has no reference to thermal equilibrium, hence Eq. (8)
may also be applied to active-matter models with a hidden-scale-invariant potential-energy function. Note that
the function Sex(R) still refers to the standard microcanonical ensemble according to which Sex(R) is basically the
logarithm of the number of configurations with the same density and potential energy as R [36].

We proceed to rewrite the AOUP equation of motion in terms of dimensionless variables. Writing R = l0R̃ and
t = t0t̃ in which l0 = ρ−1/3 and t0 = τ as in Sec. II, Eq. (2) becomes (with ∇̃ = ρ−1/3∇)

l0
τ

˙̃R = −µ 1

l0
∇̃U(R) + η(t) . (9)

The reduced noise is given by η̃ = (τ/l0)η in terms of which Eq. (3) becomes

〈η̃αi (t̃)η̃βj (t̃′)〉 = δij δαβ
τ D

l20
e−|t̃−t̃

′| . (10)
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Equation (9) thus becomes

˙̃R = −µ τ

l20
∇̃U(R) + η̃(t̃) . (11)

For any configuration R we define the “systemic temperature”, Ts(R), by [42]

Ts(R) ≡
(
∂U

∂Sex

)
ρ

∣∣∣∣∣
Sex=Sex(R)

. (12)

It is important to emphasize that when we below use of this concept in the context of active matter, that does not
imply an implicit mapping of the active-matter system to the ordinary thermal-equilibrium system; thus no relation
between the physics of the two different cases is assumed.

In a steady-state situation the fluctuations of the systemic temperature go to zero in the thermodynamic limit,
just as those of Tconf(R). We will henceforth occasionally leave out R and write simply Ts. In practice, to determine
Ts(R) one utilizes the fact that Ts(R) is the equilibrium temperature Teq of the thermodynamic state point with the
density of R and excess entropy Sex(R), implying that [42]

Ts(R) = Teq(ρ, Sex(R̃)) = Teq(ρ, U(R)) . (13)

Thus there is no need to evaluate any entropy in order to determine Ts, which is simply the temperature of the
thermal-equilibrium state point with same density and potential energy as the active-matter system in question.

Equation (8) leads to ∇̃U(R) = Ts∇̃Sex(R̃). When substituted into Eq. (11) this results in

˙̃R = −µ τTs
l20
∇̃Sex(R̃) + η̃(t̃) . (14)

It follow from Eq. (10) and Eq. (14) that the reduced AOUP equation of motion is invariant upon a density change
if τD/l20 and τTs/l

2
0 do not vary with density. This implies D(ρ) ∝ Ts(ρ) and τ(ρ) ∝ ρ−2/3/Ts(ρ) in which Ts(ρ) is

short-hand notation for Teq(ρ, Sex(R̃)), compare Eq. (13). Working from the reference state point (ρ0, D0, τ0), this
means that the function Ts(ρ) determines how to scale D and τ to ensure invariant AOUP dynamics,

D(ρ) = D(ρ0)
Ts(ρ)

Ts(ρ0)

τ(ρ) = τ(ρ0)

(
ρ0
ρ

)2/3
Ts(ρ0)

Ts(ρ)
. (15)

We next link to the configurational temperature. There is no reason to expect Tconf = Ts in out-of-equilibrium
situations, and these quantities indeed differ by up to a factor of six in our simulations (Paper II [41] suggests using
Ts/Tconf as a measure of the degree of deviation from thermal equilibrium). However, Eq. (15) still applies with Tconf
instead of Ts if the two temperatures are proportional in their density variation. To show this we note that Eq. (8) im-

plies ∇̃U(R) = Ts∇̃Sex(R̃) and ∇̃2U(R) = Ts∇̃2Sex(R̃), so Tconf(R) = (∇U(R))2/∇2U(R) = (∇̃U(R))2/∇̃2U(R) =

Ts(∇̃Sex(R̃))2/∇̃2Sex(R̃) [42]. Here we ignored the dependence of Ts(R) on the configuration R at a given state point

which, as argued above, vanishes in the thermodynamic limit. In terms of φ(R̃) ≡ (∇̃Sex(R̃))2/∇̃2Sex(R̃) we thus
have

Tconf(R)

Tconf(R0)
=

Ts(ρ)φ(R̃)

Ts(ρ0)φ(R̃0)
. (16)

Since R̃ = R̃0 this implies Tconf(R)/Tconf(R0) = Ts(ρ)/Ts(ρ0), and in this way Eq. (15) leads to Eq. (4). Note that
by using Tconf instead of Ts, one does not have to identify the equilibrium state point with the same potential energy
as the active-matter state point in question. Figure 1 and Fig. 2 demonstrated good invariance along active-matter
isomorphs determined by means of Eq. (4); a more accurate method for determining the active-matter isomorphs of
AOUP LJ systems, which utilizes Ts directly, is discussed in the Appendix.
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FIG. 4. “Master isomorph” (dashed curve, Eq. (17)) expressing the virial W as a function of the potential energy U along any
isomorph of all types of LJ systems; W0 is the virial at the state point of zero potential energy on the isomorph in question.
The figure is Fig. 8 of Ref. 56 to which we have added points for the AOUP KA model (open circles). The abbreviations KA,
WBLJ, SCLJ represent the Kob-Andersen system, the Wahnstrom binary LJ mixture [57], and the standard single-component
LJ system, respectively.

We end this section by checking a consequence of the above. It was shown in Ref. 56 that for LJ systems, if W0 is
the virial at zero potential energy of a given isomorph, the following relation between the virial W and the potential
energy U applies along the isomorph

2
W

W0
= 1 + 8

U

W0
+

√
1 + 8

U

W0
. (17)

This identity is a consequence of the reduced-unit RDF isomorph invariance, which applies in the R-simple region
(liquid or solid, not gas) of any single- or multicomponent LJ system [56]. Since the reduced RDF is also invariant
to a good approximation along the above studied KA active-matter isomorph (Fig. 1), W should also in this case be
related to U according to Eq. (17). This prediction is validated in Fig. 4 that reproduces the Newtonian-dynamics
equilibrium data of Ref. 56.

IV. DISCUSSION

Lines of invariance are termed isomorphs in the case of standard Newtonian equilibrium dynamics. This concept
was recently generalized to out-of-equilibrium Newtonian systems like that of a shear flow or an aging glass, leading
to the systemic-temperature concept of Eq. (12). This concept allows for the identification of lines of approximately
invariant structure and dynamics in the relevant out-of-equilibrium phase diagram [42]. The results of the present
paper extend these findings by demonstrating the existence of isomorphs for active-matter systems, which in contrast
to Newtonian systems are described by a dynamics that is not time-reversible.

The configurational temperature expression is derived from the canonical ensemble. This paper has demonstrated
the relevance of this concept for tracing out lines of approximately invariant physics in the phase diagram of Ornstein-
Uhlenbeck active-matter models involving a potential-energy function that obeys hidden scale invariance. Notably,
this application is not based on a mapping of the active-matter system to an equilibrium system, and the predicted
lines of approximately invariant physics apply equally well close to or far from thermal equilibrium.

Paper II [41] proposes a second application of the configurational-temperature concept to active matter. Here it is
argued that the ratio of the systemic to the configurational temperature (which is unity in thermal equilibrium where
T = Ts = Tconf), provides a simple measure of the degree of deviation from equilibrium.

ACKNOWLEDGMENTS

We would like to thank Thomas Voigtmann for several useful discussions and Thomas Schrøder for suggesting to
test the master isomorph prediction. This work was supported by the VILLUM Foundation’s Matter grant (16515).



10

APPENDIX: A MORE ACCURATE METHOD FOR TRACING OUT ACTIVE-MATTER ISOMORPHS

This paper has demonstrated how Tconf can be used for tracing out active-matter isomorphs from a single config-
uration for the AOUP model. The result was a recipe for calculating how the model parameters are to be changed
as functions of the density in order to arrive at approximately invariant structure and dynamics, Eq. (5). This recipe
provides a useful “quick-and-dirty” method which, since it relies on Eq. (8), is exact whenever hidden scale invariance
holds exactly; this is the case if U(R) is an Euler-homogeneous function. A more accurate, but also more cumbersome,
method for identifying active-matter isomorphs refers directly to the concept of systemic isomorphs. These lines in
the (ρ, Ts) phase diagram are by definition the same as the ordinary isomorphs of the equilibrium (ρ, T ) phase diagram
[42] (ordinary, systemic, and active-matter isomorphs are all defined as lines of constant Sex in the respective phase
diagrams).

To test the consequence of referring directly to the systemic isomorph, we traced out the systemic isomorph of the
KA system by the direct isomorph check (DIC) method [35], which is accurate and has a simple analytical expression
for LJ-type systems [58, 59]. It does not make a huge difference which method is used, but there is some improvement
using the DIC method. This is illustrated in Fig. 5, which in the left column reproduces from Fig. 2 the reduced
MSD as a function of reduced time for the A and B particles. The right column gives similar data when the model
parameters are determined by identifying the function Ts(ρ) utilizing the fact that this function is identical to T (ρ)
of the corresponding equilibrium isomorph that may be determined by the DIC method [58]. We see that the MSD
is more invariant in the latter case, confirming that this method is indeed more accurate.

ρ Dc/Ds τc/τs

1.2 1.000 1.000

1.5 1.139 0.878

2.0 1.278 0.782

2.5 1.345 0.743

3.0 1.382 0.723

TABLE II. Ratio of the model parameters D and τ along the predicted line of invariance calculated from Eq. (5) (subscript
“c”) and from the fact that the systemic isomorph corresponds to an equilibrium isomorph (subscript “s”).
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FIG. 5. MSD of the A and B particles as functions of reduced time along active-matter isomorphs of the AOUP KA model
traced out by two different methods. The left column reproduces the data of Fig. 2 where the isomorph was traced out by the
above-developed Tconf method. For comparison, the right column gives MSDs when the isomorph is traced out by the direct
isomorph check (DIC) method [35] in its analytical version for LJ-type systems [58, 59], which refers directly to the fact that a
systemic isomorph in the (ρ, Ts) phase diagram is identical to an equilibrium isomorph in the standard (ρ, T ) phase diagram.
The active-matter-isomorph invariance is improved by this method.
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