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We study in this paper the possible existence of Roskilde-simple liquids and their isomorphs in
a rough-wall nanoconfinement. Isomorphs are curves in the thermodynamic phase diagram along
which structure and dynamics are invariant in suitable nondimensionalized units. Two model liquids
using molecular dynamics computer simulations are considered: the single-component Lennard-
Jones (LJ) liquid and the Kob-Andersen binary LJ mixture, both of which in the bulk phases are
known to have isomorphs. Nanoconfinement is implemented by adopting a slit-pore geometry with
fcc crystalline walls; this implies inhomogenous density profiles both parallel and perpendicular to
the confining walls. Despite this fact and consistent with an earlier study [Ingebrigtsen et. al, Phys.
Rev. Lett. 111, 235901 (2013)] we find that these nanoconfined liquids have isomorphs to a good
approximation. More specifically, we show good scaling of inhomogenous density profiles, mean-
square displacements, and higher-order structures probed using the topological cluster classification
algorithm along the isomorphs. From this study, we conjecture that in experiments, Roskilde-simple
liquids may exhibit isomorphs if confined in a suitable manner, for example with carbon nanotubes.
Our study thus provides an alternative framework for understanding nanoconfined liquids.

I. INTRODUCTION

An important simplification in the study of liquids via computer simulations is to apply so-called periodic boundary
conditions. The liquid is thereby free from any confining surfaces which affect its structure and dynamics by imposing
an external force field on the liquid [1, 2]. This simplification is, however, hard to achieve in experiments, and most
liquids in nature are in contact with, or confined by, one or several surfaces [3–14]. Recent experiments on levitation
of metallic alloys using electrostatic or magnetic fields [15–18], ionic solution droplets in optical tweezers [19], and
especially colloids [20] come closer to this simplification of standard computer simulations [15–18], but naturally
still have ”free surfaces” that may affect the probed quantities. Significantly, the added complexity induced by the
walls has made fundamental theories of nanoconfined liquids slower to develop, in particular for the dynamics of
nanoconfined liquids [21–26].

Roskilde-simple liquids (also called R-simple liquids) are liquids with strong correlations between equilibrium fluc-
tuations of the virial W and the potential energy U in the NVT ensemble [27–34]. Van der Waals and metallic liquids
have been shown to belong to this class of liquids whereas, e.g., hydrogen-bonding liquids are not R-simple. R-simple
liquids have isomorphs in the thermodynamic phase diagram which are curves along which structure and dynamics
are invariant in reduced units. This fact makes R-simple liquids simpler than other types of liquids. As an example,
Rosenfeld’s excess entropy scaling can be explained using the concept of isomorphs [35, 36]. In Rosenfeld’s excess-
entropy scaling reduced transport coefficients are functions of the entropy minus the ideal contribution at the same

density and temperature, i.e., X̃ = f(Sex), where Sex(ρ, T ) = S(ρ, T ) − Sid(ρ, T ). Since both the reduced dynamics
and the excess entropy are invariant along the same curves (isomorphs) this fact explains Rosenfeld’s excess entropy
scaling. This scaling law is, however, only one of many consequences of having isomorphs (see, e.g., Ref. [30]).

Extending the isomorph theory to nanoconfined fluids is therefore of paramount importance as this would offer an
alternative framework in which confined fluids could be understood and analyzed. An earlier computer simulation
study investigated R-simple liquids in confinement using an idealized slit-pore geometry [37]. It was found that even
heavily nanoconfined liquids have isomorphs to a good approximation, except when the confinement is around one
or two particle diameters. Idealized slit-pore confinement implies that only the density profile perpendicular to the
walls is inhomogenous.

To model more realistic confinement conditions we study in this paper two model liquids confined to a slit-pore
geometry with fcc crystalline walls. The structure and dynamics of liquids confined by fcc walls have been studied
before and shown to exhibit density profiles that are highly inhomogenous, both parallel and perpendicular to the
confining walls [3–5]. Our aim here is to investigate whether isomorphs survive under such strong inhomogeneities.
This is a first step in the direction of studying more realistic confinement conditions relevant, e.g., for industrial
applications and biological systems.
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We find that, despite the apperance of strong inhomogenous density profiles in the liquid, isomorphs do survive
down to a few particle-diameters confinements, enabling the applicability of results from the isomorph theory to more
complex confined liquids. We conjecture from this study that R-simple liquids and isomorphs are relevant for a much
larger class of confinements, consistent with studies of excess-entropy scaling in nanoconfinement [38].

At lower temperatures than what we consider here, higher-order structures have been shown to exhibit differences
between isomorphic states [39]. Here therefore, we also probe measures of higher-order structure and investigate
minimum energy clusters in the liquid of interest [40]. We find that little difference is seen in higher-order structure
along isomorphs of the confined liquids.

The paper is organised as follows. Section II introduces the models and methods we apply in this study and Sec.
III gives a short introduction to R-simple liquids and their isomorphs. Section IV presents results for the single-
component Lennard-Jones (LJ) liquid where we, amongst other things, study isomorphs. Section V presents similar
results for the Kob-Andersen binary LJ mixture. Section VI summaries and presents a brief outlook.

II. SIMULATION METHODS

We use standard Nosé-Hoover molecular dynamics computer simulations in the NVT ensemble (the RUMD package
[41]) to study two model liquids in confinement: the single-component Lennard-Jones (SCLJ) liquid and the Kob-
Andersen binary LJ mixture (KABLJ) [42, 43]. In both models, the pair interaction between the liquid particle i of
type α and the liquid particle j of type β is described by the LJ pair potential given by

vαβ(r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6]
, (1)

where εαβ is the strength of the pair interaction (α or β is equal to type A or B for KABLJ), r is the distance
separating the particles, and σαβ is the separation distance at which the pair potential is zero. For the LJ model
we have εAA = 1, σAA = 1, and mA = 1, whereas the KABLJ mixture has σAA = 1, εAA = 1, σAB = 0.80, εAB =
1.5, σBB = 0.88, and εBB = 0.5. The masses of both particles in the KABLJ model are unity. The pair potential is
truncated-and-shifted at the distance rc = 2.5σαβ .

The number of liquid particles is for SCLJ and KABLJ: N = 2000−4000 and N = 2500−4800, respectively.
For most state points we simulate around one million time steps with a time step of ∆t = 0.0025 after obtaining
equilibrium. Equilibrium is ascertained from the decay of the intermediate scattering function, and running the
simulations back-to-back at least twice.

A. Simulation units

Throughout the study, we use two different sets of nondimensionalized units: One set is based on the microscopic
parameters of the LJ potential with length scale σAA and energy scale εAA of the larger (A) particle, which is standard
in computer simulations, and another set of nondimensionalized units using macroscopic quantities with length given
in units ρ−1/3, energy in units of kBT , and time in units of ρ−1/3

√
m/kBT (m is the particle mass) as applied in

isomorph scaling [30]. We refer to macroscopic nondimensionalized units as reduced units and use a tilde above the
variable name to indicate a reduced quantity; otherwise LJ units are implicitly assumed.

B. Nanoconfinement

Nanoconfinement is modelled using a slit-pore geometry in which the 100 surface of an fcc crystal is exposed to the
liquid. The two crystal planes are in registry (i.e., out of sync). The distance between the two walls is denoted by H,
measured from the centers of the confining fcc particles (see Fig. 1).
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FIG. 1: The simulated slit-pore geometry confinement for the KABLJ mixture [44]. Dark purple is the larger A-particle, pink
is the smaller B-particle, and blue is the crystalline wall particles. The distance between the two walls is H, here H = 8.

The liquid-wall pair interactions are also described by the LJ potential in Eq. (1). For the SCLJ liquid we use
the parameters σAW = 1 and εAW = 1, in which W denotes a wall particle. For the KABLJ mixture we derived
the interaction parameters from Lorentz-Berthelot mixing rules with σAW = 0.97, εAW = 1, σBW = 0.91, and εBW

= 0.707, where we used σWW = 0.94 and εWW = 1 to calculate these numbers. The cutoff of the liquid-wall pair
interaction is rc = 2.50σαW. The density of the fcc walls is for the majority of the simulations kept fixed at ρW = 1,
but we study also the effect of varying this parameter. The walls consist of around N = 1600 particles.

For the SCLJ liquid we use the density ρ = 0.85 as a reference with T = [0.70, 10] and H = [2, 10]. For KABLJ
we focus on ρ = 1.20 with T = [0.7, 12] and H = [4, 10]. These densities are standard for studies of bulk liquids. The
simulations use a Nosé-Hoover NVT thermostat on the liquid particles whereas, for simplicity, the wall particles are
frozen in place, i.e., T = 0 for the walls. Thermostatting the walls and the nature of the exposed surface are known to
have observable effects on the structure and dynamics of confined liquids [3–5]. The phase behavior of this particular
type of confinement has been studied in detail elsewhere see, e.g., Ref. [45].

In sections IV and V, we compare results of the topological cluster classification [40] for the confined system with the
bulk system at the same state points (density and temperature). For these simulations we use standard Monte-Carlo
simulation with N = 4000 particles for the models specified above.

III. ROSKILDE-SIMPLE LIQUIDS

We provide here a brief introduction to Roskile-simple (R-simple) liquids and their isomorphs; a review is given in
Ref. 32. R-simple liquids are characterized by strong correlations between the equilibrium fluctuations of the potential
energy U and virial W (recall PV = NkBT +W ) in the NVT ensemble [27–34]. This correlation is quantified by the
Pearson correlation coefficient R defined by [27]

R =
〈∆W∆U〉√

〈(∆W )2〉〈(∆U)2〉
. (2)

Here ∆ denotes deviation from the average value, and the averages are taken in the NVT ensemble (i.e., canonical
ensemble averages). R-simple liquids are those for which the correlation coefficient R is above 0.90, a criterion that
depends on the state point. The correlation coefficient has been shown to be high in large parts of the phase diagram
for many systems, typically in the condensed liquid and solid phases, but not in the gas phase.

Van der Waals and metallic liquids are usually R-simple whereas, e.g., hydrogen-bonding, covalent-bonding and
strongly ionic liquids are not. More specifically, in simulations the SCLJ liquid, the KABLJ mixture, the Wahnström
OTP model, bead-spring polymer models, and many more all belong to this class of liquids. Strong UW correlation
has also been verified in experiments on weakly dipolar organic molecules [46–48].

Initially, the bulk liquid phase was studied, but the concept of R-simple liquids was later extended to crystals [49],
nanoconfined liquids [37], nonlinear sheared liquids [50], polydisperse liquids [34, 51], quantum-mechanical ab inito
liquid metals [52], and more [53].

R-simple liquids are characterized by the following ordering of potential energy values [33]
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U(Ra) < U(Rb)⇒ U(λRa) < U(λRb), (3)

where Ra and Rb are 3N-dimensional configurational-space vectors of a given density and λ is a factor scaling
uniformly these configurations to a new density.

R-simple liquids exhibit a number of simple properties [54], most of which are consequences of the existence of
isomorphs. Isomorphs are curves in the thermodynamic phase diagram of R-simple liquids along which structure
and dynamics to a good approximation are invariant in reduced units (see previous section). Isomorphs are defined
as curves of constant excess entropy and in simulations can be generated via the following relation which keeps the
excess entropy constant

γ ≡
(∂ lnT

∂ ln ρ

)
Sex

=
〈∆W∆U〉
〈(∆U)2〉

. (4)

The equation is a general thermodynamic relation in the NVT ensemble [30, 55]. The parameter γ is called the
density-scaling exponent because it is a key quantity when applying density scaling [30, 56, 57]. The procedure to
generate an isomorph in simulations using the above relation is as follows: A simulation is performed at a given state
point, γ is calculated, a new slightly higher or lower density is chosen, and from discretization of Eq. (4) the new
temperature is calculated.

In this article we generate isomorphs using a different procedure. A first-order approximation to Eq. (3) implies
that the Boltzmann factors of two isomorphic state points are proportional (also the old definition of isomorphs [30]),
i.e.,

exp
(
− U(R(1))/kBT1

)
= C12 exp

(
− U(R(2))/kBT2

)
, (5)

where C12 is constant and the comparison is performed for configurations for which ρ
1/3
1 R(1) = ρ

1/3
2 R(2), i.e., having

the same reduced coordinates. From this equation it follows that if a simulation is performed at density ρ1 and
temperature T1 and configurations are scaled uniformly to a different density ρ2 at which the potential energy is
evaluated, the linear regression slope of U2 vs U1 provides the ratio of the temperatures T2/T1 of the two isomorphic
state points. This is called the direct isomorph check [30]. In this article we change density in steps of approximately
5%. For confined systems the wall distance H is an independent variable, similar to density and temperature in
bulk liquids. We choose here to let H follow the overall scaling in density, i.e. H scales with (ρ2/ρ1)1/3. This
choice is consistent with the definition in a previous study of isomorphs in nanoconfinement [37]. This study [37, 58]
also indicated that it might be possible to keep the walls fixed but we do not consider this in more detail here.
It is important to note that the state points we identify as being isomorphic under confinement in general are not
isomorphic in the bulk.

IV. SINGLE-COMPONENT LENNARD-JONES LIQUID

We commence the study by probing the correlation coefficient R and density-scaling exponent γ for the SCLJ liquid
in confinement. The next section considers the same quantities for the KABLJ mixture.

A. Variation in the correlation coefficient R and density-scaling exponent γ

This section studies how the above mentioned quantities are affected by changing the following parameters related
to the confinement: the distance between the two walls H, the strength of the liquid-wall interaction εLW, and the
surface roughness ρW.

Figure 2 shows how R and γ (Eqs. (2) and (4)) vary with temperature for several slit-pore widths in the range
H = [2, 10]. The confinement thus ranges from almost a single layer of liquid particles to more bulk-like conditions.
The densities of the liquid and wall are kept constant with ρL = 0.85 and ρW = 1, respectively. For simplicity, we
here and henceforth define the liquid density as ρL ≡ N/AH, where A is the exposed surface area of the crystal. We
thus do not take into account any excluded volume near the walls when calculating the confined liquid density [38].
As a reference, the bulk liquid has R ≈ 0.96 at the chosen liquid density.
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FIG. 2: The correlation coefficient R and density-scaling exponent γ as a function of temperature T for several slit-pore widths
H for the SCLJ liquid. The liquid density is ρL = 0.85 and the wall density is ρW = 1. (a) R as a function of temperature. (b)
γ as a function of temperature.

The wall separation H = 2 shows markedly different behavior from the other slit-pore widths having R < 0.90
for all temperatures. This is consistent with an earlier study that also observed breakdown of R-simple liquids for
wall separations close to a single particle layer [37]. However, as the slit-pore width is increased R also increases and
already at H = 4, which still corresponds to a strongly confined liquid, we find good correlation between the virial and
potential energy, i.e., R > 0.90. Depending on H, we find an increase in R with temperature as close encounters start
to play a bigger role. We find also some irregularities in these observations for low temperatures due to crystallisation
in the layer closest to the wall.

The density-scaling exponent γ displays the opposite trend in Fig. 2(b) with a monotonic decrease with temperature
for all H. γ is noted to increase with slit-pore width, but no theory currently exists for how γ should depend on H, as
is the case for bulk liquids [28, 59]. We find a possible slit-pore-width dependent plateau for γ between 4 and 5, which
signifies that γ is also dependent on H in confined liquids. More investigations are nevertheless needed to determine
if this H-dependent plateau truly exists and if it has a physical significance.

(a) (b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

LW

1

2

3

4

5

6

L=0.85,H=2.0

L=0.85,H=4.0

L=0.85,H=6.0

L=0.85,H=8.0

L=0.85,H=10.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

LW

0.5

0.6

0.7

0.8

0.9

1.0

R

L=0.85,H=2.0

L=0.85,H=4.0

L=0.85,H=6.0

L=0.85,H=8.0

L=0.85,H=10.0

FIG. 3: The correlation coefficient R and density-scaling exponent γ as a function of the strength of the liquid-wall interaction
εLW for several slit-pore widths H. Temperature is fixed with T = 2, the liquid density is ρL = 0.85, and the wall density is
ρW = 1. (a) R as a function of εLW. (b) γ as a function of εLW.

We now consider the effect of varying the attraction between the wall and the confined liquid particles. Figure 3
shows R and γ as a function of εLW at T = 2 and ρ = 0.85, again for several H. As the simulations use εAA = 1, for
εLW > 1 we have an “attractive” wall and when εLW < 1 it becomes a “repulsive”’ wall with respect to the interactions
between the liquid particles.

Figure 3(a) shows that R depends significantly on εLW. Depending on H, the correlation coefficient R may both
decrease and increase when the wall becomes more attractive or repulsive. The interplay between the liquid-liquid
and liquid-wall interactions is thus highly nontrivial. The density-scaling exponent in Fig. 3(b) displays a behavior
that mimics that of the correlation coefficient, but with the maximum displaced to lower values of εLW.

The highest value of R, and therefore the maximum, is expected to appear when the wall particles are most similar
to the liquid particles, which means here around εLW = 1. In spite of this, we observe that the maximum occurs
somewhat to the right around εLW = 1.5 for R and the opposite for γ. We currently have no explanation for why
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this is the case.
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FIG. 4: The correlation coefficient R and density-scaling exponent γ as a function of surface roughness varied by changing the
wall density ρW at T = 2, H = 6, and εLW = 1. The liquid density is ρL = 0.85. (a) R as a function of ρW. (b) γ as a function
of ρW.

Another means to probe the coupling between the confined liquid and the walls is to change the density of the fcc
walls ρW. In Fig. 4 we show the correlation coefficient and density-scaling exponent as a function of the ”surface
roughness” of the crystal (i.e., as a function of ρW). The liquid density is kept constant at ρL = 0.85 and H = 6.

We observe for low ρW, i.e., when the surface roughness is high, that R decreases when the density of the wall
particles is reduced, though it remains above 0.90. This effect can be attributed to particles penetrating into the walls
(not shown). For high ρW the correlation cofficient remains virtually constant. Almost no effect on γ is noted in Fig.
4(b) for both low and high ρW.

B. Isomorph invariance of reduced density profiles and dynamics

We now turn our attention to isomorphs in the nanoconfined system. To this end, we consider the behaviour
along an isomorph and contrast it with an isochore at a density ρL = 0.85 as the isomorph concept is approximate.
Isomorphs in the SCLJ liquid were generated by the direct-isomorph-check method (see Sec. III). We consider two
different slit-pore widths, one with H ≈ 6 and one with H ≈ 10; recall that H is adjusted with the liquid density
along isomorphs. These two distances span a strong and medium confined liquid.

Density profiles perpendicular to the walls along an isomorph with H ≈ 10 are shown in Fig. 5(a). For comparison,
results for an isochore with the same temperature variation are given in Fig. 5(b). From this point forward a yellow
figure background denotes data obtained along an isomorph and a pink figure background denotes data obtained
along an isochore.
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FIG. 5: Reduced density profiles of the liquid particles perpendicular to the walls along an isomorph and an isochore. Excellent
invariance is seen along the isomorph but not along the isochore with significant changes in all peak heights. (a) Isomorph. (b)
Isochore.

We find that the density profiles to a good approximation are invariant along the isomorph with a 24% density
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increase, whereas this is seen not to be the case along the isochore in Fig. 5(b). For the isochore, significant
changes in all peak heights with temperature are observed, in particular for the layer closest to the wall indicating
pre-crystallisation even at H = 10. This pre-crystallization is, however, nicely preserved on the isomorph.

Figure 6 displays the in-plane density profiles in the layer closest to the walls, i.e., for the layer around |z̃| ≈ 4,
for the first and the last state points of Fig. 5. The density profile is shown for one unit cell of the crystalline walls.
The isomorph shows excellent scaling with the liquid particles situated in between the wall particles and exhibits very
little change in the density profile whereas the isochore displays a density field that is increasingly smeared out as T
is increased, confirming the pre-crystallisation. Similar behavior is observed the remaining layers (not shown).
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(b)

0 1
0
0 1

1

y
y

x x

0

1

Isochore

0

2

4

6

8

10

12

14

P
D
F(
x
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y
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FIG. 6: Reduced in-plane density profiles of the liquid particles in the layer closest to the walls, i.e. |z̃| ≈ 4, for the first (left)
and last (right) state points of the (a) isomorph (top) and (b) isochore (bottom) of Fig. 5. One unit cell of the crystalline walls
is shown and the yellow circles indicate fcc wall particles.

Dynamical properties such as the mean-squared displacement (MSD) or the intermediate scattering function are
also invariant along an isomorph and we now examine how well this behaviour holds in nanoconfinement. To do so,
we consider the reduced MSD parallel and normal to the walls as a function of reduced time in Fig. 7 along the
same isomorph and isochore as before. The MSD is averaged over the entire slit-pore. We find excellent invariance
along the isomorph and visible variation for the isochore. For the bulk liquid, at these high temperatures, one would
see a similar scaling in comparison to the isochore; the differences becoming more pronouced with the degree of
supercooling.
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FIG. 7: Reduced average mean-square displacements parallel and normal to the walls along the isomorph and isochore of Fig.
5. (a) Isomorph, parallel dynamics. (b) Isochore, parallel dynamics. (c) Isomorph, normal dynamics. (d) Isochore, normal
dynamics.

C. Isomorph invariance of higher-order structures

Two-point spatial correlation functions, such as the radial distribution function, have been shown to a good ap-
proximation to be invariant along isomorphs in simulations [30, 34, 37, 60]. Higher-order structural correlations have
been investigated to a lesser extent, and could be less invariant than the two-body correlation functions as the iso-
morph theory is approximate. In particular, geometric motifs, so-called locally favoured structures (LFS) such as the
bicapped square antiprism [61, 62] have been seen to vary by a factor of two along isomorphs in supercooled KABLJ
[39].

As a final probe of isomorphs for the confined SCLJ liquid we investigate in Figs. 8 and 9 invariance of higher-order
structures. Now the liquids here are not supercooled much and thus rather than a locally favoured structure, we
instead consider minimum energy clusters of 5 ≤ m ≤ 13 particles for these systems [62, 63]. These minimum energy
clusters typically include the locally favoured structure, although the latter typically exhibits a specific symmetry
[64] while the minimum energy clusters for each system exhibit a range of symmetries. In addition, we consider
populations of the hcp and fcc crystalline structures.

The minimum energy structures are identified by the topological cluster classification [40]. The topological cluster
classification (TCC) algorithm carries out a Voronoi decomposition and seeks structures topologically identical to
geometric motifs of particular interest. The eight minimum energy structures of the SCLJ system are depicted in the
figures (top left in each panel) and which are minimum energy structures of the SCLJ system [40, 63, 65].

We find that the distribution of clusters is, to an excellent approximation, invariant along the isomorph but not
along the isochore. For all structures on the isochore the variation is around a factor of two with hardly any visible
variation along the isomorph. Very minor deviations are, however, noted for the 9B and 11C structures along the
isomorph. We emphasize that the probing of these structures does not imply relevance of these structures for the
dynamics of the liquid, but is merely used for testing invariance of higher-order structures along an isomorph.

While the structures considered exhibit very little change along the isomorph, the changes between the behaviour of
the different clusters is notable in itself. We can identify three regimes: small amorphous clusters, larger amorphous
clusters and crystalline structures. As shown in Figs. 8(a) and (c), the smaller amorphous clusters, the triangular
bipyramid 5A and octahedron 6A largely follow the density profiles illustrated in Fig. 5. Larger amorphous clusters,
beginning with the pentagonal bipyramid 7A have a degree of fivefold symmetry, and their population is suppressed
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close to the wall (see Figs. 8(e) and (g) and Figs. 9(a) and (c)). Interestingly, this is not observed in the case of a
free interface where the cluster population is rather slaved to the density profile [66]. A rather different behaviour
is found for the crystalline structures, where the layer by the wall has a high population of particles in a crystalline
environment but the population in the middle of the slit is very small (Figs. 9(e) and (g)).

We compare these results with bulk populations of the same clusters for the same state points (temperature and
density) as shown by the colored data points in Figs. 8 and 9. The data points are plotted for the isochore data,
but may be taken to be representative of the isomorph data on the left hand side of the figure. Even in the centre of
the slit, the results show a strong enhancement of cluster population with respect to the bulk in all cases except for
the hcp and fcc crystals, whose population in the centre of the slit is negligible. This is remarkable, given that for
a free liquid–vapour interface, cluster populations reach their bulk value with around a diameter from the interface
[66]. Further work is called for to understand this unexpected increase in higher-order structure in confinement.
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FIG. 8: Populations of minimum energy clusters along the previously studied isomorph (left) and isochore (right). The minimum
energy clusters considered in each case are illustrated in the corresponding panels. In particular, we consider the 5-membered
triangular bipyramid in (a) and (b), the m = 6 octahedron in (c) and (d), the m = 7 pentagonal bipyramid in (e) and (f) and
the m = 8 cluster with Cs symmetry in (g) and (h). The data points in (b,d,f,h) give bulk isochore values at the same state
points.
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FIG. 9: Populations of minimum energy clusters along the previously studied isomorph (left) and isochore (right). The minimum
energy clusters considered in each case are illustrated in the corresponding panels. In particular, we consider the 9-membered
C2v symmetric cluster in (a) and (b), the m = 11 C2v symmetric cluster in (c) and (d), the fcc local crystalline environment in
(e) and (f) and the hcp local crystalline environment in (g) and (h). The data points in (b,d,f,h) give bulk isochore values at
the same state points.
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In the Supplementary Material (SM) we present results for an isomorph with H ≈ 6. We find also here excellent
scaling of density profiles and mean-square displacements along the isomorph. To conclude on the SCLJ liquid, we
find that isomorphs survive into heavily confined systems with fcc crystalline walls and have excellent scaling even for
higher-order structures.

V. KOB-ANDERSEN BINARY LENNARD-JONES MIXTURE

We now turn to investigate similar quantities for the KABLJ mixture. Although being a binary mixture prized
for its glassforming ability, the KABLJ mixture is prone to crystallization in the bulk [67]. The mechanism for
crystallisation in the bulk occurs through the formation of fcc (and hcp) nucleation of the majority A species [67].
We find that the KABLJ mixture like the SCLJ liquid in confinement also crystallizes in the layer closest to the wall
and suggests that heterogeneous nucleation at the walls (which are patterned as an fcc structure) is indeed a powerful
mechanism also for the KABLJ mixture as seen for other simple liquids [3].

A. Variation in the correlation coefficient R and density-scaling exponent γ

Figure 10 displays R and γ as a function of temperature and several slit-pore widths H for the KABLJ mixture at
ρL = 1.2 and ρW = 1 with εAW = 1, and εBW = 0.707. The bulk correlation coefficient at this density is R ≈ 0.96.
As for the SCLJ liquid we find an increase in R and a decrease in γ with temperature. Similary R increases with
increasing H but even for H = 4 is the confined liquid R-simple.
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FIG. 10: R and γ as a function of temperature T for several slit-pore widths H for the KABLJ mixture at ρL = 1.2 and ρW
= 1. (a) R as a function of temperature. (b) γ as a function of temperature.

Next, we consider the effect of changing the liquid-wall interaction strength εLW in Fig. 11. A maximum is again
noted for both R and γ and is displaced away from the value of εAW = 1; The location of the maximum seems to
be more dependent on H than for the SCLJ. For the KABLJ mixture the effect of surface roughness ρW was not
investigated.
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FIG. 11: R and γ as a function of the liquid-wall interaction strength εLW for several slit-pore widths H. Temperature is fixed
at T = 2.5 and the liquid density is ρL = 1.2. (a) R as a function of εLW. (b) γ as a function of εLW.

B. Isomorph invariance of reduced density profiles and dynamics

For the KABLJ mixture we also investigate two isomorphs with H ≈ 6 and H ≈ 10 to facilitate comparison with
the SCLJ liquid in the previous section. Figures 12(a), (c), and (e) show reduced normal density profiles for both
particles in the mixture (A and B), as well as the total density along an isomorph with 17% density increase and
H ≈ 6. Figures 12(b), (d), and (f) show the corresponding quantities along an isochore. Good invariance is noted
along the isomorph but not along the isochore where again significant changes in the peak heights are noted for all
density profiles, in particular for the B-particle density profiles (Fig. 12(f)).
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FIG. 12: Reduced density profiles of the liquid particles perpendicular to the walls along an isomorph and an isochore. (a)
Total density profile, isomorph. (b) Total density profile, isochore. (c) A-particle density profile, isomorph. (d) A-particle
density profile, isochore. (e) B-particle density profile, isomorph. (f) B-particle density profile, isochore.

Figure 13 shows reduced in-plane total density profiles for the layer closest to the wall, i.e. |z̃| ≈ 2.7, for the first
and last state points of the same isomorph and isochore. For the KABLJ mixture the in-plane density profile does
not seem to show a strong deterioration along the isochore as found for the SCLJ liquid, which could be anticipated
from the height variation of the first peak in Fig. 12(b). Nevertheless the invariance is still visually worse than the
isomorph.
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FIG. 13: Reduced in-plane total density profiles of the liquid particles in the layer closest to the walls, i.e. |z̃| ≈ 2.7, for the
first (left) and last (right) state points along the isomorph (top) and the isochore (bottom) of Fig. 12. One unit cell of the
crystalline walls is shown with the yellow circles indicating fcc wall particles.

For the reduced normal and parallel A-particle MSDs in Fig. 14 almost perfect scaling is observed along the isomorph
while approximately a decade deviation in diffusion coefficient is observed for the isochore. These deviations in MSD
are similar to what is seen for supercooled bulk liquids [30, 34]. We find for the B-particles a very similar scaling
behaviour (not shown).
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FIG. 14: Reduced A-particle mean-square displacement parallel and normal to the walls averaged over the entire slit-pore
along an isomorph and an isochore. (a) Isomorph, parallel dynamics. (b) Isochore, parallel dynamics. (c) Isomorph, normal
dynamics. (d) Isochore, normal dynamics.

C. Isomorph invariance of higher-order structures

Finally, we consider invariance of selected minimum energy clusters for the KABLJ mixture [40, 62] in Figs. 15
and 16, reaching a similar conclusion as for the SCLJ liquid with excellent invariance along the isomorph but not
along the isochore showing around a factor of two variation in almost all structures. Although, the bicapped square
antiprism (11A) structure has been shown to correlate reasonably to the dynamics of the KABLJ system [62, 68–70]
we find very few bicapped square antiprisms at the higher temperatures considered here (the onset temperature for
glassy dynamics, at which the bicapped square antiprism become popular is around Ton ≈ 1.0) and it is therefore not
included in the figures.

In particular, it is quite remarkable that the minimum energy clusters of the KABLJ system [40, 62] show such
a good invariance, even for higher-order correlations, given that previous work showed a significant discrepancy in
precisely the same system [39], although at a lower temperature T = 1.0. The results presented here is at a higher
tempererature (T > 2.0), the magnitude of the discrepancy, and its rather weak temperature dependence leads one
to speculate whether the confinement may somehow influence the agreement.

In comparing with the bulk values (data points in Figs. 15 and 16 right hand side), we see that as above in the
case of the SCLJ system (Figs. 8 and 9) that in many cases the cluster population even at the centre of the slit is
markedly higher than the bulk liquid at the same state point. However this is not universally the case here, as the
m = 7 polytetrahedron (7K) in fact seems to sit right on the confined data for some state points, while at higher
temperature the bulk population seems rather higher than the confined system of interest here. The reasons for the
change in behaviour of this structure and, as noted above, why the minimum energy clusters typically have a reduced
population with respect to the bulk is an interesting topic for future work.
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FIG. 15: Populations of minimum energy clusters along the previously studied isomorph (left) and isochore (right). The
minimum energy clusters considered in each case are illustrated in the corresponding panels. In particular, we consider the
5-membered triangular bipyramid in (a) and (b), the m = 6 octahedron in (c) and (d), the m = 7 polytetrahedron in (e) and
(f) and the m = 8 pyramidal geometry in (g) and (h). The data points in (b,d,f,h) give bulk isochore values at the same state
points.
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FIG. 16: Populations of minimum energy clusters along the previously studied isomorph (left) and isochore (right). The
minimum energy clusters considered in each case are illustrated in the corresponding panels. In particular, we consider the 9-
membered triangular antiprism in (a) and (b), the m = 13 polytetra-octahedron (c) and (d), the fcc local crystalline environment
in (e) and (f) and the hcp local crystalline environment in (g) and (h). The data points in (b,d,f,h) give bulk isochore values
at the same state points.
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We provide in SM figures for an isomorph with H ≈ 10. Similar conclusions are reached showing again good
invariance along the isomorph.

VI. SUMMARY AND OUTLOOK

Isomorphs are curves in the thermodynamic phase diagram of R-simple liquids along which structure and dynamics
in reduced units to a good approximation are invariant. However, nanoconfined liquids show strikingly different
behavior from bulk liquids in terms of their structure and dynamics [4]. It is therefore not obvious that concepts
demonstrated in the bulk apply also to confined liquids. Extending the isomorph framework to nanoconfined liquids
is important as theories for nanoconfined fluids have been slower develop due to the added complexity.

A previous study [37] explored the existence of isomorphs in nanoconfined liquids using smooth slit-pore geometry
and found that isomorphs do survive under confinement. Here, we have studied the effect of introducing highly
inhomogenous density profiles both parallel and perpendicular to the walls by applying more realistic crystalline fcc
walls. The effect of the wall-to-wall distance, the strength of liquid-wall interactions εLW, and surface roughness ρW
were explored on two bulk R-simple liquids: the SCLJ liquid and the KABLJ mixture.

Although strong inhomogeneities occur in this type of confinement, we found that R-simple liquids and isomorphs
survive down to a few particle diameters confinement. More specifically, we probed density profiles, normal and
parallel mean-squared displacements, as well as higher-order structures using the topological cluster classification
algorithm along isomorphs. Even for higher-order correlations of populations of minimum energy clusters up to 13
particles, we find excellent invariance along the isomorphs. This is notable, as in the bulk, albeit at lower temperatures,
considerable deviation was found for higher-order structures even when the two-point structure appeared to scale well
[39]. Curiously, in many (but not all) of these clusters, the population in the confined system, even at the centre, is
markedly higher than that in the bulk, even for the same state point. This is remarkable, given that in the case of
a free liquid-vapour interface, the cluster population reaches its bulk value within around a diameter of the interface
[66]. This curiosity will be investigated in future work.

We conjecture from the current study that even very complicated confinements, e.g., carbon nanotubes, can exhibit
Roskilde simplicity and thus also their associated scaling laws, such as Rosenfeld excess-entropy scaling. This provides
an important simplification of the phase diagram and valuable insights into the structures and dynamics of confined
liquids. In this connection, an intriguing path for further research is the development of equations of state for confined
liquids using the isomorph theory [31].
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