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ABSTRACT: This perspective article reviews arguments that glass-forming liquids are
different from those of standard liquid-state theory, which typically have a viscosity in the
mPa·s range and relaxation times on the order of picoseconds. These numbers grow
dramatically and become 1012 − 1015 times larger for liquids cooled toward the glass
transition. This translates into a qualitative difference, and below the “solidity length”
which is roughly one micron at the glass transition, a glass-forming liquid behaves much
like a solid. Recent numerical evidence for the solidity of ultraviscous liquids is reviewed,
and experimental consequences are discussed in relation to dynamic heterogeneity,
frequency-dependent linear-response functions, and the temperature dependence of the
average relaxation time.

L iquids flow and solids do not, according to the
conventional wisdom. In reality, any solid does flow

when subjected to an external force1−7 while, on the other
hand, an extremely viscous liquid only flows very slowly.
Should one think of the latter as an ordinary liquid like water
or a molten metal, merely with a much higher viscosity, or
more as a solid that flows?8,9 This question is important for
liquids approaching the glass transition, where the viscosity is
1012 − 1015 times larger than that of ordinary liquids.
A glass is usually made by supercooling a liquid fast enough

to avoid crystallization. It is a solid that has inherited the
liquid’s disorder and macroscopic isotropy. While some
substances like pure metals require extremely high cooling
rates to form glasses, others, e.g., many organic liquids, are
easily supercooled and, in fact, often difficult to crystallize.
Because all substances can form glasses, glass may be regarded
as the fourth state of conventional matter.9 With only few
exceptions like the silicates, a liquid’s viscosity η at the melting
temperature Tm is within one or two orders of magnitude of
that of water, η ∼ 10−3 Pa·s. Upon supercooling, the viscosity
increases dramatically, and for typical cooling rates of order K/
min one finds η ∼ 1012 Pa·s at the glass transition temperature
Tg (brief introductions to the glass transition are given in refs
9−13 and more comprehensive reviews in refs 14−25).
The glass transition is continuous and not a genuine phase

transition, although Tg is fairly well-defined for a given cooling
rate, typically within 1%. At Tg the system falls out of
metastable equilibrium because the time to reach equilibrium
after an external disturbance, the so-called α relaxation time τα,
exceeds the laboratory time scale. By the fluctuation−
dissipation theorem, τα is also the characteristic time of the
equilibrium fluctuations. This quantity is termed the Maxwell

relaxation time, and in the Maxwell model of viscoelastic-
ity,9,26,27 τα is given by

=
G (1)

in which G∞ is the high-frequency plateau shear modulus
corresponding to MHz frequencies and above (sometimes
denoted by Gp). In this expression, the temperature depend-
ence of G∞ is insignificant, so upon cooling, τα increases
roughly proportionally to η. With G∞ ∼ 109 Pa, the typical
ordinary liquid viscosity of 10−3 Pa·s corresponds to τα ∼ 10−12

s, which is comparable to vibration (phonon) times. On the
other hand, equating τα to the typical cooling time for
producing a glass ∼103 s leads to η ∼ 1012 Pa·s.
A note on terminology: The term “glass” is used below

whenever a highly viscous liquid is not in thermodynamic
equilibrium, while “liquid” is reserved for a system in
(metastable) equilibrium, i.e., one that is fully characterized
by pressure and temperature with no memory of its past. The
terms “glass-forming liquid” and “ultraviscous liquid” are used
synonymously, reflecting the fact that once a liquid has been
supercooled to the ultraviscous state by avoiding crystalliza-
tion, glass formation is inevitable upon continued cooling.
Ordinary Liquids. Consider a pure substance above its

melting temperature. As a crude approximation, one may adopt
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the hard-sphere (HS) model consisting of identical particles
that do not interact, except by never overlapping (Figure 1).

Although this model is highly idealized, it is quite successful in
reproducing the structure and dynamics of simple liquids.28,29

Temperature plays no role in the HS model except for
determining the average particle velocity, i.e., the relevant time
scale. The only nontrivial thermodynamic variable is density
(packing fraction). The HS model may be regarded as a
mathematician’s idealized liquid; an alternative generic model
in which temperature does play a role is the EXP system
defined by the exponential repulsive pair potential.30−32

In the HS liquid, each particle is close to several others
(Figure 1), and the frequent particle collisions result in an
erratic particle motion. This is different from what happens in
the gas phase in which the mean-free path between collisions is
much larger than the particle diameter. It is useful to discuss
the physics of the HS liquid in terms of two diffusion
coefficients: the particle-diffusion coefficient Dpar and the
transverse-momentum diffusion coefficient Dmom. The latter is
the kinematic viscosity of the Navier−Stokes equation, Dmom =
η/ρ in which ρ is the mass density,33 while Dpar is defined from
the long-time mean-square particle displacement via ⟨Δx2(t)⟩
= 2Dpart.
Writing A ∼ B to indicate that A and B are within one or two

decades of each other, the HS liquid is characterized by
D Dpar mom (2)

This applies not only for HS but for all ordinary liquids. Dpar
may be estimated by considering a random walk, leading to
Dpar ∼ d2/τα. Typical experimental values of Dpar and Dmom are
of order 10−7 m2/s, which may be arrived at from d ∼ 10−10 m
and τα ∼ 10−13 s or from Dmom = η/ρ with η ∼ 10−3 Pa·s and ρ
∼ 103 kg/m3.
When the viscosity of a glass-forming liquid upon cooling

increases by many orders of magnitude, surprisingly little
structural change takes place.19 This means that Figure 1 is still
a fairly good representation with regard to structure, which
raises the following question: how should one think of a liquid
with the extremely slow dynamics characterizing the approach
to the glass transition?
Ultraviscous Liquids. In thermal equilibrium, atoms/

molecules have velocities proportional to the square root of the
temperature, but this motion does not necessarily imply lasting
particle displacement. In a crystal, for instance, all thermal

motion goes into vibrations around the equilibrium positions.
One likewise expects effective particle motion in an ultra-
viscous liquid to be minute because, in order to move a particle
with a certain velocity, a force is required that is proportional
to the viscosity. Indeed, according to the Stokes−Einstein
relation, Dpar is inversely proportional to the viscosity.29,34

Although derived by reference to macroscopic hydrodynamics,
the Stokes−Einstein relation works well for simple liquids even
on the molecular scale.35 The relation is violated by 1−3
orders of magnitude for liquids approaching the glass
transition,36−39 but this does not alter the fact that when
viscosity increases upon cooling, Dpar decreases roughly as
much: Dpar ∝ η−x with 0.8 ≤ x ≤ 1.0.40−42 Thus, when the
viscosity�and thereby Dmom�increases by a factor of 1015 by
cooling from Tm to Tg, Dpar at the same time decreases
enormously. Interestingly, the heat-diffusion coefficient Dheat
changes only insignificantly upon cooling, even into the glassy
state.43,44 To summarize, an ultraviscous liquid is characterized
by

D D Dpar heat mom (3)

Flow Events. Since effective particle motion is exceedingly
slow in an ultraviscous liquid while velocities are not, most
motion must go into vibrations. Two possible scenarios can
realize this. The vibrations can take place around average
positions that change continuously but extremely slowly.
Alternatively, sudden rare localized “flow events” rearrange a
handful of particles. Experiments on colloidal,20 molecular,48

and metallic49 glass-forming liquids, as well as computer
simulations,47 favor the latter scenario. This does not mean
that very slow position changes are absent;50 they do take place
and are important for the physics. According to the solid-that-
f lows picture as detailed below, however, these minor displace-
ments are an ef fect of flow events taking place in a solid-like
structure.
It is an old idea that particle motion in a glass-forming liquid

proceeds via flow events. In his seminal 1948 review,
Kauzmann referred to flow events as “jumps of molecular
units of flow between different positions of equilibrium in the
liquid’s quasicrystalline lattice”.51 Mooney in 1957 poetically
referred to a flow event as “a quantum of liquid flow”,26 and
many subsequent papers have embraced this picture of viscous
liquid dynamics.52−57 The physics, of course, lies in what
determines the energy barriers of flow events, how these events
correlate in space and time, and how they control physical
properties.
Why are flow events rare in an ultraviscous liquid? This was

reflected upon by Goldstein in his famous 1969 paper.58 He
identified Kauzmann’s “positions of equilibrium” with minima
of the potential-energy function. Flow events are rare because
the barriers to be overcome on going from one minimum to
another are much larger than kBT. Potential-energy minima are
nowadays referred to as “inherent states”.59 Goldstein’s picture
is that the dynamics of an ultraviscous liquid involves
numerous vibrations around an inherent state. These
vibrations do not contribute to the slow dynamics and may
be eliminated by focusing on the “inherent dynamics” defined
as the time sequence of inherent states.47,60

Anticipating that an ultraviscous liquid is like a solid on
short length scales, any flow event leads to minor deformations
in its surroundings.61−63 These may be detected, e.g., by NMR
experiments.64 Far from a flow event linear elasticity applies,
and in 3D the induced particle motion scales as 1/r2 for r → ∞

Figure 1. Hard-sphere liquid in two dimensions. There are frequent
collisions because the particles almost touch. For a rough order-of-
magnitude estimate of the system’s transport properties, however, one
can assume that a ∼ d.
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where r is the distance to the flow event65 (Figure 2). To show
this, one uses the mechanical-equilibrium requirement that the
time-averaged force on each particle is zero both before and
after a flow event. A single flow event’s effects on the
surroundings may be reproduced by imagining external forces
acting on a small surface surrounding it.66−68 By momentum
conservation, each of these forces leads to a momentum flow
into the surroundings ∝ 1/r2 for r → ∞. Since the forces sum
to zero, this implies an overall momentum flow (stress tensor)
that is the spatial derivative, i.e., ∝ 1/r3. According to elasticity
theory,65 the stress tensor change is linearly related to the
strain field, which is formed from derivatives of the
displacement field that consequently must scale as ∝ 1/r2.69

In 2D, the stress and strain fields induced by a flow event scale
as ∝ 1/r2 for r → ∞ and the particle displacements as ∝ 1/r.
Solidity Length. The above and Figure 2 suggest that the

physics of an ultraviscous liquid is reminiscent of that of a
solid. Real-life solids are mostly crystalline, with grain
boundaries separating small crystals containing point defects.
In thermal equilibrium, however, the solid state of any pure
substance is a single crystal with no line defects or grain
boundaries, while a few point defects like vacancies and
interstitials, i.e., missing or extra atoms, are present.70 Point
defects can jump to neighboring positions by overcoming a
barrier much larger than kBT, just like flow events in
ultraviscous liquids.
The effect of a flow event on its surroundings is not

instantaneous due to the finite sound velocity. After a flow
event, others take place that likewise send out spherical
“waves” of minor adjustments to the particle positions (Figure
3). Far from the original flow event, the adjustments
originating from many other flow events interfere with and
increasingly smear out the effect of the original flow event. We
proceed to estimate the length scale beyond which this
significantly dampens the effects of a flow event, which defines
the system’s “solidity length” ls. The system is solid-like on
length scales smaller than ls, but not on larger length scales. A
related concept is the “shear penetration depth” quantifying
how far an external shear disturbance penetrates into the
liquid.71

To estimate ls, we make the crude approximation that the
average time between two flow events involving a given
molecule is τα. If a is the average intermolecular distance, a
sphere of radius ls contains on order N l a( / )s

3 sites for
potential flow events. Flow events are not independent and
uncorrelated, but for simplicity we ignore this and estimate the
average time between two flow events within the sphere to be

Figure 2. Displacements induced by a flow event in a glass-forming liquid. (a) Average deviatoric strain displacement in the surroundings of flow
events in simulations of a 2D polydisperse glass-forming liquid; the radial axis is logarithmic with two units corresponding to a factor of 10. The
data conform to the long-range decay ∝ 1/r2 predicted by solid-state elasticity theory. Reproduced from ref 45. Copyright 2021 Authors, licensed
under a Creative Commons License. (b) Displacement probability, p(u), in the surroundings of flow events of a 3D binary glass-forming liquid.
The vast majority of displacements are small and conform to p(u) ∝ u−5/2 (dashed curve), which is a consequence of the solid-state elasticity-theory
prediction u ∝ 1/r2 for r → ∞.46,47 The limited number of particles of this early simulation (N = 500) accounts for the deviation from the dashed
curve at small u. Reproduced from ref 47. Copyright 2000 AIP Publishing.

Figure 3. An isolated flow event and its screening by subsequent
nearby flow events (artist’s impression). The radius of the sphere
inside which the effects of the original flow event are felt in full defines
the solidity length ls.
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τα/N. The solidity length is determined by requiring that this
equals the time it takes a sound wave to travel ls, which is ls/c
where c is the sound velocity,46 leading to

l cas
4 3

(4)

For an ordinary liquid, the derivation makes little sense, but if
one nevertheless substitutes c ∼ 103 m/s, a ∼ 10−10 m, and τα
∼ 10−13 s into eq 4, the result is ls ∼ 10−10 m. For a liquid
approaching the glass transition, τα ∼ 103 s leads to ls ∼ 10−6

m. This length is much larger than those discussed in
connection with dynamic heterogeneities of glass-forming
liquids.72−75 Note that the derivation of eq 4 is general and
also applies, e.g., for network-forming liquids like silica.
A single crystal with point defects also has a finite solidity

length, but here the concept is not relevant because the crystal
structure defines solid-like particle correlations over distances
stretching to infinity. For an ultraviscous liquid, on the other
hand, due to the lack of a lattice, rigid distance correlations
apply only below the solidity length.
Furukawa has argued that the length ξ defined by ξ4 ≡ a4τα/

τ0, in which τ0 is a microscopic time, is the characteristic length
over which long-lived stress is sustained.76,77 He proposed that
an ultraviscous liquid may be regarded as an ordinary liquid
composed of clusters of size ξ ∼ ls, and that hydrodynamics
only applies on length scales above ξ. Much of the physics
probed in experiments takes place below the solidity length,
however, e.g., dielectric relaxation or NMR experiments probe
a molecular average property. In fact, measuring a macroscopic
dynamic property like the viscosity η is increasingly difficult as
the glass transition is approached.78

Conservation Laws. Below the solidity length, the laws of
conservation of the number of particles, momentum, and
energy play roles different from in ordinary liquids where these
laws form the basis of hydrodynamics.6,28,35,79,80 Consider first
particle conservation. A molecular dynamics simulation keeps
track of the individual particles, but things look different in a
coarse-grained description based on a continuous density field,
ρ(r, t). This field is constant in time until it changes due to a
flow event, a change that below the solidity length may be
regarded as instantaneous. In general, flow events are not
spherically symmetric, but this assumption can be made

initially when discussing the density change at the flow event
center.
A spherically symmetric flow event leads as mentioned to

purely radial displacements in the surroundings ∝ 1/r2.65 The
divergence of the displacement field, which determines the
local density change, is zero (compare Gauss’ law for the point-
charge electric field ∝ 1/r2). On the other hand, this radial
displacement can only take place if there is a density change at
the flow-event center. Hence, if the density change after
coarse-graining over a few molecular distances is denoted by
Δρ(r), a flow event at r0 leads to

=r( ) 0 (5)

in its surroundings. Comparing the situation before and after
the flow event, local particle conservation will appear to be
violated because the density changes only at r0. What happens
is reminiscent of Hilbert’s hotel, the full infinite hotel that
hosts new arrivals by asking all guests to move to a room of
one higher number.
Below the solidity length, flow events may as mentioned be

regarded as instantaneous. This leads to a coarse-grained
description with no visible trace of particle-number con-
servation,81

=t b t tr r r( , ) ( ) ( )
j

j j j
(6)

Here bj is a dimensionless measure of the magnitude of the
flow event at time tj and position rj. Apparent density
nonconservation holds also if one takes into account the
minor density changes of the more realistic anisotropic
Eshelby-type flow events discussed, e.g., in refs 62, 66, 67,
and 82. In that case, the right-hand side of eq 6 acquires an
additional “advective” term reflecting the long-range minor
effects of flow events on the density, a term that also after
coarse-graining conforms to density conservation.
Below the solidity length, mechanical equilibrium applies in

the time between flow events, i.e., time-averaged forces are
zero. In a coarse-grained description this is expressed as zero
divergence of the stress tensor, σμν(r, t)

65

=tr( , ) 0 (7)

Figure 4. Soft spots in 2D systems. (a) Softness probed as the local yield stress of a binary Lennard-Jones glass in which red and blue mark soft and
hard regions, respectively. The numbered points give the time sequence of plastic flow events when the system is sheared at zero temperature,
which are located at the soft spots. Reproduced from ref 94. Copyright 2018 American Physical Society. (b) Analogous results for an equilibrium
ultraviscous 2D liquid in which softness is probed by the local yield stress of the system’s inherent state, i.e., potential-energy minimum, at a specific
time. The circles mark the first 50 subsequent flow events. Like the plastic flow events of the glass in (a), these preferably take place at soft spots.
Reproduced from ref 95. Copyright 2022 American Physical Society.
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in which r = (x1, x2, x3) and ∂μ is the spatial derivative with
respect to xμ. In this approach, the dynamics is regarded as a
series of instantaneous transitions between states of mechanical
equilibrium, each of which conforms to eq 7.
Momentum conservation likewise plays little role in the

dynamics below the solidity length. The situation is similar to
that of point-defect motion in a crystal, for which one would
not invoke momentum conservation to explain the physics.
The same applies for energy conservation: in an ultraviscous
liquid, energy flow predominantly takes place via heat
conduction, just like in a solid, and this process is irrelevant
for the rate of flow events or for explaining how these correlate
in space and time. Note that we are not suggesting that strict
particle, momentum, or energy conservation is violated, merely
that these conservation laws are not relevant for understanding
the physics of glass-forming liquids.8,83

Flow Events in Plastic Flow of Glasses. The under-
standing of glass-forming liquids has benefitted greatly by
learning from studies of forced flow of glasses. When a glass is
subjected to a gradual shear deformation, it eventually yields
by deforming irreversibly.84−88 The last 15 years has brought
tremendous progress in the understanding of zero-temperature
plastic flow of glasses,89 which proceeds as a sequence of
sudden, localized flow events.90−92 These generally do not take
place at random locations, but at soft spots in the glass;
compare Figure 4a.93

Different methods have been suggested for identifying soft
spots.89 An early approach was to look for particles with a large
finite-temperature vibrational mean-square displacement, a
simple indicator that the potential is soft at the particle in
question.96 The mean local potential-energy fluctuation has
also been used as a soft-spot identifier.97 The local-yield-stress
method94,98 considers a small sphere and constrains the
outside system to deform affinely such that only the atoms
inside the sphere can relax when the system is shear deformed.
Different sphere locations and possible shear deformations are
probed to identify the position of smallest local yield stress.
This method works well for identifying the sites of plastic
rearrangement but requires knowledge of the interaction
potentials. Methods for identifying sites for plastic flow events
based purely on structural information have also been
devised99,100 using, e.g., a mean-field caging potential101 or
machine-learning techniques.102,103 One such method102

defines “softness” as a weighted integral over local radial
pair-correlation functions and optimizes the weights for
predicting sites of rearrangement by learning from plastic
flows. The results obtained correlate well with those of the
local-yield-stress method.102,103

An alternative approach utilizes the fact that soft spots give
rise to localized phonon modes, implying that the latter are
good predictors for plasticity.104−108 Low-energy localized
vibrational modes may be identified by a third-order expansion
of the potential-energy function, a clever method that avoids
the hybridization with the low-frequency sound-wave modes
found by diagonalizing the Hessian.109 Despite the above
quoted strong indications of a connection between soft spots
and relaxation sites, this link has exceptions and is not
universally agreed upon.110−112

To summarize, plastic flow takes place via sudden flow
events. The physics is similar to what happens in an
equilibrium ultraviscous liquid in which flow events are also
usually located at “soft spots” (Figure 4b). A difference is that
the time-sequence of flow events of a zero-temperature plastic
flow is deterministic, while a glass-forming liquid’s flow events
are stochastic. Another difference is the lack of isotropy of a
plastic flow, which leads to preferred orientations of the
Eshelby stress fields, to which we now turn.
Strain and Stress Correlations in the Liquid.We return

below to the idea that flow events are controlled by the
system’s elastic properties and focus here on another property
of glasses, the fact that a flow event generally induces a
quadrupolar stress-field change in the surroundings.113 This is
explained by the 1957 theory of solid inclusions by Eshelby,66

which applies also to disordered solids because these are
effectively homogeneous on a long length scale. Eshelby
calculated the long-range stress and strain changes of an
inclusion by replacing it with localized forces in an elastic
continuum. Each force gives rise to a momentum current into
the solid, and since these forces must sum to zero, the result is
a quadrupolar stress field.66,82

An obvious question is whether the long-ranged stress
correlations observed in glasses114 exist also in glass-forming
liquids.112,115−117 One expects this to be the case below the
solidity length because here the properties of the liquid’s
inherent states�each of which corresponds to a T = 0 glass�
is inherited by the equilibrium liquid (Figure 5).115,118−121

Figure 5. Spatial strain and stress correlations in ultraviscous liquids. (a) Experimental data for the strain correlations of a 2D colloidal glass-
forming liquid. The lower inset shows the spatial correlation function of the xy strain-tensor change over a time t ≫ τα where green is zero. The
curves are normalized spherical-harmonics projections of this function at different times, which are proportional to 1/r2 as predicted for Eshelby
patterns in 2D.62,65,66,69,82 Reproduced from ref 63. Copyright 2016 American Physical Society. (b) Stress-tensor correlations in a 2d binary viscous
liquid. The figure shows the correlations between the normal-shear-stress increment of a single flow event. Reproduced from ref 62. Copyright 2014
American Physical Society.
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Lemaitre worked out the theory for the stress-tensor spatial
autocorrelation function in a disordered isotropic solid.
Remarkably, the 3 × 3 × 3 × 3 tensor ⟨σαβ(r)σγδ(r′)⟩ is
determined by just two functions of |r − r′|.62,69 In general, if X
is the space or space-time coordinate and DX is a linear
differential operator of a field theory with equation of motion
“DXϕ(X) = Noise”, one has DX′⟨ϕ(X)ϕ(X′)⟩ = 0 whenever X′
differs from X in all coordinates. Thus, according to the solid-
that-f lows picture, as a function of r′ the autocorrelation
function ⟨σαβ(r)σγδ(r′)⟩ obeys eq 7. In particular, it conforms
to the Eshelby theory82 for |r − r′| → ∞. The same applies to
the more general space-time autocorrelation function ⟨σαβ(r, t)
σγδ(r′, t′)⟩.
Long-ranged stress and strain correlations exist only below

the solidity length, however. At longer length scales, the effects
of one flow event are smeared out by those of others. Thus,
beyond the solidity length ls an exponential decay of the spatial
stress autocorrelation function is to be expected. This means
that in the liquid phase, the Lemaitre spatial autocorrelation
functions69 should be multiplied by a factor ∼

lr rexp( / )s .
We finally note that the nonzero stresses of an ultraviscous

liquid modify nearby flow-event energy barriers. This is not
taken into account in attempts to identify likely positions of
flow events from specific structures,100 which may explain why
such attempts have only been moderately successful.122

We end this Perspective by giving three examples of how the
solid-that-f lows picture elucidates experimental facts of glass-
forming liquids.
Dynamic Heterogeneity and Elastic Facilitation. An

important finding of the 1990s was that the dynamics of a
glass-forming liquid is spatially inhomogeneous.38,39,123−125 At
any given time, there are regions of considerable molecular
motion and regions of little.23,126 This provides a simple
explanation of the observed violation of the Stokes−Einstein
relation between viscosity and diffusion coefficient:37,39,127 Fast
particles take advantage of rapidly relaxing regions and
contribute a great deal to Dpar, but little to the overall
structural relaxation rate quantified by τα via the viscosity.

What controls the temperature dependence of τα? Figure 6a
presents two fundamentally different scenarios.128 In one case
(upper panel), the local energy barrier controls the dynamics
in the sense that it determines the overall relaxation rate.
Alternatively, structural relaxation is a highly cooperative
process that involves an entire sequence of flow events (lower
panel). The latter scenario has been used to explain dynamic
heterogeneities and is predicted, e.g., by the random first-order
transition (RFOT) theory.75,129 RFOT is inspired by the
theory of spin glasses, which are systems with no elastic
interactions. In RFOT, the increase of the activation energy of
τα upon cooling results from a correlation length ξ that grows
due to the decrease of entropy.52,55 The fundamental RFOT
prediction, which has been proven rigorously for infinite
dimensions,130 is that thermodynamics control the dynamics.
This is challenged, however, by the fact that swap algorithms in
finite dimensions131,132 can speed up computer simulations
significantly without affecting the thermodynamics.74,133

The local-barrier picture is the obvious one from the solid-
that-f lows view in which the situation is analogous to that of a
plastic flow with flow events occurring at soft sites. That local
barriers control the relaxation was demonstrated recently in
simulations of a 3D polydisperse soft-repulsive-potential
model.128 By systematically identifying the flow events starting
at a given inherent state, it was shown that upon cooling, the
activation energy increases enough to account for the super-
Arrhenius temperature dependence of τα. This means that, at
least for the model in question, the dynamics is not
cooperative; in particular, no divergence of the relaxation
time is predicted at a finite temperature.131,136,137

If τα is controlled by the individual flow-event activation
energies, how does one explain dynamic heterogeneity? A
promising candidate is facilitation, the idea that one flow event
makes nearby flow events more likely.138−140 “Elastic
facilitation” is a consequence of the fact that all flow events
lead to long-range stress-tensor changes within the sphere
defined by the solidity length. These lower the barriers of some
potential nearby flow events and increase others.45,62,135,141

Because the exponential function is convex, the net effect is
that one flow event makes neighboring flow events more likely.

Figure 6. Elastic facilitation. (a) Two schematic free-energy landscapes in configuration space. The dynamics can be dominated by local energy
barriers (upper panel) or by the growth of cooperative effects over some distance ξ (lower panel). Reproduced from ref 128. Copyright 2023
Authors, licensed under a Creative Commons License. (b) Avalanche of flow events induced by a single flow event that lowers some barriers in the
surroundings, thereby catalyzing other flow events that induce yet others, etc. Reproduced from ref 134. Copyright 2023 Authors, licensed under a
Creative Commons License. (c) Temperature dependence of τα in a simple model with and without elastic facilitation. Reproduced from ref 135.
Copyright 2023 American Physical Society.
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Borrowing a term from NMR theory, this general mechanism
has been referred to as “rate exchange”.38,127,142

Elastic facilitation, which was first studied in glasses,62,143 is
illustrated in Figure 6b. In a simple model,135 this leads to a
substantial reduction in the activation energy of τα, Figure 6c.
In ref 134, it was proposed that an entire avalanche of flow
events may be triggered by a single one, similar to what
happens in plastic flow of glasses.88,144,145 Reference 146
considered a simple facilitated trap model54 and showed that it
results in an asymmetric α loss peak with an excess wing (see
also refs 147 and 148).
Double-Percolation Scenario for Linear-Response

Functions. Any linear-response property is quantified by a
complex frequency-dependent response function, χ(ω) =

+ i( ) ( ). It is sometimes stated that a major mystery
of glass-forming liquids is the observed broad loss peaks,
χ″(ω). Certainly, a Debye loss peak , ( ) [ + ]/ 1 ( )2

(which according to the fluctuation−dissipation theorem149

corresponds to an exponential time-autocorrelation function)
is rarely observed. But one could also argue that the loss peaks
are, in fact, surprisingly narrow. In particular, in the vast
majority of glass-forming liquids, dielectric, mechanical, and
specific-heat loss peaks follow the Debye prediction on the

low-frequency side. This striking fact implies the existence of a
quite sharp long-time cutoff in the relaxation-time distribution
p(τ) defined by

= [ + ]p( ) / 1 ( ) ( )d
0

2

How can one understand this?
The disorder of a glass-forming liquid implies that flow-

event energy barriers ΔE vary in space throughout the system
at any given time. An ad hoc assumption is that at any given
time, the barriers vary randomly in space according to some
distribution. This is illustrated in the upper part of Figure 7a
for the case of a distribution, p(ΔE), which is much wider than
kBT. The smallest barriers give rise to what Johari and
Goldstein half a century ago termed “islands of mobility”150

where fast, spatially isolated rearrangements take place. Such
islands may involve just a few molecules or be larger, and they
do not necessarily have a super well-defined contrast to the
surroundings. On a longer time scale flow events involving
larger barriers are gradually “activated”, and at some point they
will percolate the structure. On that time scale, extended
motion becomes possible within the rigid structure formed by
the remaining system. In three dimensions, the percolation

Figure 7. Linear-response consequences of the solidity of glass-forming liquids. (a) Double-percolation scenario for the frequency-dependent
imaginary-part linear response, χ″(ω), in the case of a very wide flow-event activation-energy distribution, p(ΔE). The distribution is constant in
time, but the activation energy of any region changes over the τα time scale. The β relaxation is marked by the frequency corresponding to where
the islands of mobility percolate; the α relaxation is where the islands of immobility percolate. The islands of immobility do not contribute to any
relaxation because their barriers are too high and await being lowered by elastic facilitation and/or by “dissolving” the slow-domain percolation
cluster defining the τα time scale. (b) Histogram of the minimum slopes above the α dielectric log−log loss peaks for 347 spectra of 53 glass-
forming liquids. The prevalent minimum slopes are close to −0.5. Reproduced from ref 182. Copyright 2009 Authors, licensed under a Creative
Commons License. (c) Results from dynamic light scattering showing a χ″(ω) ∝ ω−1/2 high-frequency decay for chemically quite different glass-
forming liquids. The black dashed line is the imaginary part of + + + +i i( ) 1/ 1 1/( 2 1 ), which can be derived from the
density-dispersion relation Γ(k) = Γ0 + Dcohk2 that incorporates the apparent violation of density conservation via the Γ0 term.192 Reproduced from
ref 183. Copyright 2021 American Chemical Society.
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threshold is roughly one-quarter; in two dimensions, the
threshold is 50% because a given set or its complement must
percolate�and for geometric reasons, both cannot hap-
pen.151,152

Consider next the largest barriers. Being also spatially
isolated, these form “islands of immobility”. Including
gradually smaller barriers, at some point there is slow-domain
percolation. This defines a characteristic time scale that we
identify with τα: on time scales shorter than τα, the system is
rigid and can sustain an externally imposed shear stress, while
on longer time scales the slow-domain percolation cluster
“dissolves”, allowing the system to flow in response to an
external stress.4 What happens then is that the system flows
enough to loosen the structure around any high-energy-barrier
location of the liquid. This lowers these barriers before they are
transcended, which explains why loss peaks generally are
Debye on the low-frequency side. This picture of the α
relaxation may be referred to as “dynamic rigidity percola-
tion”.153 Note that the long-time flow does not mean the
system is like a standard liquid at long times; it is still better
regarded as a solid-that-f lows .
A consequence of the above physical picture is that single-

particle motion is predicted to be spatially heterogeneous on
short time scales, but homogeneous on time scales longer than
τα.

125,154−157 That structural relaxation and thereby τα is
controlled by the slow particles is an old idea,125,158−160 which

has recently been confirmed in experiments,161 as well as in
equilibrium162,163 and aging153 simulations.
The double-percolation picture translates as follows into a

generic frequency-dependent loss, χ″(ω). The largest barriers
are as mentioned never overcome so the corresponding long
relaxation times do not contribute to the loss. Consequently,
p(τ) has a long-time cutoff roughly at τα and χ″(ω) is Debye-
like at low frequencies: χ″(ω) ∝ ω whenever ωτα ≪ 1.163 On
shorter time scales, i.e., above the α loss-peak frequency ∼ 1/
τα, solidity comes into effect, resulting in an asymmetric loss
peak.162 Here we predict χ″(ω) ∝ ω−1/2 based on solving a
simple field theory for the density fluctuations in the Gaussian
approximation, assuming a wavevector-dependent density
decay rate of the form = +k D k( ) 0 coh

2 in which
D a1/ /a0 coh

2.8,81 Conservation laws generally imply a
Γ(k) ∝ k2 dispersion relation arising from the spatial Fourier
transform of the ∇2 operator of the diffusion equation,28,79

while the Γ0 term corresponds to the apparent violation of
density conservation discussed above.81 Note that Figure 7a
relates to the case of a very wide p(ΔE), which for many
equilibrium ultraviscous liquids may apply only at temperatures
so low that the system cannot be equilibrated even in long-
time experiments.
A second loss peak is expected at the frequency

corresponding to fast-domain percolation (Figure 7a).
Following Gao et al.164 we identify this with the ubiquitous

Figure 8. Elastic model predictions for the temperature dependence of τα. (a) Schematic picture of a flow event. The shoving model for τα(T)
ignores the “local” contribution to the activation energy, which is small whenever interactions are strongly anharmonic.212 Reproduced from ref
213. Copyright 2013 American Chemical Society. (b) Logarithm of the viscosity of ten organic glass-forming liquids plotted as a function of
X G T T G T T( ) /( ( ) )g g . Equation 8 predicts a straight line ending at the limiting high-temperature viscosity (10−4 P = 10−5 Pa·s). Reproduced
from ref 214. Copyright 2009 AIP Publishing. (c) Test of eq 9 for several metallic glasses in which G and K are the shear and bulk moduli of the
glass and Vm is the molar volume. Reproduced from ref 206. Copyright 2012 Authors, licensed under a Creative Commons License. (d) For a
binary Lennard-Jones model the activation energy of τα is proportional to the average microscopic dipole stiffness κ, i.e., log(τα/t0) ∝ κ(T)/T in
which t0 is phonon time. Reproduced from ref 211. Copyright 2021 AIP Publishing.
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Johari−Goldstein (JG) β process,150 thereby taking several
previous works to their logical consequence.165−176

A double-percolation picture of glass-forming liquids was
proposed already in 1996 by Novikov et al., who discussed
percolation of liquid-like and solid-like domains defined by the
largest and the smallest vibrational mean-square displacement,
respectively.177 A graphic description refers to the slow-domain
percolation cluster as a “sponge” through which fast motion is
possible.178

While we have here focused on linear-response properties of
equilibrium glass-forming liquids, it has been demonstrated in
colloidal-glass experiments that percolation also controls glass
plastic flow; thus, growing clusters of nonaffine deformation
percolate at yielding.179

The experimental situation is much less clear than the
schematic picture in Figure 7a. In fact, there are only a few data
for JG β relaxation in the equilibrium liquid phase. This is
because above Tg the α and β processes usually interfere, often
to the extent that the high-frequency α decay hides the β
process that is reduced to an excess wing of the α
process.162,180,181

Turning to the α process, an analysis of dielectric spectra of
53 liquids at different temperatures revealed that the α high-
frequency approximate exponent�identified as the minimum
slope in a log−log plot of the loss, αmin�is predominantly
close to −0.5 (Figure 7b); αmin moreover approaches −0.5 as
T → Tg.

182 Recent light-scattering data confirm this
picture,183,184 compare Figure 7c. We also note that recent
extensive computer simulations find the exponent −0.38,163

which is not far from −0.5.
Elastic Models for the Temperature Dependence of

τα. Point defects in simple crystals are either vacancies or
interstitials.70,185 Such defects can jump, and the activation
energy for a jump scales with the crystal’s elastic constants.186

In the solid-that-f lows picture it is obvious to assume that the
flow-event activation energy likewise is proportional to the
elastic constants, here those that characterize fast deforma-
tions, i.e., the high-frequency plateau shear and bulk moduli.
This idea defines the elastic models that exist in several
versions,9,187 and which have been linked to models based on
the decrease of free volume or increase of collective motion
upon cooling.157,188 Note that in some models elasticity
accounts for only part of the activation energy.189−191

The simplest mean-field approach assumes that all flow-
event activation energies scale in proportion to the macro-
scopic moduli. For a perfectly spherical flow event in a
homogeneous solid, the surroundings experience, as men-
tioned, a radial displacement ∝ 1/r2. This results in a pure
shear deformation, i.e., one with no density change except at
the flow event center. Thus, the relevant elastic constant is the
high-frequency plateau shear modulus G∞. The shoving model
ignores the flow-event-center contribution to the activation
energy and predicts193

= eG T V k T
0

( ) /c B (8)

Here τ0 ∼ 10−13s is a prefactor set by the phonon time scale
and Vc is a microscopic volume. G∞ of a glass-forming liquid is
usually much more temperature dependent than in the
corresponding crystal; in fact G∞(T) often increases enough
upon cooling to account for the non-Arrhenius τα(T). The
physical picture of the shoving model is shown in Figure 8a.
Although many data conform to eq 8,191 compare Figure 8b,

the shoving model does not apply for all glass-forming
liquids.191,194

In so far as the dominant contribution to the activation
energy derives from displacements around the flow event, not
at its center, G∞ controls more than 90% of the activation
energy.195 Elastic models emphasizing instead the bulk
modulus also exist, however.191,196 A popular elastic model
expression is log(τα) ∝ 1/⟨u2⟩ in which ⟨u2⟩ is the vibrational
mean-square displacement.9,191,197−200 In this approach Tg is
characterized by a definite value of 1/⟨u2⟩, giving rise to a glass
analogue of the famous Lindemann melting criterion.201−203

This prediction has been investigated by assuming Vc is a
system-independent fraction of the molar volume Vm and that
all vibrations are phonons controlled by G∞ and the high-
frequency plateau bulk modulus, K∞. At the glass transition,
these moduli freeze into their glass values, G and K. A
straightforward calculation based on the existence of two
transverse and one longitudinal phonon for each wavevector
leads204−206 to

+
+

T GV K G
K G

4 /3
2 11 /3mg (9)

with a universal constant of proportionality. This is validated
for several bulk metallic glasses in Figure 8c, thus making it
possible to predict Tg from glass properties.207

The above approaches either assume that the elastic
properties are constant throughout the sample or that the
local elastic constants208,209 scale proportionally when temper-
ature is changed.210 Kapteijns et al. studied the energy
landscape of a binary Lennard-Jones model to investigate the
influence of the elastic constants between neighboring particles
on the temperature dependence of τα.

211 The activation energy
of τα was found to be proportional to the average “stiffness”
between neighboring particles of the liquid’s inherent
structures. This leads to the straight-line prediction of Figure
8d and suggests an alternative microscopic explanation of why
elastic models account for many non-Arrhenius data.194

■ DISCUSSION
This perspective has reviewed arguments that a glass-forming
liquid below the solidity length is more like a solid-that-f lows
than like ordinary liquids. The focus has been on the dynamics,
leaving out a discussion of thermodynamic properties and their
correlation to the dynamics.18,52 In regard to experimental
predictions, we note that the double-percolation picture does
not apply in 2D. That is, if α and β relaxations as suggested
derive from slow- and fast-domain percolation, respectively, no
separate Johari−Goldstein β processes should exist in 2D
because the percolation threshold is here 50%. It has been
argued from simulations that the glass transition in 2D indeed
is different from in 3D in several respects.131,215,216 Another
prediction is that all molecules contribute to the β relaxation in
the liquid phase, albeit only a fraction of them at any given
time, while in the glass some molecules contribute and many
do not.163,217

What is the difference between the solid-that-f lows picture
and the standard Maxwell model in which a liquid behaves as a
solid over short times? One difference is the existence of a
solidity length in the solid-that-f lows view, a consequence of the
fact that the sound velocity is finite, quantifying the length
scale above which the picture breaks down. Another difference
is that, whereas the Maxwell model predicts standard liquid
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behavior at long times, the solid-like behavior below the
solidity length persists. One consequence of this is the
apparent density nonconservation in coarse-grained descrip-
tions.
Not everything discussed in this paper can be correct for the

simple reason that there are several inconsistencies. We end
the paper by listing these and other issues in order to illustrate
that there is still no self-contained picture of glass-forming
liquids’ solidity and its consequences:

• The derivation of the solidity length eq 4 assumes that
each place in the liquid on average gives rise to one flow
event every τα. This is inconsistent with the double-
percolation picture of Figure 7a in which a wide range of
activation energies is involved. This inconsistency
persists even after taking into account that the islands
of immobility are “renormalized” by facilitation or
otherwise and lowered to the slow-domain percolation
activation energy defining τα. This dilemma may be
resolved by following Furukawa and instead define ls as
the length scale beyond which ordinary hydrodynamics
applies;76 as noted above this leads to virtually the same
expression as eq 4. While ls ∝ τα

1/4 has recently been
confirmed in connection with nonlinear flow model-
ing,218 it should be mentioned that other recent works
predict ls ∝ τα

1/2219 and ls ∝ τα
1/3,5 a matter that needs to

be resolved. How to determine ls in experiments is
another important challenge for future work.218

• It is not obvious that elastic facilitation (Figure 6b and
c) is enough to eradicate the largest quarter of the
barriers (Figure 7a). After all, the stress changes induced
by one flow event decay in space as ∝ 1/r3, which is
rather rapid, so other facilitation mechanisms may be
needed.163,220 We favor the above-mentioned possibility
that the entire system flows slightly on time scales longer
than τα, implying that all stresses decorrelate, including
those that keep in place the solid structure defining the
local energy barriers.

• Based on the double-percolation picture one would
expect an experimental signature of the percolation
critical exponents.162,221 This contradicts the prediction
that χ″(ω) ∝ ω−1/2 above the α loss peak frequency.
Moreover, it was recently shown that the (zero-
parameter) random-barrier model222 provides an ex-
cellent fit to the inherent mean-square displacement as a
function of time for a binary deeply supercooled
Lennard-Jones liquid.223 It is difficult to reconcile that
with the prediction for the α high-frequency loss, χ″(ω)
∝ ω−1/2.224

• The shoving model assumes uniform elasticity on the
short time scale, i.e., does not take into account dynamic
heterogeneities. If all flow-event barriers scale propor-
tionally when temperature is changed, this temperature
scaling is inherited by G∞(T).

210 Even under this
assumption, however, one would not expect the flow-
event sequences to be temperature invariant because
sequences avoiding large barriers become increasingly
important as the temperature is lowered. This should
lead to a modification of eq 8.

Clearly, much further work is needed before the solid-that-
f lows picture has matured into a simple and coherent one.
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