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ABSTRACT
The melting line of the Weeks–Chandler–Andersen (WCA) system was recently determined accurately and compared to the predictions of
four analytical hard-sphere approximations [Attia et al., J. Chem. Phys. 157, 034502 (2022)]. Here, we study an alternative zero-parameter
prediction based on the isomorph theory, the input of which are properties at a single reference state point on the melting line. The two
central assumptions made are that the harmonic-repulsive potential approximates the WCA potential and that pair collisions are uncor-
related. The new approach gives excellent predictions at high temperatures, while the hard-sphere-theory based predictions are better at
lower temperatures. Supplementing the WCA investigation, the face-centered-crystal to fluid coexistence line is determined for a system
of harmonic-repulsive particles and compared to the zero-parameter theories. The results indicate that the excellent isomorph-theory pre-
dictions for the WCA potential at higher temperatures may be partly due to a cancellation of errors between the two above-mentioned
assumptions.
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I. INTRODUCTION

A central result of classical theories of liquids is that fluid
states’ structure, dynamics, and statistical properties are determined
mainly by their short-ranged repulsive forces, while long-ranged
attractions play second fiddle.1–15 This simplification is behind the
success of classical hard-sphere (HS) theories2,4,5,16,17 and the map-
ping to a harsh effective inverse power-law pair potential.18–21 Both
approaches predict structure, dynamics, and statistical properties
that are functions of a single parameter in the two-dimensional
thermodynamic phase diagram. For HS theories, the single para-
meter is the effective HS packing fraction. Several criteria have
been suggested for determining this quantity for a given state point
(and model); this is in general a subtle problem, the solution of
which de facto determines the configurational adiabats of the sys-
tem in question.22,23 The oldest approximation for determining the
effective HS radius dates back to Boltzmann’s thesis,24 which pro-
posed that the HS diameter is the shortest distance obtained by
two particles colliding head-on with average thermal velocity. In the
1960s, Barker and Henderson, Andersen and Weeks and Chandler,
and others developed successful theories based on more rigorous
thermodynamic arguments.

Since the onset of the present millennium, high-pressure exper-
iments by several groups have established that liquid dynamics is
often a function of a single thermodynamic parameter. This has
been motivated by mapping to a harsh inverse power-law pair
potential.25,26 The isomorph theory generalizes the idea of an effec-
tive single-parameter phase diagram whenever the potential-energy
function U(R) obeys hidden scale invariance.27,28 This is the prop-
erty that the ordering of configurations according to their potential
energy at one density is maintained upon a uniform scaling of all
coordinates, expressed in the logical implication U(Ra) < U(Rb)⇒

U(λRa) < U(λRb).28

Isomorph theory is exact if the pair interactions are inverse
power-law, r−n, in which case the above implication applies for all
configurations and structure and dynamic properties are invariant
along lines with constant ργ

/T, where ρ is density, T is tempera-
ture, and γ = n/3 is the so-called density-scaling exponent. These
lines are examples of “isomorphs”. It has been shown that numer-
ous systems, such as Lennard-Jones models,27,29 metals,21,30 the EXP
pair-potential,31,32 noble elements,14 and molecular systems,33–35

have isomorphs to a good approximation. For these systems, the
density-scaling exponent is generally state-point dependent, but
only weakly so.36 In contrast, the density-scaling exponent for the
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Weeks–Chandler–Andersen (WCA) system diverges when the tem-
perature approaches zero and the system becomes more and more
hard-sphere like.17 Interestingly, isomorph theory still applies in this
limit.17 In Ref. 37, we used the theoretical framework of the iso-
morph theory to determine the solid–liquid coexistence line of the
Lennard-Jones model. Here, we apply this idea to the WCA model
and to the model of harmonic-repulsive spheres. While the iso-
morph theory is mathematically more abstract than the classic HS
ideas, it has the advantage of viewing the energy landscape more
holistically and avoiding the use of a discontinuous pair potential.

The above-mentioned approaches lead to zero-parameter pre-
dictions of the shape of the solid–fluid coexistence line for a
given system. Here, we study the harmonic-repulsive38–45 and the
WCA4,13,14,46–52 pair potentials, both of which approach the hard-
sphere potential at low temperatures. We can use any reference state
point for the isomorph theory of melting.37 An attractive possibility
that removes this arbitrariness is to use the zero-temperature limit as
reference state point, which as shown below results in a theoretical
prediction close to that of HS theories. We derive the isomorph-
theory prediction for an arbitrary finite-temperature reference state
point and compare it to a prediction based on classic HS ideas.
While the HS approach gives the best predictions at extremely low
temperatures, the isomorph theory is more accurate at the higher
temperatures.

We first introduce the two energy surfaces of interest (Sec. II).
The low-temperature solid–fluid coexistence line of the WCA sys-
tem was determined accurately in Ref. 53. In Sec. III, we determine
the low-temperature melting line of the harmonic-repulsive system.
In Sec. IV, we develop the (zero-parameter) isomorph theory start-
ing from a given reference state point, and in Sec. V, we compare its
predictions to those of HS theories. Section VI is a summary. In the
Appendix, we derive the temperature dependence of the potential
energy at low temperatures.

II. THE WCA AND HARMONIC-REPULSIVE SYSTEMS
We consider two classical systems of repulsive particles. Let

R = (r1, r2, . . . , rN) be the collective coordinate vector of N particles
with mass m confined to the volume V with periodic boundaries; the
number density is given by ρ ≡ N/V (N = 5120 in all simulations).
The total potential energy is a sum of pair-potential contributions,

U(R) =
N

∑

i> j
v(∣r j − ri∣). (1)

We shall investigate two pair-potentials. The first is the harmonic-
repulsive potential defined by

v(r) = ε(1 −
r
σ
)

2
for r < σ (2)

and zero otherwise. Here, ε has the unit of energy and σ has the unit
of length. Henceforth, quantities are reported in units derived from
m, σ, ε, and the Boltzmann constant kB. The red line in Fig. 1 shows
the harmonic-repulsive pair potential. This potential is often used
as a model for colloidal particles, for jamming, and as a component
in coarse-grained modeling such as that behind dissipative particle
dynamics.38,40,43–45,54–57

FIG. 1. The harmonic-repulsive (solid red) and WCA (solid blue) pair potentials.
The black dashed line is the harmonic-repulsive potential mapped to the same
truncation distance and curvature at truncation as the WCA pair potential.

The second system investigated is the WCA pair potential58,59

defined by

v(r) = 4ε[(
σ
r
)

12
− (

σ
r
)

6
] + ε for r < rc (3)

and zero otherwise in which

rc =
6
√

2σ ≃ 1.1225σ. (4)

The WCA potential is the standard Lennard-Jones potential cut
and shifted at its minimum. This implies that the shifted-potential
and shifted-force60 cutoffs are identical. The WCA pair potential
was originally introduced as the repulsive reference of the Lennard-
Jones system,8,58 but has since become popular in its own right as
a generic fluid model.16 The blue line in Fig. 1 shows the WCA
potential.

At low finite temperatures, it is reasonable to approximate the
WCA potential by the first non-vanishing term of a Taylor expan-
sion around r = rc. Thus, one can approximate it as follows (the
black dashed line in Fig. 1):

v(r) ≅
k2

2
(rc − r)2 for r < rc (5)

and zero otherwise in which

k2 ≡
d2v

dr2 ∣
rc

, (6)

yielding k2 = 36 3
√

4ε/σ2
≃ 57ε/σ2. Note that Eq. (5) with k2 = 2ε/σ2

and rc = σ is identical to the harmonic-repulsive pair potential
[Eq. (2)]. Thus, the physics of the two models are expected to be
equivalent at low temperatures when reported in units derived from
k2 and rc.

In the T → 0 limit both pair potentials approach that of the
hard-sphere (HS) potential corresponding to diameter d = rc,61–64

v(r) =∞ for r < d (7)

and zero otherwise. In this limit, the effective HS diameter is the
truncation distance, d = rc, and the low-temperature solid/liquid
coexistence lines approach those of the HS system. The HS
coexistence pressure was estimated by Fernández et al.65 to
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pd = 11.5712(10)kBT/d3, (8)

where the value in parenthesis gives the statistical uncertainty on the
last digits. Thus, when T → 0 for the harmonic-repulsive system, we
expect the coexistence pressure to approach (putting d = σ)

p● = 11.5712(10)kBT/σ3, (9)

while for the WCA system one gets with d = 6
√

2σ,

p● = 8.1821(7)kBT/σ3. (10)

Throughout this paper, the bullet subscript “●” refers to the HS limit,
which the potentials approach when T → 0, i.e., setting d = rc. The
fluid and solid densities were estimated by Fernández et al.65 to

ρ(l)d = 0.938 90(5)/d3 (11)

and

ρ(s)d = 1.037 15(9)/d3, (12)

respectively. The densities ρ(l)● and ρ(l)● are derived by inserting the
appropriate d’s. Table I lists the constants of the two models.

The effective HS diameter of the harmonic-repulsive and WCA
potentials are smaller at finite temperatures. Below we develop and
present analytical theories for the shape of the coexistence line when
the potentials approach the HS potential.

We note that the WCA and harmonic-repulsive pair-potentials
are continuous whereas the HS potential is discontinuous. In effect,
some ambiguities are reported in the literature for the latter sys-
tem regarding higher-order quantities, such as frequency-dependent
elastic moduli and transport coefficients.66–68

III. THE HARMONIC-REPULSIVE PHASE-TRANSITION
LINES AT LOW TEMPERATURES

Recall that the solid/liquid phase transition defines a single line
in the thermodynamic pressure–temperature diagram, but two lines
and an in-between coexistence region in the density–temperature
diagram. The WCA and harmonic-repulsive systems are particu-
larly simple in the sense that they, by being purely repulsive, do not
have a gas–liquid phase transition, only a solid–liquid (fluid) transi-
tion. The WCA phase-transition line of fluid to face-centered cubic
(FCC) crystal was determined accurately in Ref. 53 by combining
the interface-pinning method69–71 and the Gibbs–Duhem integra-

TABLE I. Constants of models.

Harmonic-repulsive WCA

Truncation distance, rc [σ] 1 6
√

2
Curvature at rc, k2 [ε/σ2

] 2 36 3
√

4
HS pressure, p● [kBT/σ3

] 11.571 2(10) 8.182 1(7)
HS solid density, ρ(s)● [σ−3

] 1.0371 5(9) 0.733 37(6)
HS liquid density, ρ(l)● [σ−3

] 0.938 90(5) 0.663 90(4)

tion method72–74 (the data for the coexistence line are available
at http://doi.org/10.5281/zenodo.6505217). In Ref. 53, we inves-
tigated four HS approximations for predicting the shape of the
WCA melting line. We showed that the Andersen–Weeks–Chandler
HS criterion4 gives the best predictions in the low-temperature
limit. In this paper, we extend the analysis to include the predic-
tions of the isomorph theory and study the same problem for the
harmonic-repulsive potential.

Zhu et al.75 computed the phase diagram of the single-
component harmonic-repulsive system. This system has many
crystal structures: FCC, body-centered cubic, base-centered
orthorhombic, body-centered tetragonal, diamond crystal struc-
tures, and more. The phase diagram also includes several re-entrant
melting regions. This richness is similar to that of other ultra-soft
potentials such as the Gaussian core,76 EXP (exponential-
repulsive),77 and Hertzian-sphere pair potentials,39,42,78–81 which
are all characterized by a finite pair potential energy for r = 0. We
focus here on the low-temperature, low-density part of the phase
diagram where the fluid is in equilibrium with an FCC solid. The
triple-point temperature between fluid, FCC, and body-centered
cubic, is given by Ttp = 0.012ε/kB,75 which defines the upper limit of
the low-temperature regime studied in this paper.

To accurately determine the coexistence line below Ttp, we
combine the interface-pinning method69 at T = 0.002ε/kB with
numerical integration of the Clausius–Clapeyron identity.72–74

The required thermodynamic inputs are estimated from simu-
lations carried out using the leap-frog algorithm with time-step

Δt = 0.04
√

mσ2
/ε. The pressure and temperature must be constant

for the interface-pinning calculations and the Clausius–Clapeyron
integration. For this, we use the Langevin-dynamics algorithm of
Grønbech–Jensen and Farago82,83 with a velocity friction coefficient
set to 5ε/σ and friction coefficient for the simulation-box veloc-
ity to 3.67 × 10−7ε/σ. The simulations were conducted using the
Roskilde University Molecular Dynamics (RUMD) software pack-
age version 3.684 that utilizes graphics processing units (GPU) for
fast computations.

Table II gives the coexistence point determined with the
interface-pinning method, and the dots in Fig. 2(a) show
the coexistence pressure computed from the integration of the
Clausius–Clapeyron identity in temperature steps given by Tnext

= Tprevious10±1/24. The dashed line is the theoretical prediction,53

p(T) = p●(1 +
3
√

π
2

τ), (13)

TABLE II. Coexistence point of the harmonic-repulsive pair potential determined by
the interface-pinning method. The numbers in the parenthesis indicate the statistical
uncertainty within a 95% confidence interval.

Temperature, T 0.002ε/kB

Coexistence pressure, p 0.027 56(2)ε/σ3

Density of solid (FCC), ρs 1.184 4(3)σ−3

Density of fluid, ρl 1.082 7(2)σ−3

Volume difference, Δv = ρ−1
l − ρ−1

s 0.079 26(4)σ3

Entropy of fusion, Δs 1.227(1)kB

J. Chem. Phys. 158, 164504 (2023); doi: 10.1063/5.0147416 158, 164504-3

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0147416/16971099/164504_1_5.0147416.pdf

https://scitation.org/journal/jcp
http://doi.org/10.5281/zenodo.6505217


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Solid–fluid coexistence line of the harmonic-repulsive system in the
pressure-temperature phase diagram. (a) Dots show the reduced coexistence
pressure, p/kBT , between the fluid and FCC crystal. The black dashed line is
the prediction from the HS theory [Eq. (13)] presented in Ref. 53. In this theory, the
convergence scales as T

1
2 . The simplest explanation is via Boltzmann’s effective

HS criterion, v(d) = kBT , where the exponent of two of the pair potential, Eq. (5),
is transferred to the two in the 1

2
of the temperature–scaling exponent. The blue

solid line is the empirical fit Eq. (15). The inset shows the residual of the latter. (b)
Dots show p/p

●
− 1 on a logarithmic axis. The black dashed and blue solid lines

are the same as in (a).

in which

τ ≡

√

kBT
ε

. (14)

In Ref. 53 Eq. (13) is derived for the WCA potential. However, as dis-
cussed above, the physics of the WCA and harmonic-repulsive pair
potentials are equivalent at low temperatures (and low pressure).
Thus the theory applies equally well to the harmonic-repulsive sys-
tem. The derivation of Eq. (13) is based on the Barker–Henderson2,5

and Andersen–Weeks–Chandler HS theories,4,9 which are identical
in the low-temperature limit. Equation (13) is arrived at by inserting
k2 = 2ε and rc = σ into Eqs. (41) and (42) of Ref. 53.

As a testimony to the accuracy of the theory and the computed
coexistence line, we note that Eq. (13) gives excellent agreement
at low temperatures [compare the black dashed line and dots in
Fig. 2(a)]. To highlight the tiny discrepancy, Fig. 2(b) shows the
difference in the T → 0 HS prediction, p●, by plotting p/p● − 1 on
a logarithmic axis. Even in this representation, the discrepancy is
barely visible at the lowest temperatures investigated.

To provide an expression valid also at high temperatures, we fit
the coexistence pressure to

p(T) = p●(1 +
3
√

π
2

τ + a2τ2
+ a4τ4

). (15)

By fitting to the data and to the above function represented as
ln(p/p● − 1), we find a2 = 24 and a4 = 5200. Equation (15) with
these parameters is shown as solid blue lines in Figs. 2(a) and 2(b).
In Ref. 53, we give a corresponding fit to the WCA coexistence line.
We note that Eq. (15) is not a theory; it is included here for reference
as a practical representation of the coexistence line.

Figure 3(a) shows the density of the face-centered cubic (FCC)
solid and fluid at coexistence. The black dashed lines show the
above-mentioned HS theory applied to the coexistence density,
resulting53 in

ρs(T) = ρ(s)● (1 +
3
√

π
2

τ), (16)

and likewise for the fluid density, ρl(T) = ρ(l)● (1 + 3
√

π
2 τ). The

solid lines are empirical fits similar to Eq. (15), replacing pressure
with density. Figure 3(a) shows ρ(s)/ρ(s)● − 1 and ρ(l)/ρ(l)● − 1 on a
logarithmic scale.

IV. ISOMORPH-THEORY PREDICTIONS
Predictions for the thermodynamics of freezing and melting

can be made within the framework of isomorph theory.37 Isomorphs
are lines in the phase diagram along which the excess entropy
Sex—the entropy in excess of an ideal gas at the same density and
temperature—is constant. Such lines always exist, of course, but they
are only termed isomorphs if the system obeys hidden scale invari-
ance (Sec. I) to a good approximation, because only in this case are
the structure and dynamics predicted to be invariant. Hidden scale

FIG. 3. Solid–fluid coexistence lines of the harmonic-repulsive system in the
density–temperature phase diagram. (a) The density of the FCC solid (ρ = ρs;
red +’s) and the fluid (ρ = ρl ; blue +’s) at coexistence. The black dashed lines are
the low-temperature analytical predictions of the HS theory presented in Ref. 53.
The blue and red solid lines are empirical fits. (b) The same information as in (a)
plotted as ρ/ρ

●
− 1 on a logarithmic scale.
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invariance can be checked by evaluating the virial potential-energy
correlation coefficient R27,85 at the relevant state points: if R is close
to unity, isomorph theory applies. For more information, we refer
the interested reader to Refs. 27, 28, and 86–88; it suffices here to
mention that, for instance, the Lennard-Jones, the Yukawa (screened
Coulomb), and the EXP system all obey hidden scale invariance
and have isomorphs in their liquid and solid phases. Interestingly,
it was recently shown that the WCA system has isomorphs through-
out its entire phase diagram because the system everywhere obeys
R >
√

8/3π = 0.92.17

In the following, we apply the isomorph theory of freezing37 to
the WCA system.

A. Reference isomorphs
An isomorph can be traced out in the thermodynamic phase

diagram by numerical integration in the ln T-ln ρ plane using,
for instance, the classic fourth-order Runge–Kutta method (RK4).
At any given state point the required “slope” (“density-scaling
exponent”) γ is defined by

γ ≡ (
∂ ln T
∂ ln ρ

)

Sex

, (17)

which is computed from the virial (W) and potential-energy (U)
fluctuations in the NVT ensemble as γ = ⟨ΔWΔU⟩/⟨(ΔU)2

⟩.27

Consider a fluid and a solid isomorph, both touching the coex-
istence line at the reference state point (p0, T0). Specifically, we
consider the WCA reference state point

T0 = 0.02ε/kB, (18)

p0 = 0.175 23ε/σ3. (19)

Let us(T) and ul(T) be the average potential energy per particle and
ρs(T) and ρl(T) the density along the solid and fluid isomorphs,
respectively. The dashed lines in Fig. 4 show these two isomorphs of
the WCA fluid (blue) and solid (red), respectively, crossing the coex-
istence line (solid black) at the reference temperature T0 = 0.02ε/kB.
The dotted-dashed lines show the isomorphs with reference temper-
ature T0 = 2ε/kB. Figure 5 shows the static structure factor, S(q), of
the fluid along the freezing line, the fluid isomorph with T0 = 2ε/kB,
and the ρl = 0.6639σ−3 isochore. The structure is approximately
invariant along the freezing line and the isomorph, but not along
the isochore. We note that one, in this study, needs to include iso-
morphs referring to two reference temperatures in order to describe
the temperature range of interest. In Ref. 37, we could describe the
entire temperature range using a single reference temperature for
the Lennard-Jones model. In the present study, we were not able to
trace the crystal isomorph with T0 = 2ε/kB below temperatures of
0.05ε/kB because it moves far into pressures lower than the coex-
istence pressure (see the red dotted-dashed line in Fig. 4). Thus,
we include isomorphs with T0 = 0.02ε/kB for describing the entire
temperature range spanning more than four orders of magnitude.

The temperature dependence of the coexistence pressure, p(T),
can be found by a Taylor expansion from the isomorphs to where the
Gibbs free energy of the two phases are identical.37 This results in

p(T) = p⋆(T)[α1(T) + α2(T) + α3] (20)

FIG. 4. Isomorphs of the WCA system close to coexistence. (a) shows the
fluid–solid coexistence region (enclosed by the solid black lines) in a ρ-T plane, an
isomorph of the fluid, and one of the solid (blue and red dashed lines, respectively).
The two isomorphs cross the phase transition line at the reference temperature
T0 = 0.02. The dotted-dashed lines mark the same for the reference temperature
T0 = 2. (b) The same as in the above panel in the (p/kBT)-T plane.

in which

α1(T) = [us(T)/kBT − us(T0)/kBT0] − [ul(T)/kBT − ul(T0)/kBT0],
(21)

α2(T) = log (ρs(T)/ρs(T0)) − log (ρl(T)/ρl(T0)), (22)

α3 =
p0

kBT0
[ρ−1

l (T0) − ρ−1
s (T0)], (23)

and

p⋆(T) = kBT/[ρ−1
l (T) − ρ−1

s (T)]. (24)

We have here redefined the C’s of Ref. 37 and represented the same
information in terms of dimensionless α’s, introducing p⋆ that has
the unit of pressure. The dashed lines in Fig. 6 show the empiri-
cal value of p⋆ and the α’s along the T0 = 0.02ε/kB isomorph, and
the green dashed line in Fig. 7 shows the prediction of the coexis-
tence line by inserting these into Eq. (20). The prediction is excellent.
The red dashed-dotted line in Fig. 7 shows the prediction using the
isomorphs with T0 = 2ε/kB. Again, the agreement is excellent.

Note that the predictions of the isomorph theory do not involve
empirical fitting like Eq. (15), only thermodynamic information
along the two isomorphs is required. There is, however, the free-
dom in picking the coexistence reference-state-point temperature
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FIG. 5. (a) The static structure factor of the WCA system along the freezing line computed as S(q) = ⟨∣∑N
n=1 exp ( iq ⋅ rn)∣

2⟩/N where q = (0, 0, q). The periodic boundary
condition dictates that q = 2πnz/Lz where nz = 1, 2, . . . and Lz is the length of the box in the z-direction. S(q) is shown as a function of the reduced wavevector, q̃ = q/ 3

√ρ
(this removes the trivial scaling of the peak positions with density). The dots show S(q̃) at five different state points on the freezing line. The solid lines are cubic splines
serving as a guide to the eye. (b) The static structure factor along state points on the isomorph with T0 = 2ε/k for the same temperatures as (a). (c) The static structure factor
for state points on the ρl = 0.6639σ−3 isochore for the same temperatures as in (a) and (b).

T0. In the following, we remove this ambiguity by letting T0 → 0.
This results in simple closed forms of Eqs. (20)–(24), giving a good
overall description of the coexistence line.

B. Analytical prediction from the isomorph theory
To provide a closed form of Eqs. (20)–(24), we need analytical

expressions for the temperature dependence of the potential energy
and the density along the fluid and solid isomorphs. We do this by
adopting the mean-field approach developed in Ref. 17 (that is exact
in infinite dimensions89).

FIG. 6. (a) The blue dashed line shows p
⋆

[Eq. (24)] evaluated using densities
along the solid and fluid isomorphs with T0 = 0.02ε/kB [Fig. 4(a)]. The solid black
line is the analytical approximation to p

⋆
obtained by using the densities given

by Eq. (30). The blue dashed-dotted line is p
⋆

evaluated using the isomorphs
with T0 = 2ε/kB. (b) The dashed lines show the α’s of Eqs. (21)–(23) evaluated
using energies and densities of the T0 = 0.02ε/kB isomorphs. The solid lines
are analytical approximations arrived at by the insertion of Eqs. (30) and (31)
into Eqs. (21)–(23). The dashed–dotted lines are the α’s of the T0 = 2ε/kB iso-
morphs. To a good approximation ∣α2(T)∣ < ∣α1(T)∣≪ α3, which suggests the
approximation α1(T) = α2(T) = 0.

First, we investigate when the mean-field approach is appropri-
ate by defining a kissing neighbor as one where the pair distance is
shorter than the truncation distance of the pair potential. The solid
red line in Fig. 8 shows the relative frequency of particles with none
or a single kissing neighbor on the liquid side of the coexistence
line. The analysis shows is reasonable to assume that particle colli-
sions are uncorrelated at the lowest temperatures of this study where
particles predominantly have none or just a single kissing neighbor.

In general, the partition function for the configura-
tional degrees of freedom is given by Z = ∫VN dr1 . . . drN
exp (−∑i> j v(ri j)/kBT). When collisions are uncorrelated, we

FIG. 7. Zero-parameter predictions (colored dashed lines) for the reduced coex-
istence pressure (solid black), p/kBT , based on the isomorph theory. The blue
dashed line is Eqs. (20)–(23) evaluated using thermodynamic data of the liquid
and solid isomorphs with T0 = 0.02ε/kB shown as dashed lines in Fig. 4. The red
dashed-dotted line is constructed using isomorphs with T0 = 2ε/kB. The green
dashed line is the analytical prediction of Eq. (33) obtained by letting T0 → 0 in
Eqs. (20)–(23). For comparison, the black dashed line is the prediction assum-
ing that WCA particles are HS with diameter equal to the truncation distance,
d = rc =

6
√

2σ.
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FIG. 8. The solid red line shows the relative fraction of WCA particles with zero or
one kissing neighbors on the liquid side of the coexistence line, i.e., where the pair
distance is shorter than the truncation of the potential, rc . The dashed blue line
shows the relative frequency of particles with more than one kissing neighbor. At
low temperatures, it is appropriate to assume uncorrelated particle collisions since
the particles here predominantly have have zero or one kissing neighbor.

can treat the interactions in a mean-field way and write the partition
function as

Z = ZN
s , (25)

where Zs is the partition function of a single particle moving in
the potential vs(r) of all other particles frozen in space. Zs has two
contributions, one where the moving particle is not kissing and
one where it kisses one other particle. The former is the free vol-
ume that we will approximate by the entire volume (a low-density
approximation), the latter is N times the integral

Z1 = ∫

rc

0
4πr2 exp (−v(r)/kBT)dr. (26)

Thus, the single-particle partition function can be written as

Zs/N = Z1 + ρ−1. (27)

To evaluate Z1 [Eq. (26)], we recall that at low temperatures (near
the phase transition), WCA particles interact only at distances close
to the truncation length rc, see Eq. (5). With this, we can write Z1 as
a Gaussian integral (see the Appendix).

We now have a mean-field theory for the partition function (Z)
that can be used to make predictions of thermodynamic quantities.
As an example, in the Appendix, we derive the mean-field prediction
of the energy, and in Ref. 17, we show that

γ ≡
d log T
d log ρ

∣

Sex

(28)

in the low-temperature limit is given by

γ(T) =
4rc
√

2k2

9
√

πkBT
(T → 0). (29)

By integration of γ(T) using exp(s) ≅ 1 + s for s→ 0, one finds

ρl(T) = ρl(T0)(1 +
9
√

π[
√

kBT −
√

kBT0]

2rc
√

2k2
) (30)

and a similar expression for ρs(T), in which ρs(T0) = 0.778963σ−3

and ρl(T0) = 0.706395σ−3. In the Appendix, we show that the low-
temperature limit of the potential energy is proportional to T3/2.
Thus, using information from the reference state point only, one can
write the temperature dependence of the potential energy as

ul(T) = ul(T0)[T/T0]
3/2
(T → 0). (31)

A similar expression exists for us(T), where us(T0) = 5.512 03
× 10−3ε and ul(T0) = 6.337 50 × 10−3ε.

The solid black lines in Fig. 6 show the analytical approxi-
mations of p⋆, α1, and α2 (α3 is a constant that does not need to
be evaluated). We note that ∣α2(T)∣ < ∣α1(T)∣≪ α3. Putting α1(T)
= α2(T) = 0, Eqs. (20)–(24) reduce to

p(T) =
p0T
T0
(1 +

9
√

π[
√

kBT −
√

kBT0]

2rc
√

2k2
) (32)

after insertion of Eq. (30). The low-temperature HS limit can be used
as reference point, i.e., T0 → 0. Equation (32) then simplifies to

p(T) = p●(1 +
9
√

πkBT
2rc
√

2k2
). (33)

This prediction is shown as green dashed lines in Figs. 7 and 9.
It compares well to the WCA coexistence line that is shown in
solid black. In the following, we will argue, though, that while the
agreement is expected at low temperatures, the good overall agree-
ment may result from a fortuitous cancellation of errors of the
assumptions at higher temperatures.

For the harmonic-repulsive pair potential, the prediction of the
isomorph theory is

p(T) = p●(1 +
9
√

π
4

τ), (34)

which is derived by insertion of k2 = 2ε/σ2 and rc = σ into Eq. (33),
where τ =

√

kBT/ε [Eq. (14)].

FIG. 9. The isomorph theory’s prediction (green dashed line) of the WCA
coexistence pressure (solid line).
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V. DISCUSSION
We have applied the isomorph theory to predict the shape of

the solid–liquid coexistence line. Unlike classical HS theories, this
framework does not rely on determining an effective HS diameter.
Instead, it uses information along a solid and a liquid isomorph
that touches the coexistence line at some reference temperature. The
predictions for the WCA coexistence line at high temperatures are
significantly better with the isomorph theory than the classic HS the-
ories; compare the red and green dashed lines in Fig. 7 with the HS
predictions presented in Ref. 53 (reproduced below). The isomorph-
theory prediction depends on the arbitrary reference temperature.
If the reference temperature is zero, however, the isomorph the-
ory yields a zero-parameter prediction similar to that of the classic
HS theories. Specifically, the green dashed line in Fig. 7 shows that
the WCA melting line based on the zero-parameter isomorph the-
ory gives an excellent description over four orders of magnitude in
temperature. Two essential assumptions enter into the deviation:

(A) Particle collisions are uncorrelated (Fig. 8).
(B) The WCA potential can be approximated by the harmonic-

repulsive potential [Eq. (5); Fig. 1].

Figure 8 shows that the former applies whenever T < 0.03kB/ε
(pragmatically defined as where the red and blue lines cross in
Fig. 8).

To analyze the validity of the latter approximation we conduct
a comparative study of the two modes. To this aim, Fig. 10(a) shows
the isomorph theory prediction (green dashed) of the harmonic-
repulsive melting line (solid black). In the same figure, the red
dashed line is the zero-parameter prediction obtained by inserting
into Eq. (8) Boltzmann’s effective HS criterion24,53

v(d) = kBT, (35)

leading to

d = σ(1 −
√

kBT/ε). (36)

In the low-temperature limit, the prediction for the coexistence
pressure is

p(T) = p●(1 + 3τ) for T → 0. (37)

The blue dashed line is the low-temperature HS prediction derived
from the Barker–Henderson/Andersen–Weeks–Chandler assump-
tions [Eq. (13)]. Clearly, all theories underestimate the value of the
coexistence pressure at the highest temperatures of this study. We
attribute this to errors related to assumption (A), i.e., that particle
collisions are uncorrelated.

Figure 10(b) shows the three zero-parameter theories for the
WCA melting line. To compare the results of the three theories and
two models, Fig. 11 collects all the information of Fig. 10 in a double-
logarithmic plot with 2kBT/k2r2

c along the abscissa and p/p● − 1
along the ordinate. In this representation, the zero-parameter the-
ories are straight lines with slope 1/2 and the coexistence lines of
the two pair-potential collapse at low temperatures. However, the
temperatures at which the two models give the same melting line
(in reduced units) are rather low, and for higher temperatures, the
WCA potential has a lower coexistence pressure since it is harder
than the repulsive harmonic potential (compare the solid blue to the
black dashed lines in Fig. 1). Moreover, compared to the harmonic-
repulsive melting line, the theories predict a lower pressure. As
mentioned, this low pressure likely results from the ignored many-
body effects, i.e., from the above-mentioned assumption (A). This
suggests that the good overall isomorph predictions result in part
from a cancellation of assumptions (A) and (B).

FIG. 10. (a) Comparison of zero-parameter predictions (dashed lines) for the harmonic-repulsive melting line (solid curve). The black dashed line is the zero-temperature
limit, where p

●
is determined by assuming that the effective HS diameter is equal to the truncation distance d = rc = σ [Eq. (9)]. The red dashed line is obtained from

Boltzmann’s effective HS diameter24,53 [Eq. (37)]. The blue dashed line is derived from the classical HS theories9 of Barker–Henderson2,5 and Andersen–Weeks–Chandler,4
which are identical in the zero-temperature limit53 [Eq. (13)]. The green dashed line is the zero-parameter theory derived in Sec. IV B [Eq. (34)]. (b) Comparison of the three
zero-parameter predictions for the shape of the WCA melting line (solid black). The dashed lines are the same as in (a) applied to the WCA system for which rc =

6
√

2σ and
k2 = 36 3

√
4ε/σ3.
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FIG. 11. Comparison of zero-parameter theories (dashed lines) for the harmonic-
repulsive (solid red) and WCA (solid blue) melting lines. This figure contains the
same information as Fig. 10 represented as p/p

●
− 1 vs 2kBT/k2r2

c .

VI. SUMMARY

We have developed an isomorph-theory-based zero-parameter
prediction for the melting lines of the harmonic-repulsive and WCA
potentials. The new theory generalizes the idea of an effective one-
dimensional phase diagram from HS theories without referring to
a specific reference potential. The shape of the coexistence line
can be evaluated using any of its points as reference state point.
We have shown how to generate an analytical prediction using
the theory for the shape of the isomorph presented in Ref. 17.
Alternatively, we note that Bøhling et al.90 proposed an analytic
expression for the shape of the isomorph for any pair-potential,
which provides an alternative way to arrive at a closed-form expres-
sion of the melting line. We leave this line of prediction for the
future.
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APPENDIX: TEMPERATURE DEPENDENCE OF ENERGY

In the main part of the paper, we use the approximation
u(T)∝ T

3
2 at low temperatures. Here, that approximation is

justified.
In Ref. 17, we show that at low densities the low-temperature

limit of a pairwise quantity A(r), which is zero for r > rc, has an
expectation value that is computed as

⟨A⟩ =
1

Zs(ρ, T)∫
rc

0
A(r)p(r)dr, (A1)

where

p(r) = 4πr2 exp [−v(r)/kBT] (A2)

is the unnormalized probability,

Zs(ρ, T)/N = Z1(T) +
1
ρ

(A3)

[see Eq. (27)], and

Z1 = ∫

rc

0
p(r)dr. (A4)

To give an approximation of

u(T) = ⟨v⟩ (A5)

for the pair potential v(r) = k2
2 (rc − r)2, we need to evaluate

integrals of the form

Im(T) = ∫
rc

0
[v(r)]mp(r)dr

=
4πkm

2

2m ∫

rc

0
(rc − r)2mr2 exp [−

k2(rc − r)2

2kBT
]dr. (A6)

From Eq. (A1), the expectation value of the energy per particle (⟨v⟩
= ⟨U⟩/N) can be written as

⟨v⟩ =
I1(T)

I0(T) + 1
ρ

. (A7)

By substitution of

t = (rc − r)2
/T̃, (A8)

where

T̃ ≡ 2kBT/k2, (A9)

so r = rc − T̃
1
2 t

1
2 and dr = − 1

2 T̃
1
2 t−

1
2 dt, we write the integral as

Im(T) =
4πkm

2

2m+1 ∫

r2
c /T̃

0
[r2

c T̃ m+ 1
2 tm− 1

2 + T̃ m+ 3
2 tm+ 1

2

+ 2rcT̃ m+1tm
] exp (−t)dt. (A10)
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In the low-temperature limit, T̃ → 0, the integral approaches

Im(T) =
4πr2

c km
2

2m+1 T̃ m+ 1
2
∫

∞

0
tm− 1

2 exp (−t)dt. (A11)

Thus, the integral of the above approaches the gamma function,

Γ(z) ≡ ∫
∞

0
tz−1 exp (−t)dt, (A12)

leading to

Im(T) =
4πr2

c km
2

2m+1 T̃ m+ 1
2 Γ(m +

1
2
). (A13)

From this, we get

I0(T) = 2πr2
c

√

2πkBT
k2

(A14)

and

I1(T) =
r2

c k2

2
(

2πkBT
k2
)

3
2

. (A15)

At low temperatures, the denominator of Eq. (A7) approaches 1/ρ
since I0(T)∝

√

T. The change of ρ in this study is of order 10%
while the numerator of Eq. (A7), I1(T)∝ T

3
2 , changes by orders of

magnitude. This justifies the approximation

u(T)∝ T
3
2 (A16)

used in the main part of the paper.
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