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This paper presents a numerical study of the Gay-Berne liquid crystal model with parameters corresponding to
calamitic (rod-shaped) molecules. The focus is on the isotropic and nematic phases at temperatures above unity,
where we find strong correlations between the virial and potential-energy thermal fluctuations, reflecting the hid-
den scale invariance symmetry. This implies the existence of isomorphs, which are curves in the thermodynamic
phase diagram of approximately invariant physics. We study numerically one isomorph in the isotropic phase
and one in the nematic phase. In both cases, good invariance of the dynamics is demonstrated via data for the
mean-square displacement and the reduced-unit time-autocorrelation functions of the velocity, angular velocity,
force, torque, and first- and second-order Legendre polynomial orientational order parameters. Deviations from
isomorph invariance are observed at short times for the orientational time-autocorrelation functions, which
reflects the fact that the moment of inertia is assumed to be constant and thus not isomorph-invariant in reduced
units. Structural isomorph invariance is demonstrated from data for the radial distribution functions of the
molecules and their orientations. For comparison, all quantities were also simulated along an isochore of similar
temperature variation, in which case invariance is not observed. We conclude that the thermodynamic phase
diagram of the calamitic Gay-Berne model is essentially one-dimensional in the studied regions as predicted by
isomorph theory, a fact that potentially allows for simplifications of future theories and numerical studies.
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I. INTRODUCTION

Liquid crystals (LCs), rodlike polymers, and disk-formed
particles all involve molecules with a high degree of shape
anisotropy [1]. LCs occur in many contexts, ranging from the
well-known display applications to biological systems [2–4].
Depending on the density and the temperature, the anisotropy
of LCs may lead to different structural phases. For the thermo-
metric LCs in focus here, changing temperature and density
may cause transitions from the ordinary crystalline state to
smectic, nematic, and isotropic phases [2].

Pure fluids and mixtures consisting of aspherical particles
have been the subject of many theoretical, experimen-
tal, and simulations studies [5–8]. Theoretical studies are
typically based on the Fokker-Planck equation [9,10], gen-
eralized Langevin equations [11,12], Onsager theory [13],
density-functional theory [14], or generalized van der Waals
descriptions [15]. Different numerical techniques such as
Monte Carlo and molecular dynamics (MD) have been applied
for studying the phase behavior, thermodynamics, structure,
and dynamics of rigid anisotropic molecules forming LCs
[16].

Depending on the type of interaction between the
molecules, one can classify LC models into two main groups
[17]. The first group considers models of hard particles with
a nonspherical shape [18]. In such models, there are no at-
tractive interactions, i.e., the potential is purely repulsive and
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short-ranged. The main motivation for this approach is the
success of the hard-sphere model in explaining the proper-
ties of simple liquids [19,20]. Extensive simulation studies
have used this approach to investigate the structure and dy-
namics of LC fluids for different shape anisotropies (prolate
ellipsoids, spherocylinders, rods, disks, etc.) [21–23]. In the
other main class of LC models, both short-range repulsive
and long-range attractive interactions are taken into account.
Several models for fluids of aspherical particles have been
introduced for LC studies, e.g., the Kihara potential [24], the
site-site potential [25], the Gaussian overlap model [26], and
the Gay-Berne (GB) model [27]. By using site-site potentials,
one can realistically mimic the structure of LC molecules
and compare results to experiments [28–33], but unfortunately
such models usually require huge computational resources.
This is why most simulations so far have been conducted
for relatively small system sizes. An exception is the GB
model based on the Lennard-Jones (LJ) pair interaction, which
is computationally cheap and still realistic. For this reason,
the GB model has become a generic LC model. The GB
model gives rise to a rich mesogenic behavior [4]. Previous
numerical studies of this model focused on its phase behavior
[34–40], per-particle translational and orientational dynamics
[41], interfacial properties [42], elastic constants [43], thermal
conductivity [44,45], and viscosity [46,47]. Analytical pertur-
bation theories have also been applied in order to explore the
phase diagram of GB fluids [48,49].

The GB model allows one to describe different shape
anisotropy, spanning from elongated ellipsoids to thin disks
[27]. The GB potential depends on four dimensionless param-
eters, which is often indicated by the notation GB(κ, κ ′, μ, ν).
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The four parameters control the shape of the molecules and
the strength of the interaction between them. GB(3, 5, 2, 1)
is the most studied case, mimicking rod-shaped molecules,
and in this case the phase diagram and orientational order
parameter are known [50]. Moreover, the velocity time-
autocorrelation function [41], viscosity [47], elastic constants
[51], free energies and enthalpy [14], isotropic-nematic tran-
sition [36], liquid-vapor coexistence curve [52], stress-tensor
components [53], and self-diffusion coefficient [54] have been
studied for the GB(3, 5, 2, 1) model.

This paper presents a study of the Gay-Berne model
with the above parameters corresponding to calamitic, i.e.,
rod-shaped elongated molecules (GB(3,5,2,1)) at high tem-
peratures, where the model is shown to obey the symmetry
of hidden scale invariance. According to this symmetry, the
system is expected to have isomorphs, which are curves in
the thermodynamic phase diagram along which structure and
dynamics are almost invariant when given in properly re-
duced units. A recent study of ours showed this for the more
exotic discotic Gay-Berne model GB(0.345, 0.2, 1, 2) in the
isotropic phase [55]; the present paper demonstrates the exis-
tence of isomorphs in both the isotropic and the nematic phase
of a more standard Gay-Berne model. The study given below
nicely confirms a recent work by Liszka and co-workers [56],
although that paper focused more on density-scaling (a spe-
cific consequence of isomorph theory) than on demonstrating
isomorph invariance of structure and dynamics.

II. GAY-BERNE POTENTIAL

The GB potential between pairs of particles (“molecules”),
GB(κ, κ ′, μ, ν), is characterized by four dimensionless pa-
rameters: κ ≡ σe/σs where σe and σs are lengths, κ ′ ≡ εss/εee

where εss and εee are energies, while μ and ν are exponents.
The GB pair potential vGB, which is basically a direction-

dependent LJ pair potential, is defined as follows:

vGB(ri j, êi, ê j ) = 4ε(r̂, êi, ê j )[(σs/ρi j )
12 − (σs/ρi j )

6],

(1a)

ρi j = ri j − σ (r̂, êi, ê j ) + σs. (1b)

Here, ri j is the distance between molecules i and j, r̂ ≡ ri j/ri j

is the unit vector along the vector from molecule i to molecule
j denoted by ri j , and êi and ê j are unit vectors along the major
axes of molecules i and j. The GB molecule is roughly an
ellipsoid of two diameters σs and σe, and one defines

σ (r̂, êi, ê j ) = σs

[
1 − χ

2

(
(êi · r̂ + ê j · r̂)2

1 + χ (êi · ê j )

+ (êi · r̂ − ê j · r̂)2

1 − χ (êi · ê j )

)]−1/2

, (2a)

χ = κ2 − 1

κ2 + 1
. (2b)

Physically, χ is a shape anisotropy parameter and κ quantifies
the molecular elongation. The case κ = 1 (χ = 0) represents
spherical molecules, the case κ → ∞ (χ → 1) corresponds

to very long rods, and the case κ → 0 (χ → −1) corresponds
to very thin disks. The energy term is given as follows:

ε(r̂, êi, ê j ) = ε0 [ε1(êi, ê j )]
ν[ε2(r̂, êi, ê j )]

μ (3a)

in which

ε1(êi, ê j ) = (1 − χ2(êi · ê j )
2)−1/2, (3b)

ε2(r̂, êi, ê j ) = 1 − χ ′

2

(
(êi · r̂ + ê j · r̂)2

1 + χ ′(êi · ê j )

+ (êi · r̂ − ê j · r̂)2

1 − χ ′(êi · ê j )

)
, (3c)

and the energy anisotropy parameter is given by

χ ′ = κ ′1/μ − 1

κ ′1/μ + 1
. (3d)

The energies εss and εee are the well depths of the poten-
tial in the side-side and end-end configurations, respectively.
Henceforth, unless isomorph-theory reduced units are used
(see Sec. III), σs defines the length unit and ε0 defines the
energy unit. The density ρ and the temperature T are always
given in these units.

The GB(3, 5, 2, 1) model was introduced in 1981 by Gay
and Berne, inspired by the Gaussian overlap model of Berne
and Pechukas [26,27]. For realistic LCs, the length-to-width
ratio is at least 3, leading to the choice of κ = 3 by Gay and
Berne [27]. To obtain the other parameters, the GB pair po-
tential was compared to the case of a pair of linear molecules
consisting of four LJ particles placed on a line such that the
length-to-width ratio equals 3. This results in κ ′ = 5, μ = 2,
and ν = 1 [27].

As mentioned, the GB(3, 5, 2, 1) model shows a rich
phase behavior with isotropic, nematic, and smectic-B phases
[34,35,50]. Actually, the model (occasionally with slightly
different parameters) also has the following phases: smectic A
[35], tilted smectic B [50], and rippled smectic B [40]. In some
cases, more involved versions of the GB potential have been
investigated by introducing, e.g., dipolar forces [57], flexi-
bility [58], more complex shapes [59], or biaxial molecules
[60]. Other sets of parameters have also been studied, and
other properties have been examined, e.g., the effect of the ν

exponent on the orientational order parameter [61], the elastic
constant for GB(3, 5, 1, 3) [62], the diffusion coefficient in
the smectic-A phase of GB(4.4, 20, 1, 1) [63], the stability
of the smectic phase, the radial distribution function, the ori-
entational order parameter [64], and the rotational viscosity
coefficient [65]. Satoh et al. studied the effect of an external
magnetic field on GB fluids [66]. The isotropic-nematic region
has been explored for different values of κ [67,68]. Varying κ ′
while keeping the other parameters fixed at κ = 3, μ = 2,
and ν = 1 has been investigated in detail. The liquid-vapor
region has been analyzed [69,70], and so has the equation of
state, structure, and diffusion coefficient [71]. For discotic
GB fluids, the phase diagram has been obtained for different
κ and κ ′ parameters [55,72–74]. The most studied discotic
model is GB(0.345, 0.2, 1, 2) [75], which incidentally led to
an improvement of the angle of view of liquid-crystal displays
[76].
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FIG. 1. Snapshots of the calamitic GB model GB(3, 5, 2, 1) at
three state points. Panel (a) shows the isotropic liquid phase at
the state point (ρ, T ) = (0.27, 1.2); (b) shows the nematic phase
at (ρ, T ) = (3.3, 1.2); (c) shows the smectic phase at (ρ, T ) =
(3.9, 1.2).

In this work, we study the GB(3, 5, 2, 1) model because, as
already mentioned, its phase diagram, structure, and dynamics
are known. Figure 1 presents snapshots of the system at equi-
librium in the isotropic, nematic, and smectic phases. There is
no positional or orientational ordering in the isotropic phase.
In the nematic phase there is no positional ordering, but some
long-range orientational ordering. In the smectic phase the
molecules form parallel layers with long-range orientational
ordering within the layers.

III. R-SIMPLE SYSTEMS AND ISOMORPHS

Recalling that the virial W quantifies the part of the pres-
sure p deriving from molecular interactions via the defining
identity pV = NkBT + W (in which V is the volume and N
is the number of molecules) [77], liquids and solids may be
classified according to the correlation between the equilibrium
fluctuations of the virial and the potential energy U [78]. The
so-called R-simple systems, which are those with strong such
correlations, are particularly simple because the thermody-
namic phase diagram is basically one-dimensional instead of
two-dimensional in regard to structure and dynamics [78–81].

Isomorph theory dealing with R-simple systems was de-
veloped over the past decade [82–85]. The WU Pearson
correlation coefficient is defined by

R(ρ, T ) = 〈�W �U 〉√
〈(�W )2〉〈(�U )2〉

. (4)

Here the angular brackets denote NV T ensemble averages,
� is the deviation from the equilibrium mean value, and ρ

is the density. Many systems, including the LJ fluid, have
strong WU correlations in the liquid and solid phases, whereas
R(ρ, T ) usually decreases significantly below the critical den-
sity [86]. A system is considered to be R-simple whenever
R > 0.9 at the state points in question. The density-scaling
exponent γ , which is characterized by �U ∼= γ�W , is found
from linear-regression fits to a WU scatter plot as shown in
Fig. 2 or using the equation

γ = 〈�W �U 〉
〈(�U )2〉 . (5)

R-simple systems have curves in the phase diagram along
which structure and dynamics are approximately invariant,
and these curves are termed isomorphs. It is important to
emphasize that isomorph invariance only applies when data

−3.0 −2.9 −2.8 −2.7

U/N

14

15

16

W
/N

R = 0.92

γ = 8.22

FIG. 2. Scatter plot of WU correlations for the GB(3, 5, 2, 1)
model at the state point (ρ, T ) = (0.33, 1.2). The system is strongly
correlating here with R = 0.92; the density-scaling exponent γ is
8.22.

are presented in so-called reduced units. In the system of
reduced units, which in contrast to ordinary units is state-
point-dependent, the density ρ ≡ N/V defines the length unit
l0, the temperature defines the energy unit e0, and the density
and thermal velocity define the time unit t0:

l0 = ρ−1/3, e0 = kBT, t0 = ρ−1/3
√

m/kBT .

Here m is the molecule mass. Quantities given in isomorph-
theory reduced units are marked with a tilde.

Strong virial potential-energy correlations arise whenever
the hidden-scale-invariance symmetry applies. This is the con-
dition in which the potential-energy ordering of same-density
configurations is maintained under a uniform scaling of all
coordinates [87], which is formally expressed as follows:

U (Ra) < U (Rb) ⇒ U (λRa) < U (λRb), (6)

where λ is the scaling factor. Consider two configurations
with the same potential energy, i.e., U (Ra) = U (Rb). After
a uniform scaling, one has by Eq. (6) U (λRa) = U (λRb).
By taking the derivative of this with respect to λ, one eas-
ily derives W (Ra) = W (Rb) [87]; thus same potential energy
implies same virial, i.e., 100% correlation between W and U .
Equation (6) only applies approximately for realistic systems,
however, so in practice one observes strong but not perfect
virial potential-energy correlations.

It can be shown that Eq. (6) implies that the reduced-unit
structure and dynamics are invariant along the lines of con-
stant excess entropy, which are by definition the isomorphs
[87]. Recall that a system’s entropy S can be expressed as that
of an ideal gas plus a term derived from the intermolecular
interactions, S = Sid + Sex. For an ideal gas, one has Sex = 0;
for all other systems, Sex < 0 because these are less disordered
than an ideal gas.

Along an isomorph one has

dSex =
(

∂Sex

∂T

)
V

dT +
(

∂Sex

∂V

)
T

dV = 0. (7)

Using Maxwell’s volume-temperature relation for the config-
urational degrees of freedom, (∂Sex/∂V )T = [∂ (W/V )/∂T ]V ,

064703-3



MEHRI, DYRE, AND INGEBRIGTSEN PHYSICAL REVIEW E 105, 064703 (2022)

we can rewrite Eq. (7) as(
∂Sex

∂T

)
V

T d ln T =
(

∂W

∂T

)
V

d ln ρ. (8)

Using dU = T dSex − (W/V )dV leads to(
∂U

∂T

)
V

d ln T =
(

∂W

∂T

)
V

d ln ρ, (9)

which via the fluctuation relations (∂W /∂T )V =
−〈�W �U 〉/kBT 2 and (∂U/∂T )V = −〈(�U )2〉/kBT 2 for
γ leads to the above Eq. (5),

γ ≡
(

∂ ln T

∂ ln ρ

)
Sex

= 〈�W �U 〉
〈(�U )2〉 . (10)

Equation (10) is completely general [83]. This equation is of
particular interest, however, when the system has isomorphs
because the equation can then be used for tracing out iso-
morphs without knowing the equation of state, which is done
as follows. At a given state point (ρ1, T1) one first calculates
γ from the equilibrium fluctuations of the potential energy
and virial. Then, by scaling the system to a slightly different
density ρ2 and numerically calculating (∂ ln T /∂ ln ρ )Sex from
Eq. (10), one predicts the temperature T2 with the property that
(ρ2, T2) is on the same isomorph as (ρ1, T1). In the simulations
of this paper we used fourth-order Runge-Kutta integration
to generate isomorphs [88] involving density step sizes of
approximately 1%.

IV. PROPERTIES STUDIED

We simulated a system of 1372 molecules. The pair poten-
tial was cut and shifted at rc = 4.0 and the time step was �t =
0.001. Because of the shape anisotropy, supplementing the
standard NV T Nose-Hoover algorithm for the center-of-mass
motion, we used the IMP algorithm for the rotational motion
[89]. Different thermostats were applied for translational and
rotational motion (we eventually concluded that using a single
thermostat did not result in any noticeable differences, how-
ever). The molecular moment of inertia was set to I = 1. At
each simulated state point, 20 million time steps were taken
to equilibrate the system before the production runs, each
of which involved 67 million time steps. As a consistency
check of our GB implementation, we compared the simulation
results with those of the literature and found good agreement
in all cases. The quantities evaluated in these comparisons,
which are all defined below, were the following [where we
also list the reference(s) to which data were compared]: the
radial distribution function g(r) [50,90], the radial distribu-
tion orientational correlation function G2(r) [34,36,50], the
S2 orientational order parameter [36,50,91], and various time-
autocorrelation functions [41,92].

An order parameter is a physical quantity that distinguishes
between two phases. We proceed to define the second-rank
orientational order parameter S2 that quantifies how much the
molecular orientations vary throughout the system [93]. For
a uniaxial phase, S2 is defined as the following sum over all
molecules:

S2 =
〈

1

N

∑
i

P2(êi · êd )

〉
. (11)

Here P2 is the second-order Legendre polynomial, êd is the
director of the phase, and the angular brackets denote a time
or ensemble average. This quantity takes values between 0
and 1; for a perfectly aligned system, S2 = 1, whereas S2 = 0
implies an isotropic system.

In a simulation, êd is unknown. Here the order parameter
can be evaluated by maximizing S2 with respect to êd , which
is done by rewriting Eq. (11) as follows [21,93]:

S2 = 〈êd · Q · êd〉 . (12)

If ⊗ denotes a tensor product and I is the unity matrix, Q is
defined by

Q = 1

2N

∑
i

(3êi ⊗ êi − I). (13)

It can be shows that S2 is the largest eigenvalue, λmax, of the
Q tensor.

Figure 3 shows a “heat-map” phase diagram of the
GB(3, 5, 2, 1) model with respect to the virial potential-
energy correlation coefficient R and the orientational order
parameter S2. By definition, the regions with R > 0.9 are
R-simple; this is where one expects isomorph theory to apply.
This is not a sharp distinction, however, and many systems
with R between 0.8 and 0.9 have also been found to have
good isomorphs. In Fig. 3, I stands for the isotropic, N for the
nematic, and S for the smectic phase; regions in-between are
those of coexisting phases. The dark green triangles marking
the phase boundaries were extracted from Ref. [94]. Selected
isomorphs are marked as solid yellow lines, each of which
starts from a “reference state point” marked as a red full
circle. The main paper presents results for two isomorphs
(black): one in the isotropic phase and one in the nematic
phase. Results for the remaining five isomorphs are reported
in Ref. [95].

We conclude from Fig. 3(a) that there are strong corre-
lations whenever the temperature is above unity, which is
where the nematic phase becomes relevant. The isomorph
reference state points were selected to obey R > 0.9; from
here on R increases when density and temperature are in-
creased along each isomorph (except at the highest densities).
The Appendix gives details in the form of tables of the two
isomorphs studied, listing for each isomorph several state
points and the corresponding values of R and γ . Note that in-
variance of the physics along the isomorphs—the main focus
of this paper—is manifested already in Fig. 3(b) as regards
the orientational ordering because S2 is clearly approximately
isomorph-invariant. In particular, the phase boundary approx-
imately follows an isomorph [83,96]. Based on this, the
light blue triangles mark the expected isotropic-nematic phase
boundary. This gives an example of how isomorph theory may
be used for estimating the phase boundary by allowing one
to go beyond the numerical phase-boundary data of Ref. [94]
without having to perform extensive additional simulations.

Having established the phase diagram of the GB(3, 5, 2, 1)
model, we next define the quantities studied. We probed the
system’s dynamics at the different state points by calculating
the mean-square displacement (MSD) as a function of time,
as well as time-autocorrelation functions defined by

φA(t ) = 〈A(t0) · A(t0 + t )〉. (14)

064703-4



HIDDEN SCALE INVARIANCE IN THE GAY-BERNE MODEL PHYSICAL REVIEW E 105, 064703 (2022)

0.15 0.20 0.25 0.30 0.35

ρ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T

I
N

S
0.2

0.4

0.6

0.8

S2

0.15 0.20 0.25 0.30 0.35

ρ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T

I
N

S
0.0

0.2

0.4

0.6

0.8

R

FIG. 3. Density-temperature phase diagram of the GB(3, 5, 2, 1)
model with (a) showing the virial potential-energy correlation
coefficient R [Eq. (4)] and (b) showing the second-order orientational
order parameter S2 [Eq. (12)]. Dark green triangles connected by
dark green dashed lines delimit the phase boundaries [94]. I stands
for the isotropic, N for the nematic, and S for the smectic phase.
The solid yellow curves are isomorphs not investigated further here
(results for these are presented in Ref. [95]); the two black curves are
isomorphs for which results are reported below, one in the isotropic
phase and one in the nematic phase. The light blue triangles mark
the isomorph that continues the I-N phase boundary numerical
data of Ref. [94]. The isomorphs were determined by numerical
integration of Eq. (10) starting from the following reference state
points marked by the red filled circles: (ρref , Tref ) = (0.25, 1.2),
(ρref , Tref ) = (0.27, 1.2), (ρref , Tref ) = (0.30, 1.2), (ρref , Tref ) =
(0.32, 1.2), (ρref , Tref ) = (0.33, 1.1), (ρref , Tref ) = (0.33, 1.2), and
(ρref , Tref ) = (0.35, 1.2).

Here A(t ) is a vector or scalar molecular property, and the
angular brackets denote an ensemble and particle average.
Below we evaluate Eq. (14) from simulations for A equal to
velocity, angular velocity, force, and torque. We also study
the first- and second-order orientational order-parameter time-
correlation function defined by

φl (t ) = 〈Pl [êi(t0) · êi(t0 + t )]〉, (15)

in which Pl is a Legendre polynomial (l = 1 and 2). To quan-
tify the structure, we measured the standard radial distribution
function, g(r), as well as the radial-distribution orientational
correlation function defined by

G2(r) ≡ 〈P2(êi · ê j )〉, (16)

where the angular brackets imply an average over all pairs of
molecules i and j that are the distance r apart.

V. RESULTS

This section investigates to which degree the reduced-unit
structure and dynamics are invariant along two isomorphs.
We present data for one isomorph in the isotropic phase
and one in the nematic phase (the black lines in Fig. 3). In
realistic models isomorph invariance is only approximate, so
in order to put the findings into perspective we compare the
results for each isomorph with results for the isochore defined
by the reference-state-point density (red points in Fig. 3)
with the same temperature variation as that of the isomorph.
For the isotropic-phase isomorph, the reference state point
is (ρref , T ) = (0.27, 1.2); here we cover a density variation
of about 40% with temperatures in the range 1.2 < T < 27.
For the nematic-phase isomorph, the reference state point is
(ρref , T ) = (0.33, 1.2); here the density varies by about 35%
with temperatures in the range 1.2 < T < 16.

Figure 4 provides data for the reduced-unit MSD along the
isochore and the isomorph in the isotropic and nematic phases,
respectively. The level of invariance in the center-of-mass
dynamics is clearly higher along the isomorph than along the
isochore. At long times, the MSD is proportional to time,
and the diffusion coefficients may be extracted from these
data. Figure 5 shows the reduced diffusion coefficient as a
function of temperature along the isochores and isomorphs—
approximate isomorph invariance is again clearly visible.

Next we show data for four time-autocorrelation func-
tions. Figure 6 gives in the two upper figures the velocity
(v) and angular velocity (ω) time-autocorrelation functions,
while the two lower figures give the force and torque time-
autocorrelation functions. As in Fig. 4, all functions are
given in reduced units as functions of the reduced time
t̃ . Overall, we see in both the isotropic and the nematic
phases good isomorph invariance and a sizable variation
along the corresponding isochores. The short-time angular
velocity and torque time-autocorrelation functions violate
isomorph invariance significantly, however. This is due to
the fact that the moment of inertia in the simulations was
kept fixed, implying that this quantity is not constant in
reduced units. As a consequence, the short-time ballistic
motion is not isomorph-invariant. At intermediate and long
times, we do find good isomorph invariance also for the ro-
tational time-autocorrelation functions; here the moment of
inertia plays little role for the dynamics, which for a given
molecule is dominated by interactions with the surrounding
GB molecules. A weaker but still clearly visible violation of
isomorph invariance occurs at short times for the force au-
tocorrelation function. In our understanding, this reflects the
fact that the density-scaling exponent γ changes with density
along an isomorph, resulting in a changing effective inverse-
power-law interaction. The lowest densities have the largest
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FIG. 4. Reduced mean-square displacement as a function of the reduced time t̃ along an isochore and an isomorph in the isotropic phase
(left) and likewise in the nematic phase (right). In both cases, the data collapse to a good approximation along the isomorph but not along the
isochore.

γ (see the Appendix), leading to the highest average force
squared coming from collisions. The collapse of the isochore
angular velocity time-autocorrelation functions at short times
is a consequence of the definition of reduced units, as is the
short-time reduced-unit MSD collapse.
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FIG. 5. Reduced diffusion coefficient as a function of temper-
ature along the isochores (upper panel) and the isomorphs (lower
panel). Approximate invariance in the latter case is clearly visible.

Figure 7 shows data for the first- and second-order ori-
entational time-autocorrelation function, again plotted as
functions of the reduced time. In the isotropic phase, these
functions go to zero at long times, confirming that there are
no preferred orientations. This is not the case, of course, in
the nematic phase. In both phases, we observe good isomorph
invariance. According to the phase diagram (Fig. 3), the iso-
chore defined from the nematic isomorph reference state point
enters the isotropic phase at high temperatures; this is reflected
in the figures by the fact that both time-autocorrelation func-
tions go to zero at long times as the temperature increases.

So far we have discussed different dynamic signals and
seen good isomorph invariance. The isomorph theory, how-
ever, also predicts that the reduced-unit structure should be
invariant. This is tested in Fig. 8, in which the upper panels
show the center-of-mass radial distribution function along
the isochores and isomorphs. The data are close to invariant
along the isomorph, though with visible deviations around
the first peak. This is often observed when isomorph theory
is tested over a large density range; it reflects a nonin-
variance arising when the density-scaling exponent γ varies
along the isomorph (similar to the noninvariance of the short-
time force time-autocorrelation function discussed above). A
large γ implies a large effective inverse-power-law exponent,
which decreases the probability of near contacts and is “com-
pensated” by a higher peak in order to arrive at the same
coordination number (defined by integration of the radial
distribution function over its first peak). This phenomenon
was recently rationalized in terms of isomorph invariance
of the so-called bridge function of liquid-state theory [97].
Confirming this interpretation, the highest first peaks along
the isomorphs correspond to the lowest densities where γ is
largest (see the Appendix).
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FIG. 6. The upper figures show the reduced-unit time-autocorrelation functions of the velocity v and the angular velocity ω along the
isochore and the isomorph in the isotropic (left) and the nematic phases (right). The lower figures show the analogous results for the reduced-
unit time-autocorrelation functions of the force f and the torque τ . The color codes are the same as in Fig. 4. Good isomorph invariance is
generally observed except for significant short-time deviations for the two rotational autocorrelation functions (see the text).

FIG. 7. The left figures show the first- and second-order orientational order parameter time-autocorrelation function in the isotropic phase;
the right figures show the same in the nematic phase. Good isomorph invariance is observed in both phases.

064703-7



MEHRI, DYRE, AND INGEBRIGTSEN PHYSICAL REVIEW E 105, 064703 (2022)

FIG. 8. Reduced-unit radial distribution functions (upper figures) and radial-distribution orientational correlation function [Eq. (16), lower
figures] along the isochore and the isomorph in the isotropic (left) and nematic phases (right). Good isomorph invariance is observed in both
phases, with some deviation at the first peak (see the text).

Data for the orientational structure quantified in terms of
G2(r) are given in the lower panels of Fig. 8. In the nematic
phase, this function does not converge to zero at long times as
in the isotropic phase. Nevertheless, except for the first peak
in the isotropic phase, there is good isomorph invariance of
the structure. Note that the tail of G2(r) goes to zero as the
temperature is increased along the isochore in the nematic
phase. This reflects a phase transition into the isotropic phase.
In contrast, the tail is invariant as we increase the temperature
along the isomorph.

VI. CONCLUSIONS

When given in reduced units, the dynamic and structural
properties of the GB(3, 5, 2, 1) model are invariant to a good
approximation along isomorphs in both the isotropic and the
nematic phases, with some deviations at short times for ori-
entational time-autocorrelation functions reflecting that the
moment of inertia was assumed to be constant and thus
not isomorph-invariant in reduced units. In contrast, struc-
ture and dynamics are not invariant along isochores with
the same temperature variation. Overall, our findings confirm
isomorph-theory predictions and are consistent with the fact
that the calamitic GB(3, 5, 2, 1) model obeys hidden scale
invariance at relevant temperatures in both phases, i.e., has
a virial potential-energy correlation coefficient above 0.9. For
future work, it would be interesting to investigate the smectic
B phase of the model for which, based on Fig. 3, we expect
good isomorphs even at temperatures lower than unity.
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APPENDIX: ISOMORPH STATE POINTS

This Appendix provides details of the two isomorphs stud-
ied (Tables I and II), giving for each of these at several state
points: density, temperature, virial potential-energy correla-
tion coefficient R [Eq. (4)], and density-scaling exponent γ

[Eq. (10)].

TABLE I. Variation of density, temperature, correlation coeffi-
cient R, and density-scaling exponent γ for the state points on the
isotropic-phase isomorph generated from the reference state point
(ρref , Tref ) = (0.27, 1.2).

ρ T R γ

0.2700 1.2000 0.9077 8.4553
0.2727 1.3057 0.9158 8.5107
0.2754 1.4215 0.9231 8.5535
0.2782 1.5480 0.9285 8.5737
0.2810 1.6859 0.9330 8.5795
0.2838 1.8361 0.9367 8.5756
0.2866 1.9995 0.9396 8.5615
0.2895 2.1770 0.9416 8.5383
0.2924 2.3697 0.9433 8.5126
0.2953 2.5788 0.9445 8.4820
0.2982 2.8056 0.9457 8.4555
0.3012 3.0514 0.9461 8.4252
0.3042 3.3177 0.9467 8.3962
0.3073 3.6062 0.9469 8.3646
0.3104 3.9186 0.9468 8.3364
0.3135 4.2570 0.9469 8.3084
0.3166 4.6231 0.9465 8.2815
0.3198 5.0194 0.9463 8.2542
0.3230 5.4483 0.9460 8.2276
0.3262 5.9125 0.9456 8.2032
0.3295 6.4148 0.9450 8.1802
0.3327 6.9583 0.9446 8.1647
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TABLE I. (Continued.)

ρ T R γ

0.3361 7.5463 0.9442 8.1479
0.3394 8.1827 0.9436 8.1289
0.3428 8.8712 0.9428 8.1121
0.3463 9.6164 0.9423 8.0987
0.3497 10.4226 0.9416 8.0867
0.3532 11.2953 0.9410 8.0735
0.3567 12.2396 0.9403 8.0628
0.3603 13.2616 0.9396 8.0562
0.3639 14.3680 0.9390 8.0462
0.3676 15.5657 0.9383 8.0443
0.3712 16.8622 0.9376 8.0396
0.3749 18.2660 0.9370 8.0345
0.3787 19.7859 0.9362 8.0315
0.3825 21.4318 0.9356 8.0285
0.3863 23.2145 0.9350 8.0295
0.3902 25.1457 0.9342 8.0295
0.3941 27.2379 0.9335 8.0343

TABLE II. Variation of density, temperature, correlation coeffi-
cient R, and density-scaling exponent γ for the state points on the
nematic-phase isomorph generated from the reference state point
(ρref , Tref ) = (0.33, 1.2).

ρ T R γ

0.3300 1.2000 0.9169 8.2217
0.3333 1.3027 0.9230 8.2809
0.3366 1.4149 0.9274 8.3187
0.3400 1.5371 0.9315 8.3349
0.3434 1.6700 0.9342 8.3301
0.3468 1.8142 0.9359 8.3183
0.3503 1.9705 0.9375 8.2957
0.3538 2.1398 0.9385 8.2664
0.3573 2.3229 0.9389 8.2333
0.3609 2.5209 0.9393 8.2066
0.3645 2.7349 0.9394 8.1697
0.3682 2.9660 0.9392 8.1395
0.3719 3.2156 0.9393 8.1057
0.3756 3.4851 0.9387 8.0731
0.3793 3.7759 0.9384 8.0433
0.3831 4.0898 0.9375 8.0058
0.3870 4.4283 0.9367 7.9788
0.3908 4.7934 0.9362 7.9487
0.3947 5.1873 0.9354 7.9212
0.3987 5.6119 0.9345 7.8922
0.4027 6.0697 0.9337 7.8677
0.4067 6.5632 0.9321 7.8438
0.4108 7.0953 0.9315 7.8229
0.4149 7.6689 0.9306 7.7996
0.4190 8.2870 0.9296 7.7791
0.4232 8.9533 0.9286 7.7620
0.4274 9.6715 0.9277 7.7464
0.4317 10.4455 0.9264 7.7286
0.4360 11.2797 0.9258 7.7155
0.4404 12.1786 0.9244 7.6942
0.4448 13.1473 0.9232 7.6844
0.4492 14.1912 0.9223 7.6712
0.4537 15.3160 0.9209 7.6535
0.4583 16.5277 0.9197 7.6442

[1] M. Jurásek and R. Vácha, Self-assembled clusters of patchy
rod-like molecules, Soft Matter 13, 7492 (2017).

[2] S. J. Woltman, G. P. Crawford, and G. D. Jay, Liquid Crystals:
Frontiers in Biomedical Applications (World Scientific, Singa-
pore, 2007)

[3] A. de la Cotte, C. Wu, M. Trevisan, A. Repula, and E. Grelet,
Rod-like virus-based multiarm colloidal molecules, ACS Nano
11, 10616 (2017).

[4] Y. Tian and Z. Niu, Self-assembly of rod-like bionanoparticles
at interfaces and in solution, in Virus-Derived Nanoparticles for
Advanced Technologies (Springer, Berlin, 2018).

[5] D. Antypov and D. J. Cleaver, The role of attractive inter-
actions in rod–sphere mixtures, J. Chem. Phys. 120, 10307
(2004).

[6] M. Cifelli, G. Cinacchi, and L. De Gaetani, Smectic order
parameters from diffusion data, J. Chem. Phys. 125, 164912
(2006).

[7] R. Berardi, A. Costantini, L. Muccioli, S. Orlandi, and C.
Zannoni, A computer simulation study of the formation of
liquid crystal nanodroplets from a homogeneous solution, J.
Chem. Phys. 126, 044905 (2007).

[8] R. Vadnais, M.-A. Beaudoin, and A. Soldera, Study of the
influence of ester orientation on the thermal stability of the
smectic c phase: Simulation investigation, J. Chem. Phys. 129,
164908 (2008).

[9] J. Méndez-Bermúdez and I. Santamaría-Holek, Relaxation in
homogeneous and non-homogeneous polarized systems. A
mesoscopic entropy approach, Physica A 389, 1819 (2010).

064703-9

https://doi.org/10.1039/C7SM01384A
https://doi.org/10.1021/acsnano.7b06405
https://doi.org/10.1063/1.1718181
https://doi.org/10.1063/1.2359428
https://doi.org/10.1063/1.2430710
https://doi.org/10.1063/1.3001917
https://doi.org/10.1016/j.physa.2009.12.058


MEHRI, DYRE, AND INGEBRIGTSEN PHYSICAL REVIEW E 105, 064703 (2022)

[10] M. Doi, S. F. Edwards, and S. F. Edwards, The Theory of
Polymer Dynamics (Oxford University Press, Oxford, 1988).

[11] Y. P. Kalmykov, Rotational Brownian motion and nonlinear
dielectric relaxation of asymmetric top molecules in strong
electric fields, Phys. Rev. E 65, 021101 (2001).

[12] M. Hernández-Contreras and M. Medina-Noyola, Rotational
diffusion of nonspherical Brownian particles in a suspension of
spheres, Phys. Rev. E 54, 6586 (1996).

[13] S. Szabolcs, G. Jackson, and I. Szalai, External field induced
paranematic–nematic phase transitions in rod-like systems,
Mol. Phys. 93, 377 (1998).

[14] E. M. del Rio, M. T. Da Gama, E. De Miguel, and L. Rull, Wet-
ting and interfacial order at nematic free surfaces, Europhys.
Lett. 35, 189 (1996).

[15] E. M. del Rio, M. M. Telo da Gama, E. De Miguel, and L. F.
Rull, Surface-induced alignment at model nematic interfaces,
Phys. Rev. E 52, 5028 (1995).

[16] M. P. Allen, J. T. Brown, and M. A. Warren, Computer simula-
tion of liquid crystals, J. Phys.: Condens. Matter 8, 9433 (1996).

[17] M. P. Allen, Simulations and phase behaviour of liquid crystals,
in Observation, Prediction and Simulation of Phase Transitions
in Complex Fluids (Springer, Berlin, 1995).

[18] M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Hard
convex body fluids, Adv. Chem. Phys. 86, 1 (1993).

[19] J. Hansen and I. McDonald, Theory of Simple Liquids (Aca-
demic, New York, 1986).

[20] J. C. Dyre, Simple liquids’ quasiuniversality and the hard-
sphere paradigm, J. Phys.: Condens. Matter 28, 323001 (2016).

[21] R. Eppenga and D. Frenkel, Monte carlo study of the isotropic
and nematic phases of infinitely thin hard platelets, Mol. Phys.
52, 1303 (1984).

[22] M. P. Allen and D. Frenkel, Observation of Dynamical Pre-
cursors of the Isotropic-Nematic Transition by Computer
Simulation, Phys. Rev. Lett. 58, 1748 (1987).

[23] D. Frenkel, Computer simulation of hard-core models for liquid
crystals, Mol. Phys. 60, 1 (1987).

[24] T. Kihara, Convex molecules in gaseous and crystalline states,
Adv. Chem. Phys. 5, 147 (1963).

[25] W. Streen and K. Gubbins, Liquids of linear molecules: Com-
puter simulations and theory, Annu. Rev. Phys. Chem. 28, 373
(1977).

[26] B. J. Berne and P. Pechukas, Gaussian model potentials for
molecular interactions, J. Chem. Phys. 56, 4213 (1972).

[27] J. Gay and B. Berne, Modification of the overlap potential to
mimic a linear site–site potential, J. Chem. Phys. 74, 3316
(1981).

[28] E. Egberts and H. Berendsen, Molecular dynamics simulation
of a smectic liquid crystal with atomic detail, J. Chem. Phys.
89, 3718 (1988).

[29] A. Komolkin, Y. V. Molchanov, and P. Yakutseni, Computer
simulation of a real liquid crystal, Liq. Cryst. 6, 39 (1989).

[30] M. R. Wilson and M. P. Allen, Computer simulations of meso-
genic molecules using realistic atom-atom potentials, Mol.
Cryst. Liq. Cryst. 198, 465 (1991).

[31] M. Wilson and M. Allen, Structure of trans-4-(trans-4-n-
pentylcyclohexyl) cyclohexylcarbonitrile (cch5) in the isotropic
and nematic phases: a computer simulation study, Liq. Cryst.
12, 157 (1992).

[32] G. V. Paolini, G. Ciccotti, and M. Ferrario, Simulation of site-
site soft-core liquid crystal models, Mol. Phys. 80, 297 (1993).

[33] S. S. Patnaik, S. J. Plimpton, R. Pachter, and W. W. Adams,
Modelling a nematic liquid crystal, Liq. Cryst. 19, 213 (1995).

[34] D. Adams, G. Luckhurst, and R. Phippen, Computer simulation
studies of anisotropic systems: XVII. The Gay-Berne model
nematogen, Mol. Phys. 61, 1575 (1987).

[35] G. Luckhurst, R. Stephens, and R. Phippen, Computer simula-
tion studies of anisotropic systems. XIX. mesophases formed
by the Gay-Berne model mesogen, Liq. Cryst. 8, 451 (1990).

[36] E. de Miguel, L. F. Rull, M. K. Chalam, K. E. Gubbins, and
F. Van Swol, Location of the isotropic-nematic transition in the
Gay-Berne model, Mol. Phys. 72, 593 (1991).

[37] J. Alejandre, J. Emsley, D. Tildesley, and P. Carlson, Molecular
dynamics simulations of a flexible molecule in a liquid crys-
talline solvent, J. Chem. Phys. 101, 7027 (1994).

[38] M. K. Chalam, K. E. Gubbins, E. D. Miguel, and L. F. Rull,
A molecular simulation of a liquid-crystal model: bulk and
confined fluid, Mol. Simul. 7, 357 (1991).

[39] R. Berardi et al., Monte Carlo investigations of a Gay-Berne
liquid crystal, J. Chem. Soc., Faraday Trans. 89, 4069 (1993).

[40] R. Hashim, G. Luckhurst, and S. Romano, Computer-
simulation studies of anisotropic systems. XXIV. Constant-
pressure investigations of the smectic b phase of the Gay-Berne
mesogen, J. Chem. Soc., Faraday Trans. 91, 2141 (1995).

[41] E. de Miguel, L. F. Rull, and K. E. Gubbins, Dynamics of the
Gay-Berne fluid, Phys. Rev. A 45, 3813 (1992).

[42] E. M. del Río, E. de Miguel, and L. F. Rull, Computer simula-
tion of the liquid-vapour interface in liquid crystals, Physica A
213, 138 (1995).

[43] J. Stelzer, L. Longa, and H.-R. Trebin, Molecular dynamics
simulations of a Gay-Berne nematic liquid crystal: elastic prop-
erties from direct correlation functions, J. Chem. Phys. 103,
3098 (1995).

[44] S. Sarman, Molecular dynamics of heat flow in nematic liquid
crystals, J. Chem. Phys. 101, 480 (1994).

[45] S. Sarman and D. J. Evans, Self-diffusion and heat flow in
isotropic and liquid crystal phases of the Gay-Berne fluid, J.
Chem. Phys. 99, 620 (1993).

[46] S. Sarman and D. J. Evans, Statistical mechanics of viscous flow
in nematic fluids, J. Chem. Phys. 99, 9021 (1993).

[47] A. M. Smondyrev, G. B. Loriot, and R. A. Pelcovits, Viscosities
of the Gay-Berne Nematic Liquid Crystal, Phys. Rev. Lett. 75,
2340 (1995).

[48] S. Gupta, Computer simulation and perturbation theory of flu-
ids modelled using three-and six-site Lennard-Jones potentials,
Mol. Phys. 68, 699 (1989).

[49] E. Velasco, A. Somoza, and L. Mederos, Liquid-crystal phase
diagram of the Gay-Berne fluid by perturbation theory, J. Chem.
Phys. 102, 8107 (1995).

[50] E. De Miguel, L. F. Rull, M. K. Chalam, and K. E. Gubbins,
Liquid crystal phase diagram of the Gay-Berne fluid, Mol. Phys.
74, 405 (1991).

[51] M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W.
Smith, Molecular dynamics calculation of elastic constants in
Gay-Berne nematic liquid crystals, J. Chem. Phys. 105, 2850
(1996).

[52] L. F. Rull and J. M. Romero-Enrique, Computer simulation
study of the nematic–vapour interface in the Gay-Berne model,
Mol. Phys. 115, 1214 (2017).

[53] S. Sarman, Y.-L. Wang, and A. Laaksonen, Non-Newtonian
rheological properties of shearing nematic liquid crystal model

064703-10

https://doi.org/10.1103/PhysRevE.65.021101
https://doi.org/10.1103/PhysRevE.54.6586
https://doi.org/10.1080/002689798169050
https://doi.org/10.1209/epl/i1996-00552-9
https://doi.org/10.1103/PhysRevE.52.5028
https://doi.org/10.1088/0953-8984/8/47/041
https://doi.org/10.1002/9780470141458.ch1
https://doi.org/10.1088/0953-8984/28/32/323001
https://doi.org/10.1080/00268978400101951
https://doi.org/10.1103/PhysRevLett.58.1748
https://doi.org/10.1080/00268978700100011
https://doi.org/10.1002/9780470143513.ch3
https://doi.org/10.1146/annurev.pc.28.100177.002105
https://doi.org/10.1063/1.1677837
https://doi.org/10.1063/1.441483
https://doi.org/10.1063/1.454893
https://doi.org/10.1080/02678298908027321
https://doi.org/10.1080/00268949108033422
https://doi.org/10.1080/02678299208029045
https://doi.org/10.1080/00268979300102271
https://doi.org/10.1080/02678299508031971
https://doi.org/10.1080/00268978700102001
https://doi.org/10.1080/02678299008047361
https://doi.org/10.1080/00268979100100451
https://doi.org/10.1063/1.468328
https://doi.org/10.1080/08927029108022462
https://doi.org/10.1039/FT9938904069
https://doi.org/10.1039/FT9959102141
https://doi.org/10.1103/PhysRevA.45.3813
https://doi.org/10.1016/0378-4371(94)00155-M
https://doi.org/10.1063/1.470268
https://doi.org/10.1063/1.468159
https://doi.org/10.1063/1.465734
https://doi.org/10.1063/1.465570
https://doi.org/10.1103/PhysRevLett.75.2340
https://doi.org/10.1080/00268978900102481
https://doi.org/10.1063/1.469222
https://doi.org/10.1080/00268979100102321
https://doi.org/10.1063/1.472147
https://doi.org/10.1080/00268976.2016.1274437


HIDDEN SCALE INVARIANCE IN THE GAY-BERNE MODEL PHYSICAL REVIEW E 105, 064703 (2022)

systems based on the Gay-Berne potential, Phys. Chem. Chem.
Phys. 17, 16615 (2015).

[54] S. Sarman, Y.-L. Wang, and A. Laaksonen, Self-diffusion in the
non-Newtonian regime of shearing liquid crystal model systems
based on the Gay-Berne potential, J. Chem. Phys. 144, 054901
(2016).

[55] S. Mehri, M. A. Kolmangadi, J. C. Dyre, and T. S. Ingebrigtsen,
Lines of invariant physics in the isotropic phase of the discotic
Gay-Berne model, J. Non-Cryst. Solids: X 14, 100085 (2022).

[56] K. Liszka, A. Grzybowski, K. Koperwas, and M. Paluch, Den-
sity scaling of translational and rotational molecular dynamics
in a simple ellipsoidal model near the glass transition, Int. J.
Mol. Sci. 23, 4546 (2022).

[57] K. Satoh, S. Mita, and S. Kondo, Monte carlo simulations
on mesophase formation using dipolar Gay-Berne model, Liq.
Cryst. 20, 757 (1996).

[58] G. La Penna, D. Catalano, and C. A. Veracini, A rigid core-
flexible chain model for mesogenic molecules in molecular
dynamics simulations of liquid crystals, J. Chem. Phys. 105,
7097 (1996).

[59] B. M. Neal, A. Parker, and C. Care, A molecular dynamics
study of a steric multipole model of liquid crystal molecular
geometry, Mol. Phys. 91, 603 (1997).

[60] D. J. Cleaver, C. M. Care, M. P. Allen, and M. P. Neal, Exten-
sion and generalization of the Gay-Berne potential, Phys. Rev.
E 54, 559 (1996).

[61] N. Mori, H. Fujioka, R. Semura, and K. Nakamura, Brown-
ian dynamics simulations for suspension of ellipsoids in liquid
crystalline phase under simple shear flows, Rheol. Acta 42, 102
(2003).

[62] G. Germano, M. P. Allen, and A. J. Masters, Simultaneous
calculation of the helical pitch and the twist elastic constant
in chiral liquid crystals from intermolecular torques, J. Chem.
Phys. 116, 9422 (2002).

[63] M. A. Bates and G. R. Luckhurst, Studies of translational dif-
fusion in the smectic a phase of a Gay-Berne mesogen using
molecular dynamics computer simulation, J. Chem. Phys. 120,
394 (2004).

[64] E. d. Miguel Agustino, E. F. Martin del Rio, F. Jimenez Blas
et al., Stability of smectic phases in the Gay-Berne model, J.
Chem. Phys. 121, 11183 (2004).

[65] K. Satoh, Characteristic behavior of short-term dynamics in
reorientation for Gay-Berne particles near the nematic-isotropic
phase transition temperature, J. Chem. Phys. 125, 204902
(2006).

[66] K. Satoh, Molecular dynamics simulation of the nematic liquid
crystal phase in the presence of an intense magnetic field, J.
Chem. Phys. 124, 144901 (2006).

[67] A. J. McDonald, M. P. Allen, and F. Schmid, Surface tension
of the isotropic-nematic interface, Phys. Rev. E 63, 010701(R)
(2000).

[68] C.-C. Huang, S. Ramachandran, and J.-P. Ryckaert, Calculation
of the absolute free energy of a smectic-a phase, Phys. Rev. E
90, 062506 (2014).

[69] E. de Miguel, L. F. Rull, and K. E. Gubbins, Effect of molecular
elongation on liquid-vapour properties: computer simulation
and virial approximation, Physica A 177, 174 (1991).

[70] E. de Miguel, E. Martín del Rio, J. T. Brown, and M. P. Allen,
Effect of the attractive interactions on the phase behavior of

the Gay-Berne liquid crystal model, J. Chem. Phys. 105, 4234
(1996).

[71] J. He, Z. Niu, R. Tangirala, J.-Y. Wang, X. Wei, G. Kaur,
Q. Wang, G. Jutz, A. Böker, B. Lee et al., Self-assembly of
tobacco mosaic virus at oil/water interfaces, Langmuir 25, 4979
(2009).

[72] N. Akino, F. Schmid, and M. P. Allen, Molecular-dynamics
study of the nematic-isotropic interface, Phys. Rev. E 63,
041706 (2001).

[73] D. Caprion, L. Bellier-Castella, and J.-P. Ryckaert, Influence of
shape and energy anisotropies on the phase diagram of discotic
molecules, Phys. Rev. E 67, 041703 (2003).

[74] T. Yamamoto, T. Suga, and N. Mori, Brownian dynamics sim-
ulation of orientational behavior, flow-induced structure, and
rheological properties of a suspension of oblate spheroid par-
ticles under simple shear, Phys. Rev. E 72, 021509 (2005).

[75] O. Cienega-Cacerez, J. A. Moreno-Razo, E. Díaz-Herrera, and
E. J. Sambriski, Phase equilibria, fluid structure, and diffusivity
of a discotic liquid crystal, Soft Matter 10, 3171 (2014).

[76] R. J. Bushby and K. Kawata, Liquid crystals that affected the
world: discotic liquid crystals, Liq. Cryst. 38, 1415 (2011).

[77] N. P. Bailey, L. Bøhling, A. A. Veldhorst, T. B. Schrøder, and
J. C. Dyre, Statistical mechanics of Roskilde liquids: Configura-
tional adiabats, specific heat contours, and density dependence
of the scaling exponent, J. Chem. Phys. 139, 184506 (2013).

[78] T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, What Is a
Simple Liquid? Phys. Rev. X 2, 011011 (2012).

[79] T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Isomorphs in
model molecular liquids, J. Phys. Chem. B 116, 1018 (2012).

[80] J. C. Dyre, Hidden scale invariance in condensed matter, J.
Phys. Chem. B 118, 10007 (2014).

[81] J. C. Dyre, Perspective: Excess-entropy scaling, J. Chem. Phys.
149, 210901 (2018).

[82] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C.
Dyre, Pressure-energy correlations in liquids. I. results from
computer simulations, J. Chem. Phys. 129, 184507 (2008).

[83] N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C.
Dyre, Pressure-energy correlations in liquids. IV. “Isomorphs”
in liquid phase diagrams, J. Chem. Phys. 131, 234504 (2009).

[84] A. A. Veldhorst, J. C. Dyre, and T. B. Schrøder, Scaling of the
dynamics of flexible Lennard-Jones chains, J. Chem. Phys. 141,
054904 (2014).

[85] L. Costigliola, T. B. Schrøder, and J. C. Dyre, Freezing and
melting line invariants of the Lennard-Jones system, Phys.
Chem. Chem. Phys. 18, 14678 (2016).

[86] I. H. Bell, R. Messerly, M. Thol, L. Costigliola, and J. C.
Dyre, Modified entropy scaling of the transport properties of
the Lennard-Jones fluid, J. Phys. Chem. B 123, 6345 (2019).

[87] T. B. Schrøder and J. C. Dyre, Simplicity of condensed matter
at its core: Generic definition of a Roskilde-simple system, J.
Chem. Phys. 141, 204502 (2014).

[88] E. Attia, J. C. Dyre, and U. R. Pedersen, Extreme case of
density scaling: The Weeks-Chandler-Andersen system at low
temperatures, Phys. Rev. E 103, 062140 (2021).

[89] D. Fincham, More on rotational motion of linear molecules,
CCP5 Quarterly 12, 47 (1984).

[90] M. Bates and G. Luckhurst, Computer simulation studies of
anisotropic systems. xxx. the phase behavior and structure of
a Gay-Berne mesogen, J. Chem. Phys. 110, 7087 (1999).

064703-11

https://doi.org/10.1039/C5CP02468D
https://doi.org/10.1063/1.4940731
https://doi.org/10.1016/j.nocx.2022.100085
https://doi.org/10.3390/ijms23094546
https://doi.org/10.1080/02678299608033169
https://doi.org/10.1063/1.472512
https://doi.org/10.1080/00268979709482751
https://doi.org/10.1103/PhysRevE.54.559
https://doi.org/10.1007/s00397-002-0260-0
https://doi.org/10.1063/1.1475747
https://doi.org/10.1063/1.1630014
https://doi.org/10.1063/1.1810472
https://doi.org/10.1063/1.2393238
https://doi.org/10.1063/1.2186320
https://doi.org/10.1103/PhysRevE.63.010701
https://doi.org/10.1103/PhysRevE.90.062506
https://doi.org/10.1016/0378-4371(91)90150-B
https://doi.org/10.1063/1.472292
https://doi.org/10.1021/la803533n
https://doi.org/10.1103/PhysRevE.63.041706
https://doi.org/10.1103/PhysRevE.67.041703
https://doi.org/10.1103/PhysRevE.72.021509
https://doi.org/10.1039/c3sm52301b
https://doi.org/10.1080/02678292.2011.603262
https://doi.org/10.1063/1.4827090
https://doi.org/10.1103/PhysRevX.2.011011
https://doi.org/10.1021/jp2077402
https://doi.org/10.1021/jp501852b
https://doi.org/10.1063/1.5055064
https://doi.org/10.1063/1.2982247
https://doi.org/10.1063/1.3265957
https://doi.org/10.1063/1.4888564
https://doi.org/10.1039/C5CP06363A
https://doi.org/10.1021/acs.jpcb.9b05808
https://doi.org/10.1063/1.4901215
https://doi.org/10.1103/PhysRevE.103.062140
https://doi.org/10.1063/1.478563


MEHRI, DYRE, AND INGEBRIGTSEN PHYSICAL REVIEW E 105, 064703 (2022)

[91] J. G. Méndez-Bermúdez, I. Guillén-Escamilla, J. C. Mixteco-
Sánchez, G. A. Méndez-Maldonado, and M. González-
Melchor, Equation of state, structure and diffusion coeffi-
cients of Gay-Berne fluids: the cases κ ′ = 5; 10; 15; 20,
arXiv:1911.07366.

[92] P. P. Jose and B. Bagchi, Multiple short time power laws in
the orientational relaxation of nematic liquid crystals, J. Chem.
Phys. 125, 184901 (2006).

[93] M. P. Allen and D. J. Tildesley, Computer Simu-
lation of Liquids (Oxford University Press, Oxford,
2017).

[94] E. de Miguel and C. Vega, The global phase diagram of the
Gay-Berne model, J. Chem. Phys. 117, 6313 (2002).

[95] S. Mehri, Computer simulations of the Gay-Berne liquid crystal
model and of physical aging, Ph.D. thesis, Roskilde University
(2022).

[96] U. R. Pedersen, L. Costigliola, N. P. Bailey, T. B. Schrøder,
and J. C. Dyre, Thermodynamics of freezing and melting, Nat.
Commun. 7, 12386 (2016).

[97] F. L. Castello, P. Tolias, and J. C. Dyre, Testing the isomorph
invariance of the bridge functions of Yukawa one-component
plasmas, J. Chem. Phys. 154, 034501 (2021).

064703-12

http://arxiv.org/abs/arXiv:1911.07366
https://doi.org/10.1063/1.2364188
https://doi.org/10.1063/1.1504430
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1063/5.0036226

