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Generalized hydrodynamics of the Lennard-Jones liquid in view of hidden scale invariance
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In recent years lines along which structure and dynamics are invariant to a good approximation, so-called
isomorphs, have been identified in the thermodynamic phase diagrams of several model liquids and solids. This
paper reports computer simulation data of the transverse and longitudinal collective dynamics at different length
scales along an isomorph of the Lennard-Jones system. Our findings are compared to corresponding results along
an isotherm and an isochore. Confirming the theoretical prediction, the reduced-unit dynamics of the transverse
momentum density is invariant to a good approximation along the isomorph on all time and length scales.
Likewise, the wave-vector dependent shear-stress autocorrelation function is found to be isomorph invariant
(with minor deviations at very short times). A similar invariance is not seen along the isotherm or the isochore.
Using a spatially nonlocal hydrodynamic model for the transverse momentum-density time-autocorrelation
function, the macroscopic shear viscosity and its wave dependence are determined, demonstrating that the
shear viscosity is isomorphic invariant on all length scales studied. This analysis implies the existence of a
length scale that is isomorph invariant in reduced units, i.e., which characterizes each isomorph. The transverse
sound-wave velocity, the Maxwell relaxation time, and the rigidity shear modulus are also isomorph invariant. In
contrast to the isomorph invariance of all aspects of the transverse dynamics, the reduced-unit dynamics of the
mass density is not invariant on length scales longer than the interparticle distance. By fitting to a generalized
hydrodynamic model, we extract values for the wave-vector-dependent thermal diffusion coefficient, sound
attenuation coefficient, and adiabatic sound velocity. The isomorph variation of these quantities in reduced units
on long length scales can be eliminated by scaling with the density-scaling exponent, a fundamental quantity in
the isomorph theory framework; this is an empirical observation that remains to be explained theoretically.

DOI: 10.1103/PhysRevE.104.054126

I. INTRODUCTION

Hydrodynamics describes the macroscopic flow of gases
and liquids in terms of continuous time- and space-dependent
fields, notably those of mass, momentum, and energy [1,2]. In
the classical treatment the equations expressing conservation
of these quantities are supplemented by linear constitutive re-
lations [3]. In this work we focus on the transverse momentum
and mass-density autocorrelation functions, as these contain
all relevant information of classical hydrodynamics [4]. The
shear-stress autocorrelation function is shown as well, since it
gives a different representation of the same information as the
transverse momentum density. Alley and Alder carried out a
similar analysis for hard spheres back in the 1980s [5].

During the past decade it has become clear that many
model liquids, including the Lennard-Jones (LJ) system, have
the approximate symmetry “hidden scale invariance.” A con-
sequence of this is that the thermodynamic phase diagram
becomes effectively one dimensional because it has curves,
termed isomorphs, along which structure and dynamics are
invariant to a good approximation in reduced units [6–10].
Hidden scale invariance expresses that the ordering of con-
figurations according to their potential energy is maintained if
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these are scaled uniformly to a different density. If the position
vector of all N particles is denoted by R ≡ (r1, . . . , rN ) and
U (R) is the potential-energy function, hidden scale invariance
is the following logical implication [11]:

U (Ra ) < U (Rb) ⇒ U (λRa ) < U (λRb). (1)

Here λ quantifies the uniform scaling. Hidden scale invari-
ance applies rigorously only for the unrealistic case of an
Euler-homogeneous potential-energy function (plus a con-
stant) like, e.g., that of a purely repulsive inverse power-law
pair potential. Equation (1) applies to a good approxima-
tion, however, for the LJ system and its generalizations to
mixtures and to exponents other than 6-12 [6,12,13], to the
Yukawa pair-potential system [14], the exponential repulsive
EXP system [15], etc. Interestingly, some molecular models
like the Wahnstrom OTP model or the flexible LJ chain model
also obey hidden scale invariance and have isomorphs [16].
A system with hidden scale invariance is termed “R-simple”
to distinguish it from the classical definition of a “simple”
pair-potential system [17] (certain pair-potential systems like
the Dzugutov system or the Gaussian core model are not
R-simple, while some molecular models as mentioned are).

An isomorph is by definition a curve of constant excess en-
tropy, i.e., an isomorph is a configurational adiabat [9]. While
all systems have configurational adiabats, however, only R-
simple systems have isomorphs. By now isomorph theory has
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been applied to many different systems in simulations, and
there are also experimental confirmations of isomorph-theory
predictions [18–21]. Recent reviews of the isomorph theory
are given in Refs. [22,23].

The isomorph-theoretical framework has been applied to
liquids, glasses, and crystals, but almost all validations of
isomorph invariance of the dynamics have focused on single-
particle properties like the time-dependent mean-square
displacement and the incoherent intermediate scattering func-
tion. The collective properties briefly considered previously
are the heat conductivity and the shear and bulk viscosities
[24,25]. Of these the first two were found to be isomorph
invariant to a good approximation for the LJ system, whereas
the bulk viscosity was not. This paper presents a system-
atic investigation of hydrodynamics from the isomorph-theory
perspective. We give results for the generalized hydrodynam-
ics, i.e., on multiple length scales, and investigate how the
isomorph invariance depends on the length scale. We have
chosen to study the Lennard-Jones (LJ) system because it is
the standard model of liquid-state theory.

Isomorph invariance is never exact for realistic systems.
This means that one cannot expect the hydrodynamic charac-
teristics of the LJ system to be absolutely invariant along the
system’s isomorphs. In order to be able to judge the degree
of invariance, we therefore compare the variation of general-
ized hydrodynamic properties along an isomorph with those
along an isotherm with the same density variation, as well as
along an isochore (curve of constant density) with the same
temperature variation. Most results are presented in two unit
systems—the standard units of molecular dynamics (MD) and
the so-called reduced units that depend on the thermodynamic
state point (see below), the unit system in which isomorph
invariance of structure and dynamics is predicted.

II. THEORETICAL METHODS

Details of the MD simulations are given below, followed
by an introduction to the isomorph theory’s reduced units.
Hereafter we review the definitions of the hydrodynamic au-
tocorrelation functions (ACFs) studied numerically. Finally,
some necessary background of the isomorph theory is given.

A. Simulation details

MD simulations are carried out using RUMD [26]. We
study the standard 12-6 LJ pair potential which depends on
a characteristic energy ε and length σ . If r is the distance
between two particles, the LJ pair potential v(r) is defined
as

v(r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
. (2)

The simulations are carried out in the NV T ensemble with
N denoting the number of particles, V the volume, and T
the temperature. The thermostat used is Nosé-Hoover. Each
simulation involves 6800 particles in a cubic box with side
length L and periodic boundary conditions. The potential is
truncated and shifted at r = 2.5 (MD units). Each simulation
runs for 107 time steps with each step equal to 0.005 MD time
units. The equilibration time is negligibly short compared to

the total simulation time and is therefore not excluded from
the analysis.

Data for the time-autocorrelation functions are averaged
over 5000 independent initial configurations and calculated
as a Fourier series with wave vectors given by k = 2π p/L,
where p is the wave number and L is the box length. It is
costly to simulate many wave vectors, so the simulations were
split into two categories. (1) Frequent sampling (every second
time step) and a total of 10 wave vectors to ensure a high res-
olution even for small times. These simulation data are used
to investigate the transverse autocorrelation functions directly.
(2) Less frequent sampling (every fifth time step) and a total
of 50 wave vectors, providing data with a lower resolution
but a larger spectrum. These data are used for calculating
the viscosity kernel as well as for investigating the slower
longitudinal dynamics.

B. Two unit systems: Transitioning to dimensionless quantities

For computer simulations it is customary to report all quan-
tities in so-called MD units. Following Allen and Tildesley
[27] we now list the relevant quantities, where no star denotes
the quantity in question while a star denotes the same quantity
made dimensionless by reference to MD units. Let l be length,
m mass, t time, and E energy. Then the MD units are based
on σ and ε from the LJ potential, leading to the following MD
dimensionless quantities:

l∗ = l/σ, m∗ = 1, (3)

t∗ =
( ε

mσ 2

) 1
2
t, E∗ = E/ε. (4)

In the reduced units of isomorph theory, the length unit is
derived from the particle number density, n ≡ N/V , and the
energy unit is the thermal energy kBT . This leads [9] to the
following dimensionless quantities:

l̃ = n1/3l, m̃ = 1, (5)

t̃ = n1/3(kBT /m)1/2t, Ẽ = E/kBT . (6)

Here and henceforth a tilde denotes a dimensionless reduced
quantity in the above isomorph-theory sense.

A state point’s number density and temperature is reported
below in MD units because these two quantities are both unity
in reduced units. For simplicity, the rest of the paper omits the
stars when a quantity is given in MD units.

C. Generalized hydrodynamic relaxation functions

The collective hydrodynamics are studied through space
and time correlations of the transverse momentum density and
shear stress (transverse dynamics), as well as the mass density
(longitudinal dynamics). These quantities are defined in terms
of the microscopic variables of a computer simulation by the
equations given below.

The mass density ρ(r, t ) is defined by the atomic masses
mj by [17]

ρ(r, t ) =
∑

j

m jδ(r − r j (t )), (7)
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with r j being the position of the jth particle. From the
mass balance equation, the momentum density j(r, t ) =
ρ(r, t )u(r, t ) can be defined as (see [28] for further explana-
tion)

ρ(r, t )u(r, t ) =
∑

j

m jv j (t )δ(r − r j (t )), (8)

where u(r, t ) is the mass average velocity and v j the single
particle velocity. The next step in developing hydrodynamics
is to imagine the two above expressions averaged in space
over a volume that is small enough to allow for studying
spatial variations but large enough to contain many particles.
From this perspective, one first writes the local mass density
and mass average velocity in terms of average and fluctuating
parts,

ρ = ρ0 + δρ, u = δu, (9)

since the average streaming velocity is zero in equilibrium.
Keeping only terms to first order in the fluctuations, the mo-
mentum density reads in Fourier space [29]

ρ0 δu(k, t ) =
∑

j

m jv j (t )e−ik·r j (t ). (10)

Without loss of generality this can be simplified by choosing k
to be parallel to one of the coordinate axes, e.g., k = (0, 0, k).
Choosing the velocity perpendicular to this, δux(k, t ), the
transverse momentum density is given by [29]

ρ0δux(k, t ) =
∑

j

m jv j,x(t )e−ikr j,z (t ). (11)

Equation (11) is used in the simulations to calculate the
wave-vector-dependent transverse momentum-density time-
autocorrelation function (TMACF) Cuu(k, t ) defined by [29]

Cuu(k, t ) = ρ2
0

V
〈δux(k, t )δux (−k, 0)〉. (12)

Here the angle brackets denote an ensemble average over
independent initial conditions, which in practice is replaced
by a sample average.

Considering next the wave-vector-dependent stress time-
autocorrelation function (SACF), the below derivation is
straightforward though not standard (see Todd and Daivis
[30] for the standard approach). The starting point is the zero
advection momentum balance equation in Fourier space [28].
If Pzx is the zx component of the pressure tensor (the negative
stress tensor), the balance equation reads to lowest order in the
density fluctuations for k = (0, 0, k)

ρ0
∂

∂t
δux(k, t ) = −ikPzx (k, t ). (13)

Substituting the expression for the transverse momen-
tum density Eq. (11) into Eq. (13) one obtains (for
nonzero k)

Pzx(k, t ) =
∑

j

[
i
Fj,x(t )

k
+ mjv j,z(t )v j,x (t )

]
e−ikr j,z (t ). (14)

Here Fj,x is the x component of the total force on particle j.
This expression is used to form the wave-vector-dependent

FIG. 1. Comparison between the Green-Kubo autocorrelation
for the shear stress Eq. (16) (blue points) and the wave-vector-
dependent autocorrelation derived in the text Eq. (15) for a range
of wave vectors (other colors). We see that the data for the wave-
vector-dependent stress approach the macroscopic-method data for
decreasing k. The data shown are for the state point (n, T ) =
(0.8, 1.1).

transverse SACF Css(k, t ) defined by

Css(k, t ) = 1

V
〈Pzx (k, t )Pzx (−k, 0)〉. (15)

To illustrate this and validate our simulations, we have com-
pared the simulation data at the state point (n, T ) = (0.8, 1.1)
with data for the time-autocorrelation function of the standard
expression for the macroscopic, i.e., spatially averaged, pres-
sure tensor’s off-diagonal component

Css(t ) = 1

V
〈Pzx (t )Pzx(0)〉, (16)

with the Irving-Kirkwood expression for the pressure tensor
[31]

Pzx(t ) = 1

V

(∑
j

r j,z(t )Fj,x (t ) + mjv j,z(t )v j,x (t )

)
. (17)

As seen in Fig. 1, the data for the wave-vector-dependent
SACF approaches the standard macroscopic-method data for
decreasing values of k as expected.

Below, data are given for both the wave-vector-dependent
SACF and TMACF as functions of time. Although these two
quantities by Eq. (13) are not independent, we report them
both because they focus on different aspects of the dynamics.

Turning now to the longitudinal dynamics, the Fourier
transform of Eq. (7) gives the wave-vector-dependent mass
density,

ρ(k, t ) =
∑

j

m je
−ik·r j (t ). (18)

This expression is used in the simulations to compute the
mass-density time-autocorrelation function (DACF), defined
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FIG. 2. Phase diagram of the Lennard-Jones system with an
isomorph, an isotherm, and an isochore through the reference state
point (n0, T0) = (1.02, 2.58). For identifying the isomorph, both the
direct-isomorph-check method and the analytical formula [Eq. (26)]
were used, giving consistent results. Data for the melting and freez-
ing lines were generated from the analytical formula derived in
Ref. [33] based on isomorph theory. The points in the figure mark
the state points simulated.

by [29]

Cρρ (k, t ) = 1

N
〈ρ(k, t )ρ(−k, 0)〉. (19)

If this quantity is divided by m2 where m is the LJ particle
mass, one arrives at the number-density time-autocorrelation
function.

The DACF is related to the coherent intermediate scattering
function F (k, t ) [28] by

F (k, t ) = 1

n
Cρρ (k, t )/m2. (20)

Since the static structure factor S(k) is defined as

S(k) = F (k, t = 0), (21)

it is possible to obtain S(k) from the DACF data. More gen-
erally, one gets the dynamic structure factor S(k, ω) from
the coherent intermediate scattering function by performing
a Fourier-Laplace transformation [28]

S(k, ω) =
∫ ∞

0
F (k, t )e−iωt dt . (22)

D. Isomorph theory

The purpose of this paper is to investigate to what degree
the hydrodynamics of the LJ system are invariant along an iso-
morph in the thermodynamic phase diagram. Isomorphs are
present whenever the system in question has a high correlation
between its potential energy U and virial W constant-volume
thermal-equilibrium fluctuations [7,32]. A measure of the
correlation is given by the standard Pearson correlation co-
efficient, R, defined by

R = 〈
U
W 〉√
〈(
U )2〉

√
〈(
W )2〉

. (23)

TABLE I. Virial potential-energy correlation coefficient R and
density-scaling exponent γ for the simulated state points along the
isomorph.

n T γ R

0.85 1.00 5.62 0.970
0.90 1.39 5.34 0.985
0.96 1.90 5.11 0.992
1.02 2.58 4.91 0.995
1.08 3.45 4.77 0.997
1.15 4.57 4.65 0.998

Here the angular brackets denote a constant-volume
canonical-ensemble average. The correlation is considered to
be high whenever R > 0.9 [6].

The isomorph theory is approximate for all but inverse-
power-law systems (for which R = 1), implying that exact
isomorph invariance is not expected. In order to put into
perspective the degree of isomorph invariance, we compare
below the hydrodynamics along the isomorph with those
along an isotherm and isochore. In Fig. 2 the LJ thermo-
dynamic phase diagram is shown with the studied isomorph
(blue points and curve), isotherm (black points), and isochore
(red points). These curves intersect at the “reference” state
point (n, T ) = (1.02, 2.58). Note that the isotherm and iso-
chore span, respectively, the same density and temperature
variations as the isomorph. For each state point, data for
TMACF, SACF, and DACF have been obtained by MD sim-
ulations. The solid black lines are the melting and freezing
lines [33] and the gray area is the coexistence region. The two
state points on the isochore with the lowest temperature and
the isotherm state point with the highest density are situated
below the freezing line. No crystallization was observed at
these supercooled state points, however, and we believe it to
be safe to include them in the analysis.

The isomorph was traced out using the so-called direct-
isomorph-check method starting from the state point (n, T ) =
(0.85, 1.00). In this numerical method a predicted linear re-
lationship between potential energies of scaled and unscaled
configurations is utilized in a step-by-step fashion to find
temperatures of isomorphic state points. The method works as
follows [9]. Let again U be the potential energy, R the position
vector of all particles, and T the temperature. Let moreover
subscripts 1 and 2 refer to two configurations that scale uni-
formly into one another, corresponding to the densities n1 and
n2, respectively. According to the isomorph theory, if the state
points (n1, T1) and (n2, T2) are on the same isomorph, the

TABLE II. R and γ along the isotherm.

n T γ R

0.85 2.58 5.18 0.987
0.90 2.58 5.10 0.990
0.96 2.58 5.00 0.993
1.02 2.58 4.91 0.995
1.08 2.58 4.83 0.996
1.15 2.58 4.74 0.997
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TABLE III. R and γ along the isochore.

n T γ R

1.02 1.00 5.16 0.992
1.02 1.39 5.07 0.993
1.02 1.90 4.99 0.994
1.02 2.58 4.91 0.995
1.02 3.45 4.84 0.995
1.02 4.57 4.78 0.996

potential energy of configuration 2 is given [9] by

U (R2) ≈ T2

T1
U (R1) + D12. (24)

Here D12 is a constant energy offset. In our simulations,
configuration 2 is obtained by increasing the density of config-
uration 1 by 1%. By computing the potential energy of both
configurations and inserting the temperature T1 of the initial
configuration, Eq. (24) determines T2 from a scatter plot of
the potential energies of scaled versus unscaled configurations
[9]. For all simulated state points the virial potential-energy
correlation coefficients are above 0.97; see Tables I, II, and
III.

An analytical method for tracing out an isomorph of the LJ
system exists, which we checked against the direct-isomorph-
check method. In Fig. 2 results from the analytical method are

shown as the solid blue curve while the direct-isomorph-check
results are the blue points. The analytical method was derived
in Refs. [34,35] and requires only one simulation at a single
state point. In terms of the density-scaling exponent γ defined
[9] as (where 
 denotes a deviation from the thermal average
value)

γ = 〈
U
W 〉
〈(
U )2〉 , (25)

the analytical formula for the isomorph of state points
[n, T (n)] that includes the reference state point (n0, T0) is
given by (where γ0 is the density-scaling exponent at the
reference state point)

T (n)

T0
=

(γ0

2
− 1

)( n

n0

)4
−

(γ0

2
− 2

)( n

n0

)2
. (26)

The first term of Eq. (26) derives from the r−12 repulsive
term of the LJ potential and the second term derives from
its r−6 attractive term. At the reference state point (n0, T0) =
(1.02, 2.58) we find γ0 = 4.91. Values of R and γ at all state
points simulated are given in Tables I, II, and III.

III. RESULTS FOR THE TRANSVERSE HYDRODYNAMICS

This section presents the simulation results for
the wave-vector-dependent transverse (shear) stress
time-autocorrelation function (SACF) and the wave-
vector-dependent transverse momentum time-autocorrelation
function (TMACF).

FIG. 3. Wave-vector-dependent transverse (shear) stress time-autocorrelation function in MD units for three wave vectors (k ∼ 1/3, k ∼ 1,
k ∼ 3; constant in reduced units) along the isomorph (top row), isotherm (middle row), and isochore (bottom row).
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FIG. 4. Wave-vector-dependent transverse momentum density time-autocorrelation function in MD units for three wave vectors (k ∼ 1/3,
k ∼ 1, k ∼ 3) along the isomorph (top row), isotherm (middle row), and isochore (bottom row).

The wave-vector-dependent transverse SACF is shown in
MD units in Fig. 3, which is organized with the top row giving
results along the isomorph, the middle row along the isotherm,
and the bottom row along the isochore. The wave vectors were
selected to be identical in reduced units, which is why in MD
units they vary across the compared state points (except along
the isochore).

The columns correspond to increasing wave vectors, show-
ing data for k ∼ 1/3, k ∼ 1, and k ∼ 3, respectively. The data
all relax to zero at long times, as expected. In the short-time
region, the differences between the data for the first and last
state points are significant in all three cases, decreasing with
increasing wave vector. The shape of the SACF changes sig-
nificantly as k increases and anticorrelations begin to appear.
These are signatures of viscoelastic properties of the liquid,
which disappear in the classical hydrodynamic limit (k → 0).
Note that anticorrelations are present already for k ∼ 1/3 for
the supercooled state point on the isotherm (yellow stars).

The wave-vector-dependent TMACF is shown in MD units
in Fig. 4, where the arrangement of the figure is the same
as in Fig. 3. Not all k ∼ 1/3 TMACF data relax to zero at
long times within the simulated time window; we address the
consequence of this later. Apart from the tail at long times
for the higher wave vectors, the data vary over the full time
range. In contrast to the SACF, the variance does not decrease

with increasing wave vector. Again, anticorrelations appear
for large wave vectors (and for the black squares in the iso-
chore for k = 0.33 referring to a supercooled state point).

Considering now the reduced-unit wave-vector-dependent
transverse SACF in Fig. 5, the top (isomorph) row shows data
collapsing onto single curves. These data are the only ones
that exhibit invariance; in fact the isomorph data are invariant
on all length scales studied. Even the anticorrelations collapse,
demonstrating that the viscoelastic part of the response is also
isomorph invariant. Although the deviations from collapse
along both the isotherm and isochore decrease compared to
when plotted in MD units, variations are still much larger than
those of the isomorph. In the short-time region the isomorph
does show some variation; this illustrates the fact that the
isomorph theory is not exact.

For the reduced-unit wave-vector-dependent TMACF we
also see an excellent collapse along the isomorph at all wave
vectors and at all times (Fig. 6). Note that all data sets of Fig. 6
approach unity in the limit t → 0; this is a consequence of
the equipartition theorem that implies Cuu(k, t =0) = ρ0kBT ,
which in reduced units becomes unity. Except for this com-
mon short-time limit, the isotherm and isochore data vary
considerably in contrast to those of the isomorph. This shows
that the observed isomorph collapse is not a consequence of
the use of reduced units.
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FIG. 5. Replotting in reduced units the data of Fig. 3 for the wave-vector-dependent transverse stress time-autocorrelation function for the
three wave vectors k̃ = 0.33, k̃ = 0.99, and k̃ = 3.32 along the isomorph (top row), isotherm (middle row), and isochore (bottom row).

IV. ANALYSIS OF THE TRANSVERSE HYDRODYNAMICS

A. Classical hydrodynamics

We first compare the predictions of classical hydrodynam-
ics to the data. For our problem Newton’s law of viscosity
is

Pzx = −η0
∂

∂z
δux. (27)

In Fourier space this reads Pzx(k, t ) = −ikη0δux(k, t ), which
when substituted into Eq. (13) leads to

ρ0
∂

∂t
δux(k, t ) = −η0 k2 δux(k, t ). (28)

Multiplying by δux(−k, 0), ρ2
0 , and ensemble averaging one

gets

ρ0
∂

∂t
Cuu(k, t ) = −η0 k2 Cuu(k, t ). (29)

Combining this with equipartition, Cuu(kz, 0) = ρ0kBT , the
solution to Eq. (29) is

Cuu(k, t ) = ρ0kBT e−η0k2t/ρ0 . (30)

Figure 7 compares this prediction (solid lines) to data obtained
at the reference state point (n0, T0) = (1.02, 2.58) (points)
for four wave vectors. The model agrees well with data for
the longest wavelength, but is not able to predict the data

accurately at shorter wavelengths. This signals a breakdown
of classical hydrodynamics. As we show below, this can be
remedied by a simple generalization of the Newtonian model
to involve a k-dependent shear viscosity. The value of the
shear viscosity η0 used in the fit of Fig. 7 is found in the next
section.

B. Multiscale viscous response

In the limit of long times (small frequencies) it is pos-
sible to model the TMACF using a wave-vector-dependent
(frequency-independent) shear viscosity, η0(k), a quantity
that in the k → 0 limit reduces to the standard macro-
scopic zero-frequency shear viscosity η0. The “multiscale”
model prediction [29] is the following generalization of
Eq. (30):

Cuu(k, t ) = ρ0kBT e−η0(k)k2t/ρ0 . (31)

Performing a Fourier-Laplace transform of this we obtain

Ĉuu(k, ω) = ρ0kBT

η0(k)k2/ρ0 + iω
. (32)

From this one can calculate η0(k) from simulation data by
means of

η0(k) = ρ2
0 kBT

k2Ĉuu(k, 0)
. (33)
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FIG. 6. Replotting in reduced units the data of Fig. 4 for the wave-vector-dependent transverse momentum density time-autocorrelation
function for the three wave vectors k̃ = 0.33, k̃ = 0.99, k̃ = 3.32 along the isomorph (top row), isotherm (middle row), and isochore (bottom
row).

Different expressions for the functional form of η0(k) have
been proposed; see, e.g., Refs. [36–38]. Here we use the

FIG. 7. Points are TMACF data for k ranging from 0.33 to 1.33,
where the arrow indicates the direction of increasing k. The data are
taken at the reference state point (n0, T0 ) = (1.02, 2.58). The lines
are the prediction of classical hydrodynamics [Eq. (30)] with η0 =
4.84 ± 0.06 [found by fitting Eq. (34) to the data in Fig. 8].

ansatz of Ref. [38] with α and β being fit parameters,

η0(k) = η0

1 + αkβ
. (34)

In Fig. 8 this expression is fitted to the zero-frequency limit
of the Fourier-Laplace transformed data for the wave-vector-
dependent TMACF. The top row is in MD units and the
bottom row is in reduced units. Notice the different scales of
the y axes. When performing a Fourier-Laplace transform on
finite data it is important that these are fully relaxed to zero
at long times. As mentioned earlier, this is not the case for
the smallest wave vector k ∼ 1/3 (Fig. 4). This causes some
irregularities for the first data point, which has therefore been
removed across all data sets.

The reduced-unit data for the isomorph in the lower left
corner collapse onto a common curve. This shows that not
only is the macroscopic shear viscosity isomorph invariant,
this quantity is invariant on all length scales. The reduced-unit
macroscopic shear viscosity of the LJ system is η̃0 = 3.02 ±
0.07 for the isomorph in question, which is consistent with
values found using other methods [39].

It is possible to define a characteristic viscous length scale
L from the fit parameters in Eq. (34) by means of [40]

L = α1/β . (35)

This length is constant in reduced units along the isomorph
and thus provides an isomorph characterization in terms of a
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FIG. 8. k-dependent viscosity η0(k) shown in MD units (top row) and in reduced units (bottom row). The first column is the isomorph,
the middle is the isotherm, and the last is the isochore. All data sets are fitted to the expression given in Eq. (34) where the individual
η0(k) values are found from simulation data by means of Eq. (33). The k → 0 limit results in a value of η0 that is reported for each state
point. The fit parameters α and β do not vary much and only one example of their values are thus given here for the reference state point
(n = 1.02, T = 2.58): α = 0.03 and β = 2.69.

dimensionless hydrodynamic length. For the isomorph stud-
ied here L̃ = 0.273 ± 0.005, which is roughly a quarter of
the average nearest-neighbor distance. The length scale is a
measure of when the viscous response becomes nonlocal and
the classical constitutive relation fails. The important scale is
2πL, such that if the strain rate varies over this length scale,
the local picture fails. A study of how L̃ vary from isomorph
to isomorph would be very interesting but goes beyond the
present work that focuses on a single isomorph.

C. Transverse waves in the multiscale model

The viscoelastic effects seen in both the shear stress and
the transverse momentum time-autocorrelation functions at
small wavelengths (large k vectors) can be modeled using
a generalized Maxwell viscoelastic model. Recall that the
standard Maxwell model is based on the ansatz [41,42],

∂δux

∂z
= − 1

η0

(
1 + τM

∂

∂t

)
Pzx, (36)

in which τM is the Maxwell relaxation time. In Fourier space
this becomes

ikδux(k, t ) = − 1

η0

(
1 + τM

∂

∂t

)
Pzx(k, t ). (37)

The generalization of this to a k-dependent Maxwell relax-
ation time is

ikδux(k, t ) = − 1

η0(k)

(
1 + τM (k)

∂

∂t

)
Pzx(k, t ). (38)

Substituting Eq. (13) and its time derivative into the above
equation, one gets

∂2

∂t2
δux(k, t ) + 1

τM (k)

∂

∂t
δux(k, t ) + c2

T (k)k2δux(k, t ) = 0.

(39)
We have here introduced the k-dependent shear-wave sound
velocity given by c2

T (k) ≡ η0(k)/[ρ0τM (k)]. Multiplying by
δux(−k, 0), ρ2

0 , and ensemble averaging we obtain the follow-
ing differential equation for the TMACF:

∂2

∂t2
Cuu(k, t ) + 1

τM (k)

∂

∂t
Cuu(k, t ) + c2

T (k)k2Cuu(k, t ) = 0.

(40)
Applying equipartition, Cuu(k, 0) = ρ0kBT , we have when-
ever k > 1/[2cT (k)τM (k)] (complex eigenvalues) the real and
even solution

Cuu(k, t ) = ρ0kBT e−t/2τM (k) cos[ωT (k)t]. (41)

This represents a damped oscillation for which the char-
acteristic frequency ωT (k) is determined by ω2

T (k) =
c2

T k2 − 1/[4τ 2
M (k)]. Fitting Eq. (41) to the k ∼ 3 isomorph
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FIG. 9. Reduced-unit Maxwell relaxation time as a function of
the reduced wave vector on linear and logarithmic scales. In the first
figure the absolute values are compared and the first point appears to
have a larger variance than the rest. In the second figure, however,
it is clear that, when considering the relative variance, the Maxwell
relaxation time is approximately isomorph invariant for the range of
wave vectors studied.

state-point data we find for the reduced shear-wave velocity
c̃T = 3.7 ± 0.1.

One expects that, as the dynamics is isomorph invariant in
reduced units, the Maxwell relaxation time is also isomorph
invariant in its wave-vector dependence. Figure 9 shows the
Maxwell relaxation time as a function of wave vector in
the large wave-vector regime (in reduced units). Since the
modulus of rigidity, G∞, is given by G∞ = η0/τM , it follows
that this quantity in reduced units is also constant along the
isomorph in its k dependence.

V. RESULTS FOR THE LONGITUDINAL
HYDRODYNAMICS

This section presents the simulation data for the longitu-
dinal dynamics, specifically the static and dynamic structure
factors.

A. Static structure factor

The static structure factor S(k) quantifies the liquid struc-
ture. It can be determined in various ways; here we exploit its
relation to the DACF following Eq. (20) and (21):

S(k) = 1

n
Cρρ (k, t = 0)/m2. (42)

Another way is to compute the radial pair-distribution
function and take the Fourier transform. However, due to
finite-size effects, this approach will give nonphysical oscil-
lations in the low k limit, which is one of our areas of interest.
Thus this approach is not pursued further.

In Fig. 10 the static structure factor is shown along the iso-
morph, isotherm, and isochore, with the top row in MD units
and the bottom row in reduced units. The points represent the
data from the DACF and the lines are added as a guide to the
eye. From this plot S(k) appears to be isomorph invariant to a
good approximation for all k.

For a system with perfect isomorphs [corresponding to R =
1 for the virial potential-energy correlation coefficient Eq.
(23)] all static and dynamic quantities are isomorph invariant
when given in reduced units. This applies only, however (as
mentioned in the Introduction), for systems with a perfectly
Euler-homogeneous potential-energy function, i.e., obeying
U (λR) = λ−nU (R) for some n. Approximate isomorph in-
variance applies much more broadly, for instance for the LJ
system in its condensed (liquid and solid) phases. In the more
general case, some quantities are more isomorph invariant
than others. In particular, quantities like the pressure and
the adiabatic or isothermal bulk modulus are generally not
isomorph invariant, even in reduced units. This may be un-
derstood as follows [9]. For an Euler-homogeneous system,
the potential-energy function U (R) can be written as U (R) =
h(ρ)�(R̃) for some scaling function h(ρ) and some function
of the reduced coordinates �(R̃). It is straightforward to show
that this implies perfect isomorph invariance of all reduced-
unit structure and dynamics. If there are merely strong virial
potential-energy correlations, the following identity applies
to a good approximation: U (R) = h(ρ)�(R̃) + g(ρ) [43]. In
this case the reduced-unit structure and dynamics are still
approximately isomorph invariant, but the additive factor g(ρ)
affects the pressure and its volume derivatives in a way that
is unrelated to isomorphs, i.e., in a generally noninvariant
way. Thus any quantity, the definition of which in terms of
the potential energy involves a perturbation that changes the
volume (like pressure and bulk modulus), is generally not
isomorph invariant [25].

Since the small k limit of the static structure factor is
proportional to the isothermal compressibility, this limit is not
expected to be isomorph invariant. The percentage differences
of the state points from the reference state point (1.02, 2.58)
are shown in Fig. 11, from which it is clear that S(k) is in
fact not isomorph invariant near the hydrodynamic limit. The
isotherm and isochore data are again shown for comparison.

B. Dynamic structure factor

The longitudinal dynamics is investigated below by the
dynamic structure factor. In total there exist nine longitudi-
nal correlation functions. They all contain the same physical
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FIG. 10. Static structure factor for state points along the isomorph, isotherm, and isochore obtained from the density autocorrelation
function (DACF). Upper row: results in MD units; lower row: same results in reduced units.

information and we will, as is custom, study the dynamic
structure factor, that is the density-density autocorrelation
function. Data in MD units for the isomorph, isotherm,
and isochore can be seen in Fig. 12, Fig. 13, and Fig. 14,
respectively. The six panels each show S(k, ω) at approxi-
mately the same length scale for each of the six state points,
starting with the longest length scale (k ∼ 0.3) in the up-
per left corner and ending with the shortest (k ∼ 16) in
the lower right corner. The six length scales shown here

represent the way S(k, ω) changes qualitatively with de-
creasing length. Notice the change of scale on the vertical
axes. The Rayleigh peak at the origin corresponds to the
thermal diffusion process and the Brillouin peak (second
peak) to the adiabatic propagating sound wave. As we go
to shorter length scales (higher k), the Brillouin peak at-
tenuates and broadens and, when reaching the interparticle
distance at around k ∼ 2π , the peak seems to vanish or be
completely absorbed in the Rayleigh peak. This well-known

FIG. 11. Percentage differences relative to the reference state point (n = 1.02, T = 2.58) for the static structure factor along the isomorph,
isotherm, and isochore, illustrating that the static structure factor is in fact not invariant for the hydrodynamic limit k → 0 and up to values of
k ∼ 5.
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FIG. 12. Dynamic structure factor along the isomorph for six different length scales (k ∼ 0.3 to k ∼ 16).

feature is consistent across the isomorph, isotherm, and
isochore.

The reduced-unit dynamic structure factor S̃(k̃, ω̃) is
shown in Fig. 15 (isomorph), Fig. 16 (isotherm), and
Fig. 17 (isochore). No collapse of curves is observed for
the isotherm and isochore, while, for the isomorph, data
for length scales around k̃ ∼ 2π and shorter length scales

(higher k) collapse. Such a collapse does not happen for
the isotherm and isochore and is thus not a trivial conse-
quence of the short distances. The short-length dynamics are
isomorph invariant, whereas the dynamics at length scales
larger than the interparticle distance are not. In the fol-
lowing section, the noncollapsing region is studied in more
detail.

FIG. 13. Dynamic structure factor along the isotherm for six different length scales (k ∼ 0.3 to k ∼ 16).
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FIG. 14. Dynamic structure factor along the isochore for six different length scales (k ∼ 0.3 to k ∼ 16).

VI. ANALYSIS OF THE LONGITUDINAL
HYDRODYNAMICS

In this section we utilize a hydrodynamic model for the
mass-density autocorrelation function in order to gain a better
understanding of the large length scales at which the reduced-
unit longitudinal hydrodynamic data vary along the isomorph.

A. Hydrodynamic model

The following classical hydrodynamic model, found in
textbooks such as Hansen and McDonald [17], can be used
to fit the DACF data in the hydrodynamic limit k → 0. The fit
parameters are the ratio between heat capacities γc = cP/cV ,
the thermal diffusion coefficient DT , the sound attenuation �,

FIG. 15. Dynamic structure factor along the isomorph for six different length scales with S̃(k̃, ω̃) = n1/3(kBT/m)1/2 S(k, ω) and ω̃ =
n−1/3(kBT/m)−1/2ω.
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FIG. 16. Dynamic structure factor along the isotherm for six different length scales with S̃(k̃, ω̃) = n1/3(kBT/m)1/2 S(k, ω) and ω̃ =
n−1/3(kBT/m)−1/2ω.

and the adiabatic sound velocity cs,

Cρρ (k, t ) = 1

γc

[
(γc − 1)e−DT k2t + e−�k2t cos(cskt )

]
. (43)

The first term models the thermal diffusion (the Rayleigh pro-
cess), and the second term models the adiabatic sound waves
(the Brillouin process). The specific heat ratio γc provides a
measure of the ratio between the two processes.

Heuristically we let the parameters depend on k, i.e., γc →
γc(k), DT → DT (k), etc., as a way of generalizing Eq. (43):

Cρρ (k, t ) = γc(k) − 1

γc(k)
exp[−DT (k)k2t]

+ 1

γc(k)
exp[−�(k)k2t] cos[cs(k)kt]. (44)

FIG. 17. Dynamic structure factor along the isochore for six different length scales with S̃(k̃, ω̃) = n1/3(kBT/m)1/2 S(k, ω) and ω̃ =
n−1/3(kBT/m)−1/2ω.
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FIG. 18. Three representative examples of fitting the generalized hydrodynamic expression for the DACF in Eq. (44). Data are from the
reference state point (1.02,2.58) for k̃ < 2π . It is clear from these figures that the behavior of the DACF changes significantly, with (a) showing
clear oscillations and negative correlations, (b) showing only a tiny oscillation and positive correlations, and finally in (c) all oscillations have
been attenuated, leaving only a decaying exponential. Notice that the data are normalized.

The derivation of Eq. (43) with k-space parameters can be
shown to give Eq. (44), so here we just refer to the soon-to-be-
published book by Hansen [28]. Now, with everything being
k dependent, the physical interpretation of γc(k) as being the
ratio of the heat capacities necessarily depends on the heat ca-
pacities being k dependent. A similar argument applies to the
thermal diffusion, which depends on the heat conductivity and
the heat capacity at constant pressure DT (k) = λ(k)/ρ0cP(k),
as well as to the sound attenuation �(k) and speed of sound
cs(k).

Three representative examples of fitting the generalized
model to the DACF data for different length scales can be
seen in Fig. 18 in which all four k-dependent parameters are
used as fit parameters. The data change significantly over the
range of length scales studied, with dampened oscillations for
the longest length scales and a simple exponential decay for
the shortest length scale. This reproduces the loss of features
observed for S(k, ω) in Fig. 12 for decreasing wavelengths.

The fit parameters can be seen in Fig. 19, as a function of
k̃ and k̃2, respectively. As expected [17] the three dispersion
plots for the frequencies D̃T k̃2, �̃k̃2, and c̃sk̃2 decrease toward
zero for higher k̃. The generalized ratio of heat capacities
1/γc(k̃) decreases more or less smoothly for higher k̃, with
a sharper decrease in the beginning and then reaching more
toward a plateau for higher k̃. The length scale where a

plateau is reached depends on the state point. We see that the
Brillouin process dominates for small k, with the Rayleigh
process taking over for higher k. This agrees with what we saw
for S(k, ω) in Fig. 12, where the sound waves disappear for
higher k.

B. Classical hydrodynamic limit

In the classical hydrodynamic limit k → 0, the macro-
scopic quantities DT , �, and cs are independent of k. Thus
a plot of the generalized quantities against k should reach a
plateau in this limit. For the shear viscosity in Fig. 8, a clear
plateau is observed, indicating that the transverse dynamics
of our system has reached the classical limit. Data for D̃T (k̃),
�̃(k̃), and c̃s(k̃) plotted against k̃, i.e., in reduced units, are
shown in Fig. 20. A plateau is not present for all quantities,
indicating that the thermal diffusion coefficient, the sound
attenuation, and the longitudinal speed of sound reach the
classical limit at different length scales. The speed of sound
clearly shows a plateau and the diffusion coefficient seems
to be on the edge of one, whereas the sound attenuation
coefficient shows no signs of reaching a plateau at all.

Classical hydrodynamics correctly predicts the transverse
dynamics on length scales where the predictions for the lon-
gitudinal dynamics fail. This means that it is the simple

FIG. 19. Dispersion curves along the isomorph for the three fit parameters D̃T (k̃)k̃2, �̃(k̃)k̃2, and c̃s(k̃)k̃, as well as for 1/γc(k̃).
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FIG. 20. Three fit parameters plotted against k̃. If the longitudinal dynamics of the system had reached the classical hydrodynamic limit
for k̃ → 0, all three quantities would reach a plateau for k̃ → 0. We see instead a non-isomorph-invariant plateau for c̃s, an indication of a
plateau for D̃T , and no plateau for �̃ at all. In order to reach the classical limit for �̃ as well, the system size would have to be increased.

diffusion of momentum which governs the transverse dynam-
ics, but that the underlying processes for the longitudinal
dynamics, that is, the relaxation of local density and tempera-
ture fluctuations, is not correctly accounted for by the theory.
See also Ref. [44].

C. Scaling of the k̃ region below 2π

Staying with Fig. 20, but turning our attention to the full
noncollapsing region of k̃ vectors, a general trend is observed
where the collapse gradually gets better for increasing k̃ vec-
tors for all three wave-dependent parameters.

The collapse improves with empirical scaling by γ , one
of the fundamental quantities in isomorph theory defined
in Eq. (25) [not to be confused with the generalized ra-
tio of heat capacities γc(k)]. γ is the state-point-dependent
density-scaling exponent, which we intriguingly find offers
the multiplicative factor needed to shift the collapse in the
higher-k region to the low-k region for all three generalized
transport coefficients. In Fig. 21, the data from Fig. 20 are
replotted in a log plot, this time scaled by γ . In order to
quantify the shifting of invariance, the percentage differences
between the fit parameter data for the six state points are

shown in Fig. 22 comparing scaling with γ to no scaling. The
adiabatic speed of sound in particular improves, its, collapse.
The adiabatic or longitudinal speed of sound cs depends on the
longitudinal viscosity, which in turn depends on both the bulk
and shear viscosities as ηl = ηb + 4/3η0. The reduced shear
viscosity has been shown to be isomorph invariant in [24].
In agreement with that, we have shown that the k-dependent
shear viscosity is invariant for a broad range of length scales.
In contrast, the bulk viscosity has been shown to not be iso-
morph invariant [25]. Thus the longitudinal viscosity would
be expected to carry this noninvariance on to the speed of
sound, as is also observed. It would be interesting to study how
the noninvariance of the bulk viscosity behaves on different
length scales and whether it behaves similar to the speed of
sound. Additionally, it would be interesting to see if the non-
invariance of the bulk viscosity for long wavelengths could be
scaled into invariance by γ as well.

This empirical scaling was inspired by Ref. [45], which
used γ as a correction parameter when comparing different
systems to obtain a better isomorph collapse. It is still not
understood how this relates to the present observation, where
scaling with γ is used to improve a collapse along a specific
isomorph.

FIG. 21. Three fit parameters in reduced units can be scaled with γ , to make the small k̃-region data collapse onto a master curve. The
reason for this is not understood.
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FIG. 22. Percentage differences of the fit parameters shown before (upper figures) and after (lower figures) scaling with γ . Subfigure
(a) shows D̃T (k̃), (b) shows �̃(k̃), and (c) shows c̃s(k̃). The percentage differences are taken with respect to the reference state point (n, T ) =
(1.02, 2.58). The coloring is consistent with all other figures.

VII. SUMMARY

The transverse collective dynamics of the LJ liquid has
been studied through the time dependence of both the shear-
stress autocorrelation function and the transverse momentum
autocorrelation function. These have both been shown to be
invariant to a good approximation along the isomorph when
given in reduced units. The same invariance does not apply
along the isotherm or the isochore. Our results constitute
a systematic study and confirmation of isomorph properties
involving generalized hydrodynamics. For the longitudinal
generalized hydrodynamics the situation is more complex:
these dynamics are isomorph invariant to a good approxima-
tion at large and intermediate wave vectors, but not at small
wave vectors, i.e., in the hydrodynamic limit. We report an
empirical scaling making the dynamics at small wave vectors
more invariant, though at the cost of losing some invariance at
intermediate and large wave vectors.

A nonstandard approach was used to define the wave-
dependent shear stress, which approaches the standard
Green-Kubo expression in the limit k → 0. Using a hydro-
dynamic model the shear viscosity was determined across
a broad spectra of wave vectors and found to be isomorph
invariant for all. Finally, a characterization of isomorphs
through a dimensionless hydrodynamic length has been
proposed.

ACKNOWLEDGMENTS

The authors would like to thank L. Costigliola for sug-
gesting the scaling with γ , as well as checking our value of
macroscopic shear viscosity η0 with existing methods. This
work was supported by the VILLUM Foundation’s Matter
grant (No. 16515).

[1] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course
of Theoretical Physics, Vol. 6 (Pergamon Press Ltd., London,
1959).

[2] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge
University Press, Cambridge, UK, 1967).

[3] S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics
(Dover Publications, Mineola, NY, 1984).

[4] J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover Publi-
cations, Mineola, NY, 1991).

[5] W. E. Alley and B. J. Alder, Generalized transport coefficients
for hard spheres, Phys. Rev. A 27, 3158 (1983).

[6] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and
J. C. Dyre, Pressure-energy correlations in liquids. I. Re-
sults from computer simulations, J. Chem. Phys. 129, 184507
(2008).

[7] N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder,
and J. C. Dyre, Pressure-energy correlations in liquids. II.

Analysis and consequences, J. Chem. Phys. 129, 184508
(2008).

[8] T. B. Schrøder, N. P. Bailey, U. R. Pedersen, N. Gnan, and J. C.
Dyre, Pressure-energy correlations in liquids. III. Statistical
mechanics and thermodynamics of liquids with hidden scale
invariance, J. Chem. Phys. 131, 234503 (2009).

[9] N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and
J. C. Dyre, Pressure-energy correlations in liquids. IV. “Iso-
morphs” in liquid phase diagrams, J. Chem. Phys. 131, 234504
(2009).

[10] T. B. Schrøder, N. Gnan, U. R. Pedersen, N. P. Bailey, and J. C.
Dyre, Pressure-energy correlations in liquids. V. Isomorphs
in generalized Lennard-Jones systems, J. Chem. Phys. 134,
164505 (2011).

[11] T. B. Schrøder and J. C. Dyre, Simplicity of condensed matter
at its core: Generic definition of a Roskilde-simple system,
J. Chem. Phys. 141, 204502 (2014).

054126-17

https://doi.org/10.1103/PhysRevA.27.3158
https://doi.org/10.1063/1.2982247
https://doi.org/10.1063/1.2982249
https://doi.org/10.1063/1.3265955
https://doi.org/10.1063/1.3265957
https://doi.org/10.1063/1.3582900
https://doi.org/10.1063/1.4901215


KNUDSEN, TODD, DYRE, AND HANSEN PHYSICAL REVIEW E 104, 054126 (2021)

[12] U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phase Diagram
of Kob-Andersen-Type Binary Lennard-Jones Mixtures, Phys.
Rev. Lett. 120, 165501 (2018).

[13] I. M. Friisberg, L. Costigliola, and J. C. Dyre, Density-scaling
exponents and virial potential-energy correlation coefficients
for the (2n, n) Lennard-Jones system, J. Chem. Sci. 129, 919
(2017).

[14] A. A. Veldhorst, T. B. Schrøder, and J. C. Dyre, Invariants
in the Yukawa system’s thermodynamic phase diagram, Phys.
Plasmas 22, 073705 (2015).

[15] A. K. Bacher, T. B. Schrøder, and J. C. Dyre, The EXP pair-
potential system. II. Fluid phase isomorphs, J. Chem. Phys. 149,
114502 (2018).

[16] A. A. Veldhorst, J. C. Dyre, and T. B. Schrøder, Scaling of the
dynamics of flexible Lennard-Jones chains, J. Chem. Phys. 141,
054904 (2014).

[17] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids: With
Applications of Soft Matter, 4th ed. (Elsevier/AP, Amstersdam,
2013).

[18] L. A. Roed, D. Gundermann, J. C. Dyre, and K. Niss, Commu-
nication: Two measures of isochronal superposition, J. Chem.
Phys. 139, 101101 (2013).

[19] D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey,
B. Jakobsen, T. Christensen, N. B. Olsen, T. B. Schrøder, D.
Fragiadakis, and R. Casalini, Predicting the density-scaling ex-
ponent of a glass-forming liquid from Prigogine–Defay ratio
measurements, Nat. Phys. 7, 816 (2011).

[20] H. W. Hansen, A. Sanz, K. Adrjanowicz, B. Frick, and K. Niss,
Evidence of a one-dimensional thermodynamic phase diagram
for simple glass-formers, Nat. Commun. 9, 1 (2018).

[21] W. Xiao, J. Tofteskov, T. V. Christensen, J. C. Dyre, and
K. Niss, Isomorph theory prediction for the dielectric loss
variation along an isochrone, J. Non-Cryst. Solids 407, 190
(2015).

[22] J. C. Dyre, Simple liquids’ quasiuniversality and the hard-
sphere paradigm, J. Phys.: Condens. Matter 28, 323001
(2016).

[23] J. C. Dyre, Perspective: Excess-entropy scaling, J. Chem. Phys.
149, 210901 (2018).

[24] L. Costigliola, T. B. Schrøder, and J. C. Dyre, Freezing and
melting line invariants of the Lennard-Jones system, Phys.
Chem. Chem. Phys. 18, 14678 (2016).

[25] D. M. Heyes, D. Dini, L. Costigliola, and J. C. Dyre, Transport
coefficients of the Lennard-Jones fluid close to the freezing line,
J. Chem. Phys. 151, 204502 (2019).

[26] N. P. Bailey, T. S. Ingebrigtsen, J. S. Hansen, A. A. Veldhorst,
L. Bøhling, C. A. Lemarchand, A. E. Olsen, A. K. Bacher,
L. Costigliola, U. R. Pedersen, H. Larsen, J. C. Dyre, and
T. B. Schrøder, RUMD: A general purpose molecular dynamics
package optimized to utilize GPU hardware down to a few
thousand particles, SciPost Phys. 3, 038 (2017).

[27] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids,
2nd ed. (Oxford University Press, Oxford, 2017).

[28] J. S. Hansen, Nanoscale Hydrodynamics of Simple Systems
(Cambridge University Press, Cambridge, UK, in press).

[29] J. S. Hansen, J. C. Dyre, P. Daivis, B. D. Todd, and
H. Bruus, Continuum nanofluidics, Langmuir 31, 13275
(2015).

[30] B. D. Todd and P. J. Daivis, Nonequilibrium Molecular Dy-
namics: Theory, Algorithms and Applications (Cambridge
University Press, Cambridge, UK, 2017).

[31] J. H. Irving and J. G. Kirkwood, The statistical mechanical the-
ory of transport processes. IV. The equations of hydrodynamics,
J. Chem. Phys. 18, 817 (1950).

[32] U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre,
Strong Pressure-Energy Correlations in van der Waals Liquids,
Phys. Rev. Lett. 100, 015701 (2008).

[33] U. R. Pedersen, L. Costigliola, N. P. Bailey, T. B. Schrøder,
and J. C. Dyre, Thermodynamics of freezing and melting, Nat.
Commun. 7, 12386 (2016).

[34] T. S. Ingebrigtsen, L. Bøhling, T. B. Schrøder, and J. C.
Dyre, Communication: Thermodynamics of condensed matter
with strong pressure-energy correlations, J. Chem. Phys. 136,
061102 (2012).

[35] L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C.
Dyre, and T. B. Schrøder, Scaling of viscous dynamics in simple
liquids: theory, simulation and experiment, New J. Phys. 14,
113035 (2012).

[36] A. Furukawa and H. Tanaka, Nonlocal Nature of the Viscous
Transport in Supercooled Liquids: Complex Fluid Approach to
Supercooled Liquids, Phys. Rev. Lett. 103, 135703 (2009).

[37] M. G. Martin and J. I. Siepmann, Transferable potentials
for phase equilibria. 1. United-atom description of n-alkanes,
J. Phys. Chem. B 102, 2569 (1998).

[38] J. S. Hansen, P. J. Daivis, K. P. Travis, and B. D. Todd, Param-
eterization of the nonlocal viscosity kernel for an atomic fluid,
Phys. Rev. E 76, 041121 (2007).

[39] L. Costigliola, U. R. Pedersen, D. M. Heyes, T. B. Schrøder,
and J. C. Dyre, Communication: Simple liquids’ high-density
viscosity, J. Chem. Phys. 148, 081101 (2018).

[40] R. M. Puscasu, B. D. Todd, P. J. Daivis, and J. S. Hansen,
Nonlocal viscosity of polymer melts approaching their glassy
state, J. Chem. Phys. 133, 144907 (2010).

[41] N. Phan-Thien and N. Mai-Duy, Understanding Viscoelastic-
ity: An Introduction to Rheology, Graduate Texts in Physics
(Springer International Publishing, Berlin, 2017).

[42] K. Trachenko and V. V. Brazhkin, Collective modes and ther-
modynamics of the liquid state, Rep. Prog. Phys. 79, 016502
(2016).

[43] J. C. Dyre, Isomorphs, hidden scale invariance, and quasiuni-
versality, Phys. Rev. E 88, 042139 (2013).

[44] J. S. Hansen, Where is the hydrodynamic limit? Mol. Simul. 47,
1391 (2021).

[45] I. H. Bell, J. C. Dyre, and T. S. Ingebrigtsen, Excess-entropy
scaling in supercooled binary mixtures, Nat. Commun. 11, 4300
(2020).

054126-18

https://doi.org/10.1103/PhysRevLett.120.165501
https://doi.org/10.1007/s12039-017-1307-1
https://doi.org/10.1063/1.4926822
https://doi.org/10.1063/1.5043548
https://doi.org/10.1063/1.4888564
https://doi.org/10.1063/1.4821163
https://doi.org/10.1038/nphys2031
https://doi.org/10.1038/s41467-017-02088-w
https://doi.org/10.1016/j.jnoncrysol.2014.08.041
https://doi.org/10.1088/0953-8984/28/32/323001
https://doi.org/10.1063/1.5055064
https://doi.org/10.1039/C5CP06363A
https://doi.org/10.1063/1.5128707
https://doi.org/10.21468/SciPostPhys.3.6.038
https://doi.org/10.1021/acs.langmuir.5b02237
https://doi.org/10.1063/1.1747782
https://doi.org/10.1103/PhysRevLett.100.015701
https://doi.org/10.1038/ncomms12386
https://doi.org/10.1063/1.3685804
https://doi.org/10.1088/1367-2630/14/11/113035
https://doi.org/10.1103/PhysRevLett.103.135703
https://doi.org/10.1021/jp972543
https://doi.org/10.1103/PhysRevE.76.041121
https://doi.org/10.1063/1.5022058
https://doi.org/10.1063/1.3499745
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1103/PhysRevE.88.042139
https://doi.org/10.1080/08927022.2021.1975038
https://doi.org/10.1038/s41467-020-17948-1

