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Structure of the Lennard-Jones liquid estimated from a single simulation
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Combining the recent Piskulich-Thompson approach [Z. A. Piskulich and W. H. Thompson, J. Chem. Phys.
152, 011102 (2020)] with isomorph theory, from a single simulation the structure of a single-component
Lennard-Jones (LJ) system is obtained at an arbitrary state point in almost the whole liquid region of the
temperature-density phase diagram. The LJ system exhibits two temperature ranges where the van’t Hoff
assumption that energetic and entropic forces are temperature independent is valid to a good approximation.
A method to evaluate the structure at an arbitrary state point along an isochore from the knowledge of structures
at two temperatures on the isochore is also discussed. We argue that, in general, the structure of any hidden
scale-invariant system obeying the van’t Hoff assumption in the whole range of temperatures can be determined
in the whole liquid region of the phase diagram from a single simulation.

DOI: 10.1103/PhysRevE.103.012110

I. INTRODUCTION

The structure of an equilibrium liquid is characterized by
the radial distribution function g(r). This quantity can be ob-
tained by light scattering experiments, simulations, or liquid
state theory [1–3]. The radial distribution function provides
not only an idea of the structure, but also facilitates in pre-
dicting various thermodynamics quantities as g(r) is related
to the latter through interparticle interactions [4]. The static
structure factor, which is the Fourier transform of g(r), is
an input of the mode-coupling theory (MCT), which yields
dynamical quantities such as the mean-squared displacement
(MSD) or the intermediate scattering function [5,6].

Experiments are tricky to perform for supercooled liquids,
which may have a strong tendency to crystallize. Simulations
are equally difficult and need to be performed for a very long
time due to associated long relaxation times [7]. Theoretical
study of the temperature dependence of the structure will
facilitate the prediction of structure from limited experimental
or simulation data; however, such studies are limited [8].
Piskulich and Thomson [9] have recently shown that the radial
distribution function g(r) of TIP4P/2005 water [10] at several
temperatures can be obtained from a single simulation. This
theory is based on the van’t Hoff assumption [11] that the
energetic and entropic forces are temperature independent.

In this paper, we test the van’t Hoff assumption for the
single-component Lennard-Jones (LJ) system. This assump-
tion is not valid for the whole range of temperatures, but it is
approximately valid for two ranges of temperatures separately.
The Piskulich-Thompson theory, then, is employed to the LJ
system to predict the structure at other temperatures along the
same isochore in each temperature range separately. We also
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prescribe a method to predict the structure from knowledge
of g(r) at two different temperatures along the same isochore,
without performing any simulation or experiment.

A class of systems exhibits a strong correlation between
virial and potential-energy equilibrium fluctuations, such as
the inverse power law, LJ, etc., are known as a Roskilde or
R-simple system. Along an isomorph [12–15], an R-simple
system’s structure and dynamics are invariant in reduced units
[16,17]. We combine here the Piskulich-Thompson [9] ap-
proach with isomorph theory to predict the structure of the
LJ system at an arbitrary state point in the liquid region of the
temperature-density phase diagram.

We describe the Piskulich-Thompson theory in Sec. II.
Section III describes the simulation method used. The results
are given in Sec. IV. Section V explains how g(r) along an
isochore can be obtained without any simulation if the radial
distribution functions at two temperatures along the same iso-
chore are known. The extension of the Piskulich-Thompson
theory for R-simple liquids is described in Sec. VI. A discus-
sion and a summary are given in Sec. VII.

II. PISKULICH-THOMPSON THEORY

The radial distribution function is defined by [18]

g(r) = V

N2

〈∑
i

∑
j �=i

δ(r − ri j )

〉
, (1)

where ri j is the distance between particles i and j, and
V and N are the volume and the number of particles, re-
spectively. The 〈· · · 〉 represents an ensemble average. Since∑

i

∑
j �=iδ(r − ri j ) does not depend on the momenta, Eq. (1)

can be rewritten as

g(r) = V

N2

1

Z

∫
dqe−βU

∑
i

∑
j �=i

δ(r − ri j ), (2)
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in which dq are the system coordinates and β = (kBT )−1,
where kB and T are the Boltzmann constant and tempera-
ture, respectively. Z and U are the configurational canonical
partition function and potential energy of the system. The
temperature dependence of the radial distribution function
g(r) is given by [9]

∂g(r)

∂β
= − V

N2

〈
�U

∑
i

∑
j �=i

δ(r − ri j )

〉
, (3)

where �U = U − 〈U〉 is the fluctuation of potential energy
from its mean value 〈U 〉 (note that U is the total potential
energy of a configuration, not of an individual particle).

The Helmholtz free energy profile A(r) can be written in
terms of the radial distribution function g(r) as [9]

A(r) = −kBT ln g(r) − kBT ln ν(r), (4)

where ν(r) = r2 is a geometric factor. Without the geometric
factor, the free energy is simply the potential of mean force
FPM (r). The derivative of the Helmholtz free energy with
respect to β is given by

∂A(r)

∂β
= kBT

[
gH (r)

g(r)
+ kBT ln g(r) + kBT ln ν(r)

]
(5)

= kBT

[
gH (r)

g(r)
− A(r)

]
, (6)

where gH (r) ≡ − ∂g(r)
∂β

. The Helmholtz free energy A(r) can
be written in terms of internal energy and entropy as

A(r) = U (r) − T S(r). (7)

With the assumption that U (r) and S(r) do not depend on the
temperature (van’t Hoff assumption), a comparison of Eqs. (6)
and (7) yields expressions for the internal energy and the
entropy as

U (r) = gH (r)

g(r)
(8)

and

S(r) = 1

kBT 2

∂A(r)

∂β
. (9)

U (r) can be readily evaluated from Eqs. (1) and (3), and the
entropy S(r) can be determined from Eqs. (5), (3), and (1).
Thus one can calculate the value of U (r) and S(r) from sim-
ulation data at a reference temperature T0. Now from Eq. (4),
the radial distribution function at an arbitrary temperature T ,
but same density, can be written as

g(r; β ) = 1

ν(r)
e−βU (r)eS(r)/kB , (10)

where U (r) and S(r) are evaluated at T0. The above equation
gives rise to the van’t Hoff plot [19] if U (r) and S(r) are
assumed to be temperature independent.

Substituting the values of U (r) from Eq. (8) and ∂A(r)
∂β

from
Eq. (5), Eq. (10) becomes [9]

g(r; β ) = g(r; β0)eU (r)(β0−β ). (11)

This expression of g(r; β ) depends only on U (r) ≡ gH (r)
g(r) . It

is emphasized again that in the derivation, the van’t Hoff
assumption is assumed.

III. SIMULATION DETAILS

We have performed a canonical ensemble molecular dy-
namics simulation (NVT) of the LJ system employing a
Nose-Hover thermostat with N = 2000 particles at various
densities and temperatures. Employing a shifted-forces cutoff
[20], the LJ interaction potential between particle i and j is
given as

φ(ri j )

4ε
=

{(
σ
ri j

)12 − (
σ
ri j

)6 + C1r + C2, ri j < 2.5σ

0, ri j � 2.5σ,
(12)

where C1 and C2 ensure that the φ(r) and its first derivative
are continuous at the cutoff, r = 2.5σ . The simulations were
performed using RUMD (Roskilde University Molecular Dy-
namics) software [21], which is a graphical processing unit
(GPU) code. Unless otherwise stated, all quantities reported
in this paper are in LJ units: length, time, and temperature
are expressed in units of σ ,

√
mσ 2/ε, and ε/kB, respectively.

We have used the state-point dependent molecular dynamics
(MD) time step given by �t = 0.001

√
m/(kBT ρ2/3). Most of

the data result from 5×107 steps equilibration followed by
2×108 steps production run.

IV. RESULTS

A. The validity of the van’t Hoff assumption

If the van’t Hoff assumption is correct, then from Eq. (10)
or Eq. (11) ln g(r; β ) vs β should be a straight line. We plot
the g(r) against 1/T in log-linear scale in Fig. 1(a) for the LJ
system at density ρ = 0.80 for a range of r values. It shows
that the ln g(r) vs 1/T are not straight lines throughout the
considered temperature range. This means that the van’t Hoff
assumption that U (r) and S(r) are temperature independent
is not generally correct. The van’t Hoff assumption has been
seen not to be valid in other liquids or liquid mixtures with
covalent bonds [22,23], as well. Interestingly, the van’t Hoff
assumption is not valid for the LJ system, which is a very
simple liquid without any covalent bonds. However, two tem-
perature ranges can be assigned where ln g(r) vs 1/T plots are
fairly straight lines (though with different slopes). The main
variation of g(r) with inverse temperature is seen near the
first peak of g(r), i.e., near r = 1.0. Figure 1(b) exhibits the
1/T dependence of g(r) at r = 1.0. It shows a nonmonotonic
behavior with a maximum near T = 3.0. On either side of the
peak the plot is an approximately straight line, and thus the
van’t Hoff assumption holds good in two temperature ranges,
one at low T and another at high T .

In passing we note that this peak position should not be
taken to be an isosbestic point. Isosbestic points have been
observed in the oxygen-oxygen radial distribution function
gOO(r) in water [24–26] where ∂g(r)/∂β = 0. In the present
case ∂g(r)/∂β at r = 1.0 is zero due to the presence of a peak
unlike isosbestic points which are temperature independent.
The first isosbestic point for the LJ system at density ρ = 0.80
is 1.33 (not shown).
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FIG. 1. T −1 dependence of g(r) of a LJ system at density ρ =
0.80 in log-linear scale for (a) different values of r and (b) r = 1.0.
The dashed lines are guides to the eye.

B. Application of Piskulich-Thompson theory

We now apply the Piskulich-Thompson theory at two tem-
peratures, one on each side of the peak in Fig. 1(b) where
the van’t Hoff assumption is approximately valid, in order to
determine g(r) at other temperatures on that side. Figure 2(a)
exhibits g(r) at T = 0.80, 1.00, 1.20, 2.20, 2.60, and 3.00
obtained by applying Piskulich-Thompson theory at refer-
ence temperature T0 = 1.8 and density ρ = 0.80. The radial
distribution functions determined by employing Piskulich-
Thompson theory (lines) have been compared with those
obtained from MD simulation (symbols). They are in good
agreement. The data have been shifted upward for clarity.
Figure 2(b) shows the comparison of g(r) at T = 3.0, 4.0,
5.0, 7.0, 8.0, and 10.0 determined from Piskulich-Thompson
theory applied at T0 = 6.0 (lines) with that obtained from
direct MD simulations (symbols). The good agreement of the
two g(r) illustrates the following points: (i) the van’t Hoff as-
sumption is approximately valid in two separate temperature
ranges at each side of the g(r = 1.0) peak in Fig. 1(b) and
(ii) the Piskulich-Thompson theory works for the LJ system
in two temperature ranges.

Figure 2(c) shows the comparison between theoretical and
simulation g(r) at temperatures T = 4.0, 5.0, 6.0, 7.0, 8.0, and
10.0, which are on the high-temperature side of the peak in
Fig. 1(b). The Piskulich-Thompson theory has been applied at
T0 = 1.8, which is on the low-temperature side of the peak in
Fig. 1(b). With the increase of temperature, g(r) obtained from
theory deviates from the simulation one. A comparison of g(r)
for temperatures on the low-temperature side of the peak in
Fig. 1(b) is shown in Fig. 2(d), where the theory has been
applied at T0 = 6.0, which is on the high-temperature side
of the peak in Fig. 1(b). The two g(r) again show disagree-
ment, which worsens with the temperature moving away from
T = 3.0, where g(r) vs 1/T shows a peak. When the theory
is applied at the peak position (T = 3.0), the disagreement
between theoretical and simulation g(r) is seen on both sides
of the g(r) vs 1/T peak (see Appendix A).

Figure 3 shows the van’t Hoff demarcation line in the
temperature-density phase diagram of the LJ system. The
van’t Hoff demarcation line has been estimated from the
peak positions of g(r) vs 1/T for different isochores (see
Appendix B). The g(r) vs 1/T shows a peak for several values
of r. We have considered r satisfying ρ1/3r = 0.81/3 in order
to be close to the first peak position of the radial distribution
function. The van’t Hoff demarcation line increases with den-
sity. Figure 3 shows the melting line [27], freezing line [27],
and liquid-vapor coexistence curve [28]. The two isomorphs
also shown are discussed in Sec. VI. Though the van’t Hoff
demarcation line is well above the critical temperature, it is
still much lower than the Frenkel line [29]. At density ρ =
0.80, temperatures of the Frenkel and van’t Hoff demarcation
lines are around T = 14.0 [29] and T = 3.0, respectively.

V. THE STRUCTURE AT AN ARBITRARY TEMPERATURE
ALONG AN ISOCHORE ESTIMATED FROM TWO RADIAL

DISTRIBUTION FUNCTIONS

Equation (11) can be rewritten as

U (r) = kBT0T

T − T0
ln

[
g(r; β )

g(r; β0)

]
, (13)

where β0 = 1
kBT0

. It is easy to show that the first-order Tay-
lor expansion of g(r; β ) around g(r; β0) reduces Eq. (13) to
Eq. (8) in the limit of T → T0. Thus U (r) can be evaluated
from g(r) at two different temperatures at a given density.
The procedure for obtaining g(r), whether in experiments
or simulations, is irrelevant. These two temperatures can be
anywhere on the isochore in question, as long as the van’t Hoff
assumption is valid. However, one has no prior knowledge
of the temperature range where the van’t Hoff assumption
is valid for the system under consideration. It is, therefore,
intuitive to consider two temperatures that are not far away
from each other, ensuring that the van’t Hoff assumption is
valid at least in that small temperature range. Once the U (r)
is determined, the g(r) of liquids can be calculated at any
temperature along the isochore from Eq. (11) without per-
forming further simulation (or conducting more experiments).
This is quite useful for a liquid with unknown interparticle
interaction, and hence in this sense, the method is superior to
standard liquid state theory, which requires the knowledge of
the interactions between the particles.
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FIG. 2. A comparison of g(r) estimated at various temperatures T by employing the Piskulich-Thompson theory at a reference temperature
T0 with that from simulations. (a) Both T0 = 1.8 and various temperatures T are on the low-temperature side of the peak of g(r = 1.0)
vs 1/T in Fig. 1(b). (b) Both T0 = 6.0 and various temperatures T are on the high-temperature side of the peak. (c) T0 = 1.8 and various
temperatures T are on the low- and high-temperature sides of the peak, respectively. (d) T0 = 6.0 and various temperatures T are on the high-
and low-temperature sides of the peak, respectively. The density is ρ = 0.80.

Figure 4(a) shows the comparison of U (r) obtained by
using Eqs. (13) and (8) at T = 30, T = 45, and T = 80 at
density ρ = 2.0. The U (r) at T = 30 has been evaluated
using g(r) at temperatures T = 30 and T = 32. Similarly,
the function U (r) at T = 45 and T = 80 has been obtained
from g(r) at T = 45 and T = 50 and at T = 80 and T =
75, respectively. The U (r) at these three temperatures ob-
tained by using Eq. (13) (lines) is in good agreement with
that obtained from MD simulations (symbols) directly. In
MD simulations Eq. (8) is employed to evaluate U (r). Thus,
unlike the Piskulich-Thompson theory, one does not need
the fluctuation of potential energy �U to evaluate U (r).
Figure 4(b) shows a comparison of g(r) obtained from U (r)
evaluated by employing Eq. (13) (T0 = 45, T = 50) with the
one determined by employing the Piskulich-Thompson theory
at T0 = 45 (symbols) at temperatures T = 30, 45, and 80.

They are in good agreement with one another. Filled symbols
for the temperature T = 30 indicate that the liquid is super-
cooled. The theory works alike for normal and supercooled
liquids. As mentioned, this method opens up the possibility
of predicting the g(r) along an isochore of a liquid for which
the interparticle interactions are unknown if its g(r) at two
nearby temperatures are available, say, from light scattering
experiments. This method is robust for the temperature range
where the van’t Hoff assumption is valid.

VI. PISKULICH-THOMPSON + ISOMORPH THEORY

So far we have discussed the determination of g(r) along an
isochore either (i) directly using Piskulich-Thompson theory
or (ii) by employing Eqs. (11) and (13) where only g(r) at two
temperatures is needed. Now we generalize this into a method
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FIG. 3. The van’t Hoff demarcation line, obtained from the peak
positions of g(r = (0.80/ρ )1/3) vs 1/T for various isochores, has
been shown in the LJ phase diagram. The freezing line [27], melting
line [27], liquid-vapor coexistence curve [28], and Frenkel line [29]
are also shown.

to calculate g(r) at an arbitrary temperature in the T -ρ phase
diagram from just one simulation at the reference state point
(ρ0, T0). To achieve this we combine the Piskulich-Thompson
theory with isomorph theory. First we determine the isomorph
passing through the reference point (ρ0, T0). The equation for
an isomorph of the LJ system is given by [30–32]

T (ρ)

T0
=

(
γ0

2
− 1

)(
ρ

ρ0

)4

−
(

γ0

2
− 2

)(
ρ

ρ0

)2

, (14)

where the so-called density-scaling exponent γ0 is calculated
from the equilibrium constant-volume fluctuations at the ref-
erence state point by means of

γ0 = 〈�U�W 〉
〈(�U )2〉 . (15)

Here, �U and �W are fluctuations in potential energy and
virial.

Figure 5(a) exhibits g(r) at various state points along the
isomorph starting from the reference state point (ρ0, T0) =
(1, 2) for the LJ system. The inset of Fig. 5(b) shows the
isomorph (line) and the state points (red symbols) where MD
simulations have been performed. This isomorph is shown
in Fig. 3 as isomorph-1, which is above the freezing line.
The main panel of Fig. 5(b) shows the g(r) in Fig. 5(a) in
isomorph-reduced units. The color scheme for both main pan-
els is the same.

As expected, g(r) is invariant in isomorph-reduced units;
i.e., g(ρ1/3r) = const along the isomorph [Fig. 5(b)]. Hence,
the g(r) of the system at any point of the isomorph, say,
(ρ1, T1), can be obtained easily from the g(r) of the reference
point (ρ0, T0). Thereafter, the Piskulich-Thompson theory can
be employed along the isochore at ρ1. In order to apply the
Piskulich-Thompson theory we require the potential energy
at (ρ1, T1), which is different from that at the reference state
point (ρ0, T0). Fortunately, the potential energy at (ρ1, T1)
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FIG. 4. (a) The comparison of U (r) for the LJ system at density
ρ = 2.0 and T = 30, T = 45, and T = 80 obtained from fitting to
Eqs. (13) and (8). The data have been shifted upward for clarity by
10 units. (b) Comparison of g(r) obtained from Piskulich-Thompson
theory with that obtained from U (r) using Eq. (13) instead of from
simulation data. The data have been shifted upward by 2 units for
clarity.

can also be obtained by scaling the potential energy at the
reference point (ρ0, T0) by proceeding as follows. The scaled
potential energy U of the LJ system at (ρ1, T1) in terms of
potential energy at the reference point (ρ0, T0) is given by [33]

U = ρ̃m/3Um
0 + ρ̃n/3Un

0 , (16)

where ρ̃ = ρ1/ρ0 and U k is the potential-energy contribution
from the r−k term of the LJ pair potential. The Um and Un are
the repulsive and attractive parts of the LJ potential (and hence
m = 12 and n = 6), respectively, implying that

U = Um + Un, (17)
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FIG. 5. (a) g(r) at different state points on the isomorph; (b) same
g(r) in isomorph-reduced units. The color scheme for both main
panels is the same. Inset: State points for which g(r) is shown here.

in which Um
0 and Un

0 are the values of Um and Un at the
reference point (ρ0, T0) on the isomorph. The Um and Un are
given by [33]

Um = 3W − mU
m − n

, (18)

Un = −3W + mU
m − n

. (19)

The above equation is based on the fact that U k

ρk/3 = const
[ignoring the linear term in the shifted-force cutoff LJ poten-
tial; see Eq. (12)].

Figure 6 shows a comparison of −gH (r) obtained from iso-
morph scaling and direct simulation at state points (ρ = 1.2,

T = 4.79), (ρ = 1.5, T = 12.98), (ρ = 2, T = 44.21), and
(ρ = 2.5, T = 111.51) on the isomorph. The −gH (r) ob-
tained from isomorph scaling (lines) described above are in
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FIG. 6. The comparison of −gH (r) obtained from isomorph scal-
ing and direct simulation at different points on the isomorph.

good agreement with those obtained from MD simulations
(open symbols) at these state points.

Now we have g(r) as well as −gH (r) [so U (r)] at the state
point (ρ1, T1), and therefore, the Piskulich-Thompson theory
can be applied easily. Figures 7(a)–7(d) show comparisons of
g(r) obtained by employing Piskulich-Thompson + isomorph
theory with those from simulations. They are in good agree-
ment when |T − T1| is small. The slight discrepancy at large
|T − T1| is associated with the following two facts: (i) the LJ
system obeys the van’t Hoff assumption to a good approxima-
tion only in a limited temperature range and (ii) the isomorph
theory is not good at capturing the first peak correctly [16].
One can observe the discrepancy between isomorph theory
and simulation in −gH (r) near the first peak in Fig. 6, as
well. To summarize, for a van’t Hoff valid liquid, g(r) can
be calculated at any arbitrary state point in the liquid region
of the temperature-density phase diagram from a single state
point simulation.

VII. DISCUSSION AND SUMMARY

The van’t Hoff assumption is that the energetic and en-
tropic forces are temperature independent. We have shown
that the LJ system disobeys the van’t Hoff assumption when
viewed over the entire temperature range studied. Unlike other
non–van’t Hoff liquids [22,23], the LJ system does not have
any covalent bond. The fact that the van’t Hoff assumption
breaks down might be due to a different activation energy at
low and high temperatures. At very high temperature, the LJ
system is governed by entropic forces and energy plays little
role, but at low temperature the energy dominates and some of
the particles remain close to one another for quite a long time,
behaving as a quasicovalent bond.

While the van’t Hoff assumption for the LJ system is not
valid for the whole range of temperatures studied, there are
two distinct temperature ranges [see Fig. 1(b)] where the
van’t Hoff assumption applies approximately. This is vali-
dated by the excellent agreement of the g(r) obtained from
Piskulich-Thompson theory and simulation [see Figs. 2(a) and
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FIG. 7. The comparison of g(r) obtained by employing Piskulich-Thompson + isomorph theory with that from simulation at different
state points of an isochore: (a) ρ = 1.20, (b) ρ = 1.50, (c) ρ = 2.00, and (d) ρ = 2.50. The reference temperature and density for Piskulich-
Thompson + isomorph theory is (ρ0 = 1.0, T0 = 2.0). The data have been shifted upward by 2 units for clarity.

2(b)]. The Piskulich-Thompson theory has been applied at one
temperature in each low-T range (T = 1.8) and high-T range
(T = 6) to determine g(r) at other temperatures in that range
[see Figs. 2(a) and 2(b)]. For a van’t Hoffian system, a single
simulation is enough to determine g(r) at an arbitrary tem-
perature at the same density employing Piskulich-Thompson
theory. For a non–van’t Hoffian system, such as the LJ, the
range of temperatures where Piskulich-Thompson theory can
be applied to determine g(r), is limited. Thus for such a
system, one can only determine g(r) at the temperatures in the
vicinity of the state point where simulation data are available.

Simulations of supercooled liquids are challenging due
to their long relaxation time and strong crystallization ten-
dency. At such low temperatures, the van’t Hoff assumption
would probably be valid for all systems, and thus Piskulich-
Thompson theory can be applied. In such a scenario, this
theory could be helpful. In Appendix C, we show that the
theory indeed works equally well for supercooled liquids.

We have shown that the energetic force U (r) can be eval-
uated from a knowledge of g(r) at two temperatures, in the

van’t Hoff region [see Eq. (13)]. This method is particularly
useful when the interatomic and/or intermolecular interactions
are not known, forbidding computer simulations, or when
simulations and/or experiments are extremely challenging.
Since many systems may have multiple temperature ranges
with a valid van’t Hoff assumption similar to the LJ system,
it is best to consider g(r) at two close temperatures, where
the van’t Hoff assumption is bound to be valid. Once U (r)
is determined, g(r) can be predicted at various temperatures
along the isochore if the van’t Hoff assumptions holds.

The Piskulich-Thompson theory works only along an iso-
chore. We have extended this theory to calculate the g(r)
at an arbitrary state point of the liquid region of the phase
diagram from a single simulation at a reference state point
(ρ0, T0). For this, we have combined the Piskulich-Thompson
approach with the isomorph theory. The structure of a liquid
along an isomorph is invariant in isomorph-reduced units.
It should be noted that not all systems have isomorphs (are
R-simple) [34]—water is a striking counterexample—and the
current approach is of course limited to R-simple liquids. The
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isomorph theory is not valid in the gaseous region of the LJ
system either [16,35], and hence this theory cannot be applied
to determine the radial distribution function in the low-density
region of the LJ phase diagram.

In order to calculate g(r) at state point (ρ, T ), we first cal-
culate g(r) at (ρ, Tiso), where Tiso is on the isomorph. We here
need to scale the potential energy from the reference point to
the (ρ, Tiso) as well. For the LJ system, this is done as shown in
Eqs. (18) and (19) following Ref. [33]. This expression is sys-
tem dependent, and one needs to find the expression for other
potentials as per the isomorph theory described in Ref. [33].
Thus U (r) = gH (r)/g(r) is known at (ρ, Tiso). Thereafter, the
Piskulich-Thompson theory is employed along the isochore ρ

to calculate g(r) at the designated state point (ρ, T ).
Again, for a perfect van’t Hoffian system, g(r) at every

state point of the phase diagram (liquid region) can be ob-
tained. On the other hand, if the system does not have a
single temperature range where the van’t Hoff assumption is
valid, this theory cannot be used to evaluate g(r) in the whole
liquid phase of the diagram from a single simulation. But if
the information of different temperature ranges and data from
one simulation in each temperature range are available, one
can calculate g(r) in the whole liquid phase part of the phase
diagram for an R-simple system. We again remind that not all
systems have isomorphs [13,34]. However, many systems are
indeed R-simple [13] and Piskulich-Thompson + isomorph
theory should apply to any such system.

All thermodynamic quantities are related to the radial dis-
tribution function g(r), and hence they can be evaluated in the
liquid region of the phase diagram whenever the above theory
is applicable. But again, there are systems with three-body
interactions such as silicon [36–38] where the theory will not
be applicable. As far as dynamics is concerned, the MCT
requires the structure factor [which is Fourier transform of
g(r)] and the interparticle interactions to provide the dynamics
such as MSD and the intermediate scattering function. Thus
for an R-simple system, employing Piskulich-Thompson +
isomorph theory along with MCT, one can calculate all ther-
modynamics as well as dynamical quantities.

In summary, we have shown the following:
(i) The LJ system generally disobeys the van’t Hoff

assumption that the energetic and entropic forces are tempera-
ture independent. However, one can identify two temperature
ranges in which the van’t Hoff assumption is valid to a
good approximation. We validated this by comparing the
g(r) determined by employing Piskulich-Thompson the-
ory with that obtained from the simulation, with excellent
agreement.

(ii) One can obtain the energetic force term U (r) without
any simulation, and only g(r) at two temperatures in the
temperature range where the van’t Hoff assumption is valid is
required. Then g(r) along an isochore can be calculated from
U (r) at all temperatures where the van’t Hoff assumption is
valid.

(iii) The g(r) can be determined at an arbitrary state point
in the liquid region of the phase diagram for an R-simple
liquid from just a single simulation by employing Piskulich-
Thompson + isomorph theory.

It would be interesting to investigate whether the van’t
Hoff assumption may be valid in the whole temperature range
for other R-simple liquids, e.g., inverse-power law, Yukawa
potential, or Morse potential systems.
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APPENDIX A: PISKULICH-THOMPSON THEORY
APPLIED AT THE PEAK OF ln g(r = 1.0) VERSUS 1/T

Piskulich-Thompson theory is applied at the reference tem-
perature T = 3.0 for density ρ = 0.80 where ln g(r = 1.0) vs
1/T exhibits a peak [see Fig. 1(b)]. From Fig. 8 it is evident
that the theory can predict the structure on either side of the
peak only if the deviation from the reference temperature is
small. Theory fails to estimate g(r) on either side of the peak
when deviations from the reference temperature are large.

APPENDIX B: VAN’T HOFF DEMARCATION LINE

Figure 9 exhibits the 1/T dependence of g(r) for various
isochores. We here consider r which satisfies ρ1/3r = 0.801/3.

1.0 1.5 2.0 2.5 3.0 3.5r
0

1

2

3

4

5

6

7

g(
r)

Theory
simulation

Theory applied at T=3.0

T=1.00

T=1.20

T=2.20

T=5.00

T=8.00

T=10.00

FIG. 8. A comparison of g(r) obtained from simulations and
by employing the Piskulich-Thompson theory at the peak in
Fig. 1(b) (T = 3.0), at either side of the peak. The density is
ρ = 0.80.

012110-8



STRUCTURE OF THE LENNARD-JONES LIQUID … PHYSICAL REVIEW E 103, 012110 (2021)

10-3 10-2 10-1 100

1/T

100

1.25

1.50

1.90

g(
r)

 (i
n 

lo
g-

sc
al

e)

ρ=0.80, r=1.00
ρ=1.00, r=0.93
ρ=1.50, r=0.811
ρ=2.00, r=0.737
ρ=2.50, r=0.684
ρ=3.00, r=0.644

near g(r) first peak position
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The temperature, where ln g(r) vs 1/T shows a peak, in-
creases with density. These temperatures construct the van’t
Hoff demarcation line (see Fig. 3). The van’t Hoff assumption
holds good on either side of the demarcation line in the phase
diagram. One can determine the g(r) at an arbitrary state point
on either side of the van’t Hoff demarcation line from a single
simulation on the same side.

APPENDIX C: PISKULICH-THOMPSON + ISOMORPH
THEORY APPLIED ALONG AN ISOMORPH

IN THE SUPERCOOLED REGIME

In the main text, we have shown that Piskulich-Thompson
+ isomorph theory works well for normal LJ liquids. How-
ever, this theory works equally well in the supercooled regime
of the LJ phase diagram. For supercooled liquids, the refer-
ence state point is (ρ0, T0) = (1, 1); a supercooled isomorph
is shown as “isomorph-2” in Fig. 3. Figure 10(a) shows
the g(r) at different state points along the isomorph in the
supercooled regime, starting from the reference state point
(ρ0, T0) = (1, 1). The inset shows the state points where
MD simulations are performed. Figure 10(b) shows that
the g(r) in the reduced units, i.e., g(ρ1/3r), is isomorph
invariant.

Figure 11 is similar to Fig. 6, but for the isomorph in
the supercooled regime. The −gH (r) obtained from iso-
morph scaling and simulations are in good agreement,
similar to along the isomorph in the normal liquid regime
(Fig. 6).

Figure 12 is similar to Fig. 7 except that the reference
state point (ρ0 = 1, T0 = 1), where a single simulation is per-
formed, is now in the supercooled regime. Figure 12 shows
that Piskulich-Thompson + isomorph theory is able to deter-
mine the g(r) at an arbitrary state point below the van’t Hoff
demarcation line.
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FIG. 12. A comparison of g(r) obtained by employing Piskulich-Thompson + isomorph theory with that from simulation at different points
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