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ABSTRACT
In this paper, we performmolecular dynamics simulations of a
dielectric fluidic material composed of permanent molecular
dipoles. The dielectric spectrum features two peaks at lower
frequencies than the system phonon frequency. The
primary peak is observed at all temperatures studied and
shifts toward lower frequencies as the temperature
decreases. During this shift, the secondary peak emerges
with a higher peak frequency than the primary peak. The
secondary peak amplitude increases as the temperature
decreases. Both peaks are dependent on the wavevector; in
the small wavevector regime, the primary peak is shifted to
higher frequencies as the wavevector squared and the
secondary peak amplitude increases as the wavevector
increases, but shows no shift in frequency. From the
polarisation balance equation, we propose a model for the
dielectric spectrum. This captures the spectrum features,
and we conjecture that the primary peak is due to dipole
moment correlations (Debye-type) and the secondary peak
is due to the correlation between the dipole moment and a
microscopic local field.
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1. Introduction

Application of an external electric field to a dielectric material gives rise to a
polarisation density, P, of the material. For sufficiently small fields, the polaris-
ation is linear with respect to the field [1], and in the zero frequency and wave-
vector limit, homogeneous and isotropic case we have the simple constitutive
relation

P = 10xeE, (1)

where 10 is the dielectric permittivity of vacuum, xe is the dielectric suscepti-
bility, and E is the local electric field. The dielectric susceptibility is often
expressed in terms of the relative permittivity, 1r,0, as xe = 1r,0 − 1, where the
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subscript indicates that this expression is true in the zero frequency and zero
wavevector limit. In general, the dielectric response depends on both the
applied field history and local spatial correlations [2, 3]. The linear constitutive
relation, Equation (1), can then be generalised by introducing a wavevector and
frequency dependent susceptibility or, equivalently, a wavevector and frequency
dependent relative permittivity, 1r = 1r(k, v).

At zero wavevector the dielectric spectrum, i.e. the function 1r(v) = 1r(0, v),
has been intensively studied for decades [4–7]. The imaginary part of the spec-
trum (the dielectric loss) is observed to have many interesting features,
especially, upon system cooling, see for example Refs. [8–10]. The underlying
physical processes responsible for the rich dynamics are still not clear [10–
12], and are likely to depend on the specific molecular system under investi-
gation [13].

The material dielectric properties can also be studied in equilibrium [14].
Here the local polarisation density will fluctuate due to the system thermal
energy and the dynamics of the fluctuations can be studied through their corre-
lations. The fluctuation–dissipation theorem shows that the permittivity is in
general given through the bound charge density correlations [15], but in the
small frequency and wavevector regime this coincide with the polarisation cor-
relations [14, 15], hence, the polarisation is a fundamental quantity to study in
order to understand the underlying physical mechanisms.

By means of the polarisation fluctuations, we here investigate the wavevector
and frequency dependent dielectric properties for a simple fluidic material. By
the term simple material we imply a material that is made of permanent molecu-
lar (or microscopic) rigid dipoles with only translational and rotational degrees
of freedom. In this way we can ignore any effects from induced dipole moments
and intra-molecular re-arrangements, which allows us to propose a model for
the polarisation density from which one can derive the dielectric properties in
the limit of small frequency and wavevector. The model for the spectrum is com-
pared to results from molecular dynamics simulations of the material.

2. Model of the dielectric spectrum

The dynamical equations for the relevant correlation functions have been
derived by Hansen [16]. For completeness and ease of reading we will here
present the derivation. First, we write the polarisation density in terms of the
mass density, ρ, and the dipole moment per unit mass p as
P(r, t) = r(r, t)p(r, t). The balance equation for the polarisation at low wave-
vector is then given by [16]

∂(rp)
∂t

+ ∇ · rup
( ) = 1

tP
kE− rp
( )+ r(V× p)− ∇ · R, (2)
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where u is the streaming velocity, tP is the characteristic polarisation relaxation
time, κ is the polarisability, E is an electric field we define below,V is the angular
velocity, and R is the dipole flux tensor. Notice that in Ref. [16] κ is the polari-
sability per unit mass and is related to the current definition by a factor of
density. Hansen [16] proposed the following constitutive relation for R

R = −xv(∇ · p)I− 2x0(∇p)
os

− 2xr(∇p)
a

+ dR. (3)

Here xv, x0, and xr are phenomenological transport coefficients, and I is the
3× 3 identity tensor. Superscripts os and a indicate the traceless symmetric
and anti-symmetric parts of the tensor ∇p, respectively. dR denotes the fluctu-
ating part of the dipole flux and has the property that each tensor component,
dRnm, has zero mean and is uncorrelated with any component in the dipole
moment, that is,

〈dRnm〉 = 0 and 〈dRnm(r, t) pl(r
′, t′)〉 = 0, (4)

where indicies n,m,l runs over all tensor components. The average is performed
over independent initial conditions, and the properties in Equation (4) follow
the principles of stochastic forcing [17]. Substituting Equation (3) into Equation
(2) we arrive at the dynamical equation for the polarisation density

∂rp
∂t

+ ∇ · rup
( ) = 1

tP
kE− rp
( )+ r(V× p)+ xl∇(∇ · p)+ xt∇2p

− ∇ · dR. (5)

For convenience the coefficients xt = x0 + xr and xl = xv + x0/3− xr have
been introduced.

We write the quantities in terms of the average and fluctuating parts, that is
on the general form A = 〈A〉 + dA = Aav + dA. To first order in the fluctu-
ations Equation (5) then reduces to

rav
∂dp
∂t

= 1
tP

kdE− ravdp
( )+ xl∇(∇ · dp)+ xt∇2dp−∇ · dR. (6)

In Fourier space for wavevector k, this is

rav
∂d̃p
∂t

= 1
tP

kd̃E− ravd̃p
( )

− xlk(k · d̃p)− xtk
2d̃p− ik · d̃R. (7)

We now choose the wavevector k = (k, 0, 0), and write the dynamics of each
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vector component for the dipole moment explicitly as

∂d̃ px
∂t

= 1
tP

k

rav
d̃Ex − d̃ px

( )
− (nl + nt)k

2d̃ px −
ik
rav

d̃Rxx (8a)

∂d̃ py
∂t

= 1
tP

k

rav
d̃Ey − d̃ py

( )
− ntk

2d̃ py −
ik
rav

d̃Rxy (8b)

∂d̃ pz
∂t

= 1
tP

k

rav
d̃Ez − d̃ pz

( )
− ntk

2d̃ pz −
ik
rav

d̃Rxz , (8c)

where we have introduced the kinematic transport coefficients nt = xt/rav and
nl = xl/rav. With this choice of wavevector the dynamics separates into a longi-
tudinal mode, Equation (8a), and a transverse mode, Equation (8b), or equiva-
lently Equation (8c).

Multiplying Equation (8a) by dpx(− k, 0) and ensemble averaging over inde-
pendent initial conditions we get

∂C‖
pp

∂t
= 1

tP
kC‖

Ep − C‖
pp

( )
− (nt + nl)k

2C‖
pp, (9)

where C‖
pp is the normalised longitudinal dipole autocorrelation function

C‖
pp(k, t) =

〈dpx(k, t)dpx(− k, 0)〉
〈dpx(k, 0)dpx(− k, 0)〉 , (10)

and C‖
Ep the normalised longitudinal electric field dipole correlation function

C‖
Ep(k, t) =

〈dEx(k, t)dpx(− k, 0)〉
〈dEx(k, 0)dpx(− k, 0)〉 . (11)

Likewise, multiplying Equation (8b) by dpy(− k, 0) and ensemble averaging we
get an equation for the corresponding transverse correlation functions

∂C⊥
pp

∂t
= 1

tP

k

rav
C⊥
Ep − C⊥

pp

( )
− ntk

2C⊥
pp. (12)

with

C⊥
pp(k, t) =

〈py(k, t)py(− k, 0)〉
〈py(k, 0)py(− k, 0)〉 and C⊥

Ep(k, t) =
〈Ey(k, t)py(− k, 0)〉
〈Ey(k, 0)py(− k, 0)〉 . (13)

The two differential equations, Equations (9) and (12), are of the same form and
therefore have the same general solution. If we let α refer to either the
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longitudinal or the transverse correlation functions, we can write the solution as

Ca
pp(k, t) = e−(1/tP+nak2)t C0 + k

tPrav

∫
Ca
Ep(k, t) e

(1/tP+nak2)t dt

[ ]
(14)

in which na = nt + nl in the longitudinal case and na = nt in the transverse case.
C0 is a constant of integration and found from the initial condition
Ca

pp(k, 0) = 1.
The solution has one unknown function, namely, Ca

Ep(k, t). If E is the macro-
scopic local electric field, a natural approach is to invoke the Maxwell equations.
Especially, in the case of a zero free-charge density Gauss’ law states a zero diver-
gence of the electrical displacement field,∇ ·D = 0, that is, the local electric field
is given through the local polarisation and Ca

Ep is directly related to Ca
pp. This

relation will not be true in the general case and we let E be a generalised micro-
scopic local field by letting

Ca
Ep(k, t) = Aa(k) e

−t/tE (15)

in which Aa is wavevector dependent amplitude. In general, we write this on the
form Aa = A0 + A1,ak+ A2,ak2 + . . . such that the coupling between the field
and polarisation is the same for the longitudinal and transverse dynamics in
the limit of zero wavevector. tE is the characteristic correlation time which we
assume is the same for the longitudinal and transverse dynamics for all wavevec-
tors. Substituting the ansatz, Equation (15), for CEp into Equation (14) yields

Ca
pp(k, t) = C0 e

−(1/tP+nak2) t + kAa(k) e−t/tE

rav(1+ nak2tP − tP/tE)
. (16)

Since Ca
pp(k, 0) = 1, the constant of integration is readily found and one ends up

with the particular solution

Ca
pp(k, t) =

kAa(k)
ravb

e−t/tE − kAa(k)
ravb

− 1

[ ]
e−(1/tP+nak2) t , (17)

where b = 1+ nak2tP − tP/tE.
In order to compare the model to numerical data for the dielectric permittiv-

ity we note that the Fourier-Laplace transformation of Equation (17) is given by

Ĉa
pp(k,v) =

∫1
0
Ca

pp(k, t)e−ivtdt

= kAa(k)
ravb

1
1/tE + iv

− kAa(k)
ravb

+ 1

[ ]
1

1/tP + nak2 + iv

(18)

and generalising the frequency-dependent permittivity [18, 19]

1ar (k, v) = D1r 1− ivĈa
pp(k, v)

[ ]
, (19)
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where D1 is the so-called relaxation strength [19]. For the longitudinal permit-
tivity the straightforward generalisation in Equation (19) is an approximation at
low wavevectors to the true statistical mechanical formulation and will not
feature the singularities shown by Bopp et al. [15].

Before comparing the model to molecular simulations data a few points are
worth highlighting. (i) The model predicts two peaks in the dielectric loss (as
defined by Equation (19), one Debye-type peak with frequency 1/tP + nak2

and the other with peak frequency 1/tE. We denote these the primary and sec-
ondary peaks, respectively. We adopt this terminology as the peaks may not be
identical to the α and β peaks reported elsewhere in the literature, see also dis-
cussion below. (ii) In the low wavevector regime, the primary peak frequency
increases as the wavevector squared. The secondary peak is wavevector indepen-
dent. (iii) The primary peak is due to two processes, namely, a wavevector-inde-
pendent Debye relaxation process and a diffusion process which tends to remove
any dipole gradients in the system. (iv) The secondary peak is due to the coup-
ling between the local microscopic field and the dipole moment.

3. Molecular dynamics and comparison

The molecular model is an ensemble of simple dumbbells, where one bead is
positively charged and the other negatively charged. The charge magnitude is
set to q=1e, where e is the unit of charge. The two beads are connected with a
stiff spring such that the distance between them is on average l = 1s, where σ
is the characteristic length. The spring constant is k=1000 (ms)2/ε, where m
is the mass of a bead and ε is the energy scale. With this stiffness we can
safely ignore molecular elongation and assume that the molecular dipole
moment magnitude is constant. Beads not belonging to the same molecule inter-
act through the standard 6–12 Lennard–Jones and Coulomb potentials [20, 21].
To reduce the computational time the Coulomb interactions are approximated
by the shifted force scheme [22–24], with a cut-off of rc = 6s. The bead number
density is kept fixed at n = 0.85s−3, and we vary the temperature in the range
0.125e/kB ≤ T ≤ 1.0e/kB. At lower temperatures the system crystallises within
the simulation time frame used. The particles’ equation of motion are integrated
forward in time using the leap-frog algorithm with a Nosé–Hoover thermostat
[25]. The time step is Dt = 0.002/(s

�����
m/e

√
) and we simulate the system for

108 time steps. In all simulations, 1000 molecules were studied; the system
size dependence was checked against a system with 5000 molecules at tempera-
ture T = 0.2e/kB and zero wavevector, showing no size effects except from the
phonon modes. From here on we omit writing the units explicitly.

It is informative to first look at the structure and dynamics of the molecular
model. In Figure 1(a), the mean-square displacement is plotted for four different
temperatures. This indicates that while the single molecule motion is indeed
slowed down upon cooling (the diffusion is lowered by two orders of
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magnitude), the system is fluidic and does not enter an arrested state. The struc-
ture factor, Figure 1(b), is calculated from the coherent scattering function,
S(k) = F(k, 0), where

F(k, t) = 1
N

ñ(k, t)̃n(− k, 0)
〈 〉

, (20)

N being the total number of molecules in the system and ñ(k, t) = ∑
i e

−k·ri is
the Fourier transformed number density; ri is the centre-of-mass position of
molecule i, and k = (k, 0, 0) as above. Clearly, the system only features short-
ranged local structures.

The polarisation density is define microscopically as

P(r, t) = r(r, t)p(r, t) =
∑
i

mid(r− ri(t)), (21)

where m is the molecular dipole moment (here with a magnitude of one), and δ
is the Dirac delta not to be confused with the thermal fluctuation terms above.
To first order in the fluctuations, we therefore have for the wavevector-depen-
dent dipole moment

d̃p(k, t) = 1
rav

∑
i

mi e
−ik·ri(t). (22)

From Equations (10) and (13), we can the evaluate the dipole autocorrelation
functions. As an example we plot in Figure 2 data for C⊥

pp and C‖
pp at T=0.2

and wavevectors k = 0 and k = (1.42, 0, 0). Two important points should be
noted. First, for zero wavevector the two correlation functions are the same
within statistical uncertainty. This is in agreement with the model assumption
that Aa = A0 and by substituting k = 0 in to Equation (17). Second, for non-
zero wavevector the longitudinal dipole relaxation is faster than the transverse
dipole relaxation. This is also in agreement with the model predictions as the

Figure 1. (a) Molecular mean-square displacement for four different temperatures, T=1.0,0.5,0.2
and 0.125. (b) Structure factor for T=0.125.
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wavevector-dependent relaxation is determined by the kinematic transport
coefficient. For the longitudinal relaxation, we have n‖ = nt + nl, which is
always larger than or equal to the transverse case, n⊥ = nt , that is, n⊥ ≤ n‖.

From the dipole relaxation functions, C⊥
pp and C‖

pp, we can evaluate the cor-
responding dielectric permittivities defined here by Equation (19). Figure 3(a)
shows the temperature dependence of the dielectric loss. For T=1.0 one observes
one main peak; this peak shifts to lower frequencies as the temperature
decreases. As this shift occurs, a second peak emerges and the peak position is
less dependent of temperature. These two temperature characteristics are also
observed for the α and β peaks, see Ref. [10] and references therein. The fact
that the second peak’s relative amplitude increases with decreasing temperature
has been reported for the β-peak in a decahydroisoquinoline liquid [11]. From
Figure 3(b), one also observes that the first peak’s position is wavevector depen-
dent, whereas the second peak is not. This is in agreement with the model pre-
dictions above and we therefore associate the peaks with the model’s primary
and secondary peaks.

According to the model, the primary peak frequency is due to a diffusive
process, hence, the frequency should increase as the wavevector squared for
low wavevectors. This is confirmed for T=1.0, Figure 3(c). At lower tempera-
tures, the kinematic transport coefficients nt and nl become wavevector depen-
dent [26], and the simple dispersion relation no longer holds.

At frequencies just below 20 one also observes a third weak peak, which is
approximately independent of wavevector and weakly dependent of tempera-
ture. This mode is shown in more details in Figure 3(d). This mode is system
size dependent (at least for zero wavevector) and is also present if the bond

Figure 2. Dipole moment autocorrelation functions for wavevectors k = 0 and k = (1.42, 0, 0).
T=0.2. Lines connecting the data points (not all point shown) serve as a guide to the eye.
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connecting the beads is rigid, i.e. it cannot be due to an intra-molecular
vibrational mode. We therefore assign this frequency to the characteristic
system phonon frequency. Furthermore, we note that the acoustic phonon
mode is wavevector dependent. We therefore argue that the secondary peak is
not a phonon.

From data one can fix the relaxation times tP, and then use tE, na and the
amplitude kA as fitting parameters. In Figure 4, we show four examples of
this fitting protocol; the model fits agree well with the molecular dynamics data.

As discussed above, if one fits the model to data at low temperature and
different wavevectors, the kinematic transport coefficients are wavevector
dependent; we leave this investigation to further work. However, the two charac-
teristic times for the primary and secondary peaks can be extracted directly from
data and we show the result in Figure 5. Clearly, the temperature dependencies
of tP and tE are different; as mentioned above, the fact that the secondary peak’s
temperature dependence is lower than the primary peak’s is in agreement with

Figure 3. (a) The normalised dielectric loss as a function of frequency for different temperatures
at k = (1.42, 0, 0). (b) The normalised dielectric loss as a function of frequency for different
wavevectors at T=0.2. The dotted filled triangles represent data for the large system using
5× 103 molecules; no size effect can be observed. The axis scales are changed in (a) and (b)
in order to highlight the relevant details. Lines serve as a guide to the eye. (c) Dispersion
relations for the primary at T=1.0. (d) Phonon mode at large frequencies. T=0.2.
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the typical α and β behaviour in super-cooled liquids [9, 12]. However, for the
present dielectrics this dependency is concave, and not convex as often observed
in experiments.

4. Conclusion

We have performed molecular dynamics simulations of a molecular model for a
simple dielectric fluidic material. From the simulations, we extract the longitudi-
nal and transverse dielectric loss as defined here from the approximation in
Equation (19) as functions of both frequency and wavevector. The dielectric

Figure 4. Comparison between the molecular dynamics results (symbols) and the model (full
lines) using tE , na = nt + nl and kA as fitting parameters.

Figure 5. The two characteristic relaxation times for different temperatures. Lines serve as a
guide to the eye.
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loss features three peaks, a primary, a secondary and a phonon peak. The
purpose of the paper was then to compare the simulation data to a mechanistic
model based on the balance equation for the polarisation density.

In agreement with the simulation data, the model predicts (i) that the trans-
verse and longitudinal permittivities are the same functions of frequency at zero
wavevector, (ii) that for non-zero wavevector the polarisation relaxation is
fastest for the longitudinal mode, (iii) that there exists two non-phonon
modes (two peaks in the dielectric loss), and that (iv) for low wavevector and
sufficiently large temperatures the dispersion relation for the primary peak
goes as the wavevector squared.

It is not clear whether the primary and secondary peaks correspond to the α
and β peaks reported in the literature for super-cooled liquids. First, these peaks
are usually associated with glassy systems, that is, where the molecular dynamics
is extremely slow. In the present model system this is not the case, Figure 1. Sec-
ondly, usually the β peak amplitude decreases with increasing temperature,
where we observe the opposite behaviour for the present model. Finally, the
characteristic relaxation times tP and tE show a concave dependency with
respect to the inverse of temperature; this also does not agree with what is
most often found experimentally.
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