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ABSTRACT
It was recently shown that the real part of the frequency-dependent fluidity for several glass-forming liquids of different chemistry conforms to
the prediction of the random barrier model (RBM) devised for ac electrical conduction in disordered solids [Bierwirth et al., Phys. Rev. Lett.
119, 248001 (2017)]. Inspired by these results, we introduce a crystallization-resistant modification of the Kob–Andersen binary Lennard-
Jones mixture for which the results of extensive graphics-processing-unit-based molecular-dynamics simulations are presented. We find
that the low-temperature mean-square displacement is fitted well by the RBM prediction, which involves no shape parameters. This finding
highlights the challenge of explaining why a simple model based on hopping of non-interacting particles in a fixed random energy landscape
with identical minima can reproduce the complex and highly cooperative dynamics of glass-forming liquids.
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From experimental data for nine glass-forming liquids,
Gainaru and co-workers recently demonstrated a striking universal-
ity of the real part of the frequency-dependent fluidity.1 The fluidity
is defined as 1/η(ω), in which ω is the angular frequency and η(ω)
is the complex frequency-dependent linear shear viscosity. The data
involved van der Waals, ionic, and hydrogen-bonding liquids, i.e.,
chemically quite diverse systems. The universal fluidity data were
shown to fit well to a prediction based on the random barrier model
(RBM). This is surprising in view of the fact that this model has
no shape parameters and was devised for describing the completely
different hopping conduction in disordered solids. The RBM con-
siders non-interacting particles jumping stochastically on a simple
cubic lattice with identical site energies and random energy barri-
ers for nearest-neighbor jumps.2–4 This is not at all how one thinks
about a liquid. To illuminate this puzzling situation, we have carried
out extensive computer simulations of a highly viscous model liquid
in order to investigate whether the RBM does describe the particle
dynamics.

The relaxation time increases dramatically when a liquid is
supercooled and approaches the glass transition.5–9 A standard
probe of the dynamics is the single-particle mean-square displace-
ment (MSD) as a function of time, ⟨Δr2(t)⟩, in which Δr(t) is the
distance traveled by a given atom or molecule in time t and the
angular brackets denote an ensemble average. At long times, the

MSD is proportional to time and determines the (self) diffusion coef-
ficient D via ⟨Δr2(t)⟩ = 6Dt. The transition to a linear-time MSD
takes place roughly at the time at which the particles on average have
moved an interatomic distance. Since all liquids become diffusive at
long times, it is the subdiffusive regime that reveals details about the
liquid dynamics.

The RBM was devised as an idealized model of ac ionic
or electronic hopping conduction in disordered solids such as
oxide glasses, polymers, and amorphous semiconductors.2,3 In the
extreme-disorder limit, i.e., when kBT is much smaller than the rel-
evant energy barriers, the model predicts a universal MSD such that
the MSD as a function of time is the same for all barrier distribu-
tions except for a scaling of time and space.4 The only requirement
for this to apply is that the energy barrier probability distribution is
continuous at the percolation threshold.4 Physically, the response is
universal because the dynamics at extreme disorder is dominated by
percolation in the 3d random energy landscape.4

In a simple analytical approximation, the frequency-dependent
diffusion coefficient of the RBM defined by D(ω) ≡ (−ω2/6)
∫ ∞0 ⟨Δr

2(t)⟩ exp(iωt)dt is predicted to be the solution of ln D̃
= (iω̃/D̃)2/3, in which ω̃ is a scaled frequency and D̃ ≡ D(ω)/D(0).10

This is derived by combining the Alexander–Orbach con-
jecture that the percolation cluster has harmonic dimension
4/3 (independent of dimension)11 with the effective-medium
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approximation applied to diffusion on the percolation cluster.10

The quoted equation provides an excellent fit to computer simu-
lations of the RBM,10 except at the lowest frequencies where the
transition to a frequency-independent diffusion constant is better
described by the solution of the following generalized equation:
ln D̃ = (iω̃/D̃)(1 + (8/3)iω̃/D̃)−1/3.10 The Appendix provides a
numerical approximation to the RBM mean-square displacement as
a function of time.

MSD simulation data are conveniently fitted to the von
Schweidler empirical expression12

⟨Δr2(t)⟩ = r2
0 + a(6Dt)b + 6Dt. (1)

According to mode-coupling theory, the exponent b is non-
universal.13 Tokuyama has discussed common features of the MSD
of different models,14 but to the best of our knowledge, the possibil-
ity of a universal viscous-liquid MSD has not been considered in the
literature. This means that after the publication of Ref. 1, the glass
community finds itself in the unusual situation that experiments
suggest a more universal behavior than reported in simulations. An
important difference between experiments and simulations, how-
ever, is that the latter cannot yet cover the long time scales of exper-
iments on highly viscous liquids. Is this why the MSDs reported
in simulations, though similar, are not universal? To address this
question, one needs a viscous model liquid that is fast and easy
to simulate and which does not crystallize, even in extremely long
simulations.

Recent exciting developments with swap dynamics have made
it possible to generate equilibrium states of liquids with astronom-
ically long relaxation times.15,16 Unfortunately, probing the alpha
relaxation dynamics on these time scales remains out of reach, so for
studying the equilibrium dynamics, brute-force molecular dynam-
ics (MD) is still the only available option. We utilize state-of-the-art
graphics-processing unit (GPU) simulations17 to access equilibrium
dynamics at very low temperatures. The duration of the longest sim-
ulation was four months, which with traditional central-processing
unit (CPU) computing would have taken several years.

For almost a century, the standard model in liquid-state theory
has been the Lennard-Jones (LJ) system based on the following pair

potential v(r) = 4ε[(r/σ)−12 − (r/σ)−6], in which ε is a characteris-
tic energy and σ is a characteristic length.18,19 The LJ liquid cannot
be studied in the supercooled phase because it crystallizes. In 1995,
Kob and Andersen proposed a binary LJ system that is easily super-
cooled. The Kob–Andersen (KA) model is a mixture of 80% large A
particles and 20% small B particles.12 The trick is to have a strong
AB non-ideal (non-Lorentz–Berthelot) attraction impeding phase
separation. The parameters of the KA model are12 σBB/σAA = 0.88,
σAB/σAA = 0.8, εAB/εAA = 1.5, and εBB/εAA = 0.5. The KA model
quickly became the standard model for simulations of viscous liquid
dynamics.20 The mode-coupling temperature (the temperature at
which idealized mode-coupling theory based on higher-temperature
data predicts a diverging relaxation time16) was estimated to be
Tc = 0.435.12 As computers became faster, it eventually became pos-
sible to investigate the model below Tc (see, e.g., Refs. 20 and 21).
The KA model crystallizes in very lengthy simulations;22,23 in fact,
at the standard density 1.2, the KA liquid is supercooled whenever
T < Tm = 1.03.24

Although the strong AB attraction impedes phase separation,
the supercooled KA system eventually does crystallize by phase
separating into a pure A phase.24 Is it possible to modify the KA
model to make it even less prone to crystallization? We do this
by introducing a shifted-force cutoff at r = 1.5 σAA for the AA
and BB interactions.25,26 Figure 1(a) shows the original KA pair
potentials (dashed lines) compared to the modified binary Lennard-
Jones (mBLJ) pair potentials (full lines). The AA attraction of the
later is visibly weaker, and the BB attraction has also been weak-
ened. The motivation for using a shifted-force cutoff is that this
is known to leave the liquid dynamics almost unchanged,25,26 thus
facilitating a comparison between the original and the modified
model.

We performed molecular-dynamics simulations in the NVT
ensemble with N = 8000 particles (unless otherwise noted) at the
“standard” number density ρ ≡ N/V = 1.2; the temperature T was
controlled by using a Nose–Hoover thermostat. Unless otherwise
noted, the results are reported in standard MD units defined by
σAA = 1, ϵAA = 1, mA = mB = 1, and kB = 1. The time step was 0.005 in
this unit system.

FIG. 1. (a) Pair potentials in units of εAA plotted as a function of pair distance in units of σAA. Dashed lines: The standard Kob–Andersen (KA) pair potential with shifted
potential cutoffs at r = 2.5 σαβ. Full lines: The modified binary Lennard-Jones (mBLJ) pair potentials, which introduce shifted-force cutoffs at r = 1.5 σAA for the AA and BB
interactions and at r = 2.5 σAB for the AB interaction. The significant reduction of the AA attraction obtained in this way suppresses the tendency to phase separate. (b)
The red circles show the average crystallization times of the KA model23 and the red dashed curve is a parabolic fit to these data. This figure also shows the simulation
times for the mBLJ model at four temperatures: T = 0.37, 0.38, 0.39, and 0.40 (black crosses). Simulation times are scaled to be comparable to the crystallization times of
Ref. 23, which used N = 10 000. At T = 0.40, several independent simulations were performed, none of which crystallized. From this fact one deduces a higher estimate of
the minimum crystallization time. At each temperature, the black rectangles indicate the estimated range of possible crystallization times for the mBLJ model.
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FIG. 2. All-particle MSD as a function of time for the mBLJ system at the four tem-
peratures T = 0.37, 0.38, 0.39, and 0.40. Full lines are best fit to the von Schweidler
expression [Eq. (1)].12 At short times, the data follow the line of slope 2 expected
from ballistic behavior; at long times, the slope is unity reflecting diffusive behavior.
The liquid dynamics of the mBLJ model is close to that of the KA model, which is
illustrated by the blue dashed line giving the MSD of the KA model at T = 0.40.

The mBLJ liquid did not crystallize during the months of GPU
simulations carried out for this study. Figure 1(b) shows, as a func-
tion of temperature, the average crystallization time for the original
KA model (red circles)23 and the total simulation times for the mBLJ
system (black crosses). Since the mBLJ system did not crystallize,
at each temperature, the total simulation time gives a lower bound
on the crystallization time. The black rectangles indicate where the
unknown crystallization times are to be found. At T = 0.40, several
independent simulations were performed. This includes simulations
that were first equilibrated at the lower temperatures (0.37, 0.38, and

0.39, respectively), a procedure known to increase the tendency to
crystallize. Based on the data presented, we estimate that the mBLJ
liquid has at least a 100 times longer crystallization time than the
original KA liquid.

Having modified the original KA model such that crystalliza-
tion is, in practice, avoided, we turn to studying the supercooled
liquid dynamics. Figure 2 shows the mBLJ liquid’s all-particle MSD
as a function of time at four temperatures. The figure presents data
going to times larger than 108 MD time units, corresponding to
0.2 ms in argon units. The data are for N = 8000 particles; size inde-
pendence was checked by simulating also N = 27 000 particles at
T = 0.40, which gave indistinguishable results. The blue dashed line
shows data for the original KA model at T = 0.40, which are close to
those of the mBLJ model (blue crosses). This confirms that the two
models have very similar dynamics.

At very short times, one finds the well-known free-particle bal-
listic MSD ∝ t2, after which there is a plateau where the MSD is
almost constant. This derives from “cage rattling” of the particles
in local potential-energy minima, reflecting the fact that a viscous
liquid over short time scales is virtually indistinguishable from an
amorphous solid. At longer times, the MSD increases, of course,
and eventually one finds the standard diffusive behavior with the
MSD proportional to time. Note the dramatic slowing down upon
cooling: a temperature decrease of 7.5% results in more than one
decade’s slowing down. What causes this is, in a nutshell, the mys-
tery of the glass transition.8,9 The full curves in Fig. 2 are fits to the
von Schweidler expression [Eq. (1)].

Figure 3 investigates time–temperature superposition (TTS),
i.e., whether data for different temperatures can be made to collapse
by scaling the axes, as found in many experiments.1 In their origi-
nal paper, Kob and Andersen reported TTS obtained by scaling time
with the diffusion coefficient. In Fig. 3(a), we apply the same scaling
to our low-temperature MSD data, finding differences in the plateau
regime. In Fig. 3(b), we perform a further scaling on both axes by a
parameter c that has the dimension of a squared length, thus making
both axes dimensionless. The determination of c is described below
in connection with Fig. 4. From Fig. 3(b), one concludes that TTS
applies.

FIG. 3. (a) All-particle MSD at the four temperatures plotted as a function of time scaled by the diffusion coefficient D, showing data corresponding to t > 20 in MD units. The
data superpose not just at long times but also in the transition region. The short-time “plateau” regions, however, change with temperature. The inset shows results for longer
times, demonstrating that the diffusive behavior is given by the red dashed curve. (b) The same data as in (a) but scaled further on both axes by a squared empirical length
c, showing a near-perfect collapse, i.e., demonstrating time–temperature superposition. The black line is the von Schweidler fit to the T = 0.40 data.
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FIG. 4. All-particle MSD of true and inherent dynamics (full lines and plus symbols)
for four temperatures compared to the RBM prediction [Eqs. (2) and (3)], respec-
tively. The fit parameters were determined as described in the text. The agreement
with the inherent dynamics demonstrates that the RBM, despite having no shape
parameters, provides a good representation of the liquid dynamics. Adding a con-
stant to represent the contribution from cage-rattling gives a very good agreement
with the true MSD.

Next, we compare our low-temperature MSD data to the RBM
prediction (Fig. 4). Full lines are the MSD data scaled as in Fig. 3,
including now also the ballistic regime. The RBM relates to spatially
discrete particle jumps, so the predicted MSD does not reproduce
the short-time “cage-rattling” plateau present in any realistic vis-
cous liquid model. Consequently, in order to compare the RBM to
the MSD data, we add a constant reflecting the cage-rattling con-
tribution to the MSD. If the universal RBM prediction for the MSD
corresponding to unit diffusion coefficient is denoted by FRBM(t), the
RBM prediction thus becomes

⟨Δr2(t)⟩ = c FRBM(αt) + β, (2)

with three parameters c, α, and β. The long-time limit ⟨Δr2(t)⟩ = 6Dt
results in cα =D. Note that, for dimensional reasons, there must be at
least two parameters, a length and a time. Equation (2) is plotted as
the green dashed line in Fig. 4. We conclude that despite having just
a single shape parameter—compared to the two shape parameters of
the von Schweidler expression [Eq. (1)]—Eq. (2) fits the MSD data
very well.

In the following, we show that one can go one step further
and compare the RBM to the dynamics of the mBLJ model using
just the two scaling parameters, D and c, i.e., without any shape
parameters. Already in 1969, Goldstein recognized the significance
of potential-energy minima,27 which were later termed “inherent
states” by Stillinger and Weber.28 If the N particle coordinates are
collected into a single 3N-dimensional vector denoted by R, one can
distinguish between the “true” Newtonian dynamicsR(t) and its cor-
responding quenched “inherent” dynamics RI(t). As illustrated in
the inset of Fig. 4, the latter is arrived at by quenching configura-
tions from an equilibrium MD simulation to their inherent states.29

We run the same data analysis program on both the true configu-
rations R(t) and the quenched inherent configurations RI(t). Note
that RI(t) in the course of time jumps discontinuously from one
constant vector to another. Below Tc, the dynamics separates into
oscillations around inherent states and transitions between these,29

as predicted by Goldstein.27 The point is that the effect of oscillations

is removed by considering the inherent dynamics. Thus, the inher-
ent MSD, ⟨Δr2

I (t)⟩, can be compared directly to the RBM prediction
without additional constants

⟨Δr2
I (t)⟩ = c FRBM(αt). (3)

In Fig. 4, the inherent MSD is plotted as crosses for all four temper-
atures. It obeys time–temperature superposition, and despite having
no shape parameters, the RBM prediction [Eq. (3)] (the full green
line) describes the data well.

In the above analysis, the scaling parameter c was determined
by minimizing the root-mean-square difference between the inher-
ent MSD and the RBM prediction. Subsequently, the plateau param-
eter β was fitted for the true MSD [Eq. (2)]. The true MSD can be
fitted directly to Eq. (2), but using the resulting c parameters for
the inherent MSD results in a considerably worse fit. This reflects
the fact that the inherent contribution to the MSD is small at short
times. Note, however, that the inherent MSD at short times is more
than a factor 100 larger than the extrapolation of the diffusive regime
(the black dashed line). This is comparable to the increase in fluidity
observed in experimental data.1

We turn now to the relation between our results and the exper-
imental findings. If the RBM describes the liquid MSD and if one
assumes that the macroscopic shear viscosity controls the micro-
scopic frictional forces via the Stokes–Einstein relation between dif-
fusion coefficient and viscosity, the frequency-dependent fluidity is
proportional to the RBM universal prediction as found for nine liq-
uids by Gainaru and co-workers.1 Both assumptions are highly non-
trivial, though. The first assumption is supported by our simulation
results. The second assumption, the Stokes–Einstein assumption, is
definitely challenged in glass-forming liquids.7,30–33 We shall not dis-
cuss this further here, but note that for the arguments presented,
it is enough that the frequency-dependent viscosity and diffusivity
are inversely proportional—the proportionality coefficient may well
depend on temperature.

Why was the plateau parameter β not necessary in the analysis
of experimental data in Ref. 1? Letting tilde denote a suitable scaling,
we get from Eq. (2) the following equation:

F̃(ω̃) = F̃RBM(ω̃) + iω̃β. (4)

For the real part of the fluidity, which was the quantity investi-
gated in Ref. 1, there is no contribution from the plateau parameter.
Referring to the simulation data in Fig. 4, one can easily imagine
the plateau parameter β to be non-universal, leading to a universal
inherent MSD but a non-universal full MSD. By Eq. (4), this would
lead to a universal real part of the fluidity, but a non-universal imag-
inary part. This may explain why fluidity universality was not noted
before: The more commonly studied frequency-dependent viscosity,
η(ω) = 1/F(ω), is not universal.

Why do particles in a viscous liquid move like in a disordered
solid? The liquid is disordered, of course, but the more or less ran-
dom potential-energy landscape experienced by any given particle
changes with time. This argument refers to three dimensions. Tak-
ing a more abstract approach, it has been argued that the complexity
may be replaced by randomness in the high-dimensional configura-
tion space.34 This is similar to the philosophy of statistical mechan-
ics, which ignores the extreme complexity of a many-body system
and models it by a probability distribution. This way of thinking
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FIG. 5. Testing the RBM separately for each particle species with (a) showing the A particle MSD vs the RBM prediction and (b) showing the same for the B particles.

about the problem also addresses the challenge that a given parti-
cle does not experience a frozen landscape. Figure 4 shows that the
all-particle MSD is fitted well by the RBM prediction. Figure 5(a)
shows the results of the same analysis restricted to the A particles,
while Fig. 5(b) shows it for the B particles. The fit to the RBM is not
as good for the A particles as for all particles (Fig. 4), indicating that
the dynamics of the A particles by themselves is not accurately mod-
eled by the RBM. Interestingly, the B particles are fitted better by
the RBM. The B particles are smaller than the A particles and move
faster, with a characteristic time for transition to diffusive dynam-
ics that is about 1/10 of that of the A particles. This means that the
B particles to a higher extent than the A particles move in a frozen
three-dimensional landscape. Alternatively, because the best fit to
the RBM is found for the all-particle MSD, one may speculate that
the “correct” explanation of why the RBM works should refer to the
high-dimensional configuration space, not 3d space.

Our findings focus on the shape of the MSD and do not have
direct consequences for understanding the relaxation time’s temper-
ature dependence as modeled in, e.g., the Adam-Gibbs, random first
order transition, or shoving models.8 The latter views the metastable
equilibrium supercooled liquid as behaving more like “a solid that
flows” than like an ordinary liquid. The fact that particle motion in a
highly viscous liquid in the present work has been shown to be much
like particle motion in a disordered solid is in line with this view.

In summary, we have shown that the MSD of the KA model
modified to avoid crystallization follows the zero-shape-parameter
RBM prediction. This is consistent with the experimental findings of
Ref. 1 that are well described by the RBM. Our results leave impor-
tant questions for future works: Why do the mBLJ particles move
as if they were hopping in a random solid with identical energy
minima? How can one justify using a Stokes–Einstein argument for
converting MSD to the frequency-dependent fluidity? Finally, how
general are our findings?

This work was supported by the VILLUM Foundation (Grant
Nos. 00016515 and 00023189).

APPENDIX: NUMERICAL APPROXIMATION
TO THE RBM MEAN-SQUARE DISPLACEMENT
AS A FUNCTION OF TIME

The Random Barrier Model (RBM) was solved in the real-
Laplace-frequency domain on a cubic lattice with a box distribution

of energy barriers.10 The frequency-dependent diffusion coeffi-
cient D(s) for β = 320 is shown in Fig. 6 as symbols,10 where
β is the maximum barrier over temperature for the box distri-
bution of barriers. At low temperatures, the shape of D(s) for
the RBM becomes universal, i.e., independent of temperature and
energy barrier distribution. In the frequency range shown, the
data in Fig. 6 are a good representation of the universal RBM
prediction.

To facilitate transformation from the real-Laplace-frequency
domain to the time domain over the many decades involved, we fit
to the following function:

D(s̃)
D0
= 1 +

10

∑
j=1

aj s̃ j/10, (A1)

in which s̃ ≡ s/D0 = s/D(0).
The fitting was performed after taking the logarithm of both

the numerical data and the fitting function, resulting in the follow-
ing parameters (a1, . . ., a10) = (−1.1914, 11.2368, −34.2903, 26.6019,
47.0002, −96.2905, 77.4671, −27.0535, 7.725 35, −0.178 844). The
resulting fit is shown as the green dashed line in Fig. 6, and the
corresponding error is shown in the lower panel.

FIG. 6. Symbols: Numerical solution of the frequency-dependent diffusion coeffi-
cient D(s) for the random barrier model at β = 320, where s is the real Laplace
frequency. The box distribution was used for the energy barriers, and β is the
inverse temperature times the maximum barrier. The green dashed line is the
fit according to Eq. (A1). The lower panel shows the deviation between fit and
numerical data.
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Using D(s) ≡ (s2/6) ∫ ∞0 ⟨Δr
2(t)⟩ exp(−st)dt (see the main

text), Eq. (A1) implies by inverse Laplace transformation

⟨Δr2(t̃)⟩ = 6D0 t̃
⎛
⎝

1 +
10

∑
j=1

aj t̃1−j/10

Γ(2 − j/10)
⎞
⎠

. (A2)

This is the equation used to represent the RBM in Figs. 4 and 5, in
which a further empirical rescaling of t̃ was introduced.
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