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This paper presents physical-aging data for the silicone oil
tetramethyl-tetraphenyl trisiloxane. The density and the high-
frequency plateau shear modulus G∞ were monitored follow-
ing temperature jumps starting from fully equilibrated condi-
tions. Both quantities exhibit a fast change immediately after
a temperature jump. Adopting the material-time formalism of
Narayanaswamy, we determine from the dielectric loss at 0.178 Hz
the time evolution of the aging-rate activation energy. The rela-
tive magnitude of the fast change of the activation energy differs
from that of the density, but is identical to that of G∞. In fact,
the activation energy is proportional to G∞ throughout the aging
process, with minor deviations at the shortest times. This shows
that for the silicone oil in question the dynamics are determined
by G∞ in—as well as out of—equilibrium.
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Physical aging is the term used for changes of material prop-
erties over time caused by adjustments of the positions

of a system’s atoms or molecules (1–16). Although aging and
degradation of materials are often due to chemical reactions,
physical aging is important for amorphous solids like polymers
and oxide glasses during production as well as in subsequent
use. The experimental study of physical aging requires measure-
ments of high accuracy and considerable patience; simulations of
aging are likewise demanding in terms of computational power
requirements (17–19). Aging has been studied by monitoring
density (1), enthalpy (2, 3), dc and ac electrical response (20–
22), etc. Interestingly, these and other quantities all age in a very
similar fashion.

Property changes due to physical aging rarely follow a simple
exponential function in time, and even temperature changes as
small as 1% usually lead to a response that is far from linear.
Physical aging can only be observed just below the system’s glass
transition temperature because at lower temperatures, aging
takes place on geological time scales. Many studies of physi-
cal aging monitor a quantity during and after the system’s glass
transition (2–4, 7, 14). A conceptually simpler case involves first
equilibrating the system at one temperature by long-time anneal-
ing, after which the temperature is changed rapidly to a new,
constant value where the full approach to equilibrium is mon-
itored as a function of time. This is referred to as an ideal
temperature-jump experiment if no relaxation takes place before
the temperature is constant throughout the sample and if the sys-
tem is monitored until equilibrium has been reached (21, 23).
We report below close-to-ideal temperature-jump aging data for
a silicone oil.

The Material Time and Single-Parameter Aging
A breakthrough in the description of physical aging was made in
1971 by Ford Motor Company engineer O. S. Narayanaswamy
(2). He showed that physical aging can be described by a
standard linear-response-theory–type convolution integral if the
integration variable is changed from time to a so-called “mate-
rial time,” the rate of change of which itself evolves as the
structure ages (2). This finding is still not fully understood
theoretically (24). Yet, what became known as the Tool–

Narayanaswamy (TN) aging formalism has been used in industry
for decades. An excellent introduction to the TN formalism can
be found in Scherer’s 1986 textbook (7); we use this theoreti-
cal framework below to interpret data for the physical aging of
the silicone oil DC704 (tetramethyl-tetraphenyl trisiloxane) in
temperature-jump experiments.

Consider a temperature jump that starts from a state of equi-
librium at the temperature T0 + ∆T and changes temperature
to T0 at t = 0. If the quantity monitored is denoted by X (t) and
∆X (t) is X (t) minus its equilibrium value at T0, the normalized
relaxation function R(t) is defined by

R(t)≡∆X (t)/∆X (0) . [1]

By construction, R(0−) = 1 (just before the jump) and
R(t→∞) = 0. For a temperature down jump, the system is
self-retarded because the structure approaches one of slower
structural relaxation. For a temperature up jump, the system is
self-accelerated because the structure converges to one of faster
relaxation (19, 25–27). Consequently, temperature down jumps
result in relaxation functions that approach equilibrium faster
and are more “stretched” than those of temperature up jumps
to the same temperature, compare the red and blue curves in
Fig. 1B.

According to Narayanaswamy, a glass-forming liquid has what
may be thought of as an “internal” clock that quantifies how fast
molecular rearrangements take place (2, 7, 28). In equilibrium,
the clock rate is constant and equal to the inverse of the struc-
tural (alpha) relaxation time. In an aging system, the clock rate
changes with time. If the material time is denoted by ξ, at any
given time t the aging (clock) rate γ(t) is defined by
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Fig. 1. Physical aging of the density of the silicone oil DC704 monitored by
measuring the real part of the dielectric constant at 10 kHz after tempera-
ture jumps. Temperature is controlled by a Peltier element; due to the thin
liquid layer (50 µm), the setup allows for temperature equilibration within
a few seconds (21). (A) Data for 3 consecutive 1.5-K temperature jumps
plotted as a function of time. (B) The corresponding normalized relaxation
functions R(t) vs. the logarithm (base 10) of the time after each jump. Since
ε′(f = 10 kHz) is a linear function of the density (22, 33, 34), the 3 normalized
relaxation functions are identical to the those of the density. The 2 tempera-
ture up jumps (blue and yellow) result in curves of the same shape, reflecting
the principle of thermorheological simplicity (time aging–time superposi-
tion) (2, 7). (C) Test of the SPA prediction that the KM aging rate Γ(t) (Eq. 5)
for down/up jumps to the same temperature obeys Γ(R) = Γlin(R) exp(±kR)
in which Γlin(R) is the linear KM aging rate, i.e., its ∆T→ 0 limit. C, Inset
validates this by plotting as a function of R the difference of the logarithms
of the KM aging rates of the 2 jumps, ∆ log Γ, resulting in a straight line.
The main plot shows that the 2 relaxation curves superpose when com-
pensated for the exponential R dependence (solid curves)—these curves
give Γlin(R).

γ(t)≡ dξ

dt
. [2]

The TN formalism (2, 7) predicts that upon a temperature
jump carried out at t = 0, the normalized relaxation function is
given by

R(t) =φ(ξ) . [3]

Here ξ= ξ(t) is the material time since the jump and, cru-
cially, the function φ(ξ) is the same for all jumps. If φ(ξ) is a
stretched exponential function, the above is referred to as the
Tool–Narayanaswamy–Moynihan (TNM) description (29, 30).
An attempt to justify TN was given in ref. 24, linking to previous
work by Cugliandolo and Kurchan (31) who in the 1990s inde-
pendently developed a closely related theory in the context of
spin glasses.

The simplest case is that of single-parameter aging (SPA) (2, 7,
32). To introduce this concept, we write for any 2 physical quanti-
ties X1≈X2 if one is a linear function of the other in the relevant
experimental range, i.e.,

X1≈X2 ⇔ X1 =α12 +β12X2 . [4]

This defines an equivalence relation (recall from mathematics
that x ∼ y is an equivalence relation if the following applies for
all x , y , z : 1) x ∼ x , 2) x ∼ y implies y ∼ x , and 3) x ∼ y and y ∼ z
implies x ∼ z ). In equilibrium, by first-order Taylor expansions
all quantities are equivalent if only small temperature variations
are considered. For 2 quantities to be regarded as equivalent in
the present context, however, Eq. 4 must apply also for out-of-
equilibrium conditions.

Since relaxation phenomena are generally thermally activated,
we write the aging rate in terms of a time-dependent activation
energy as follows: γ(t) = γ0 exp[−∆E(t)/kBT (t)] in which γ0 =
1014 s−1 is the attempt frequency. By definition, a quantity X
obeys SPA if X ≈∆E , in which case the aging rate at any given
time is determined by X (t) and the temperature (32).

Fig. 1A shows data for the aging of DC704 monitored by mea-
suring the real part of the high-frequency dielectric constant,
ε′(f = 10 kHz), after 2 consecutive 1.5-K temperature up jumps
starting at 207.0 K, followed by a 1.5-K down jump. After each
jump equilibrium is reached to a very good approximation so
these are close-to-ideal temperature jumps. In the temperature
range monitored ε′(f = 10 kHz) is almost frequency indepen-
dent and, to a very good approximation, a linear function of the
system’s density ρ (33). Thus the normalized density relaxation
function is identical to that of ε′(f = 10 kHz). This provides a
convenient way to probe even small density changes (22, 33, 34).
Fig. 1B shows the 3 normalized relaxation functions plotted as a
function of the logarithm of the time since the jump. Comparing
the up and down jumps to 208.5 K, blue and red, respectively,
demonstrates the above-mentioned nonlinear nature of physical
aging even for small temperature jumps.

Fig. 1C shows the Kovacs–McKenna (KM) aging rate defined
(1, 28) by

Γ(t)≡−d lnR(t)

dt
[5]

plotted as a function of R for the up and down jumps end-
ing at 208.5 K. The SPA assumption implies that γ(t) =
γeq exp(±kR(t)) in which γeq is the equilibrium inverse relax-
ation time at 208.5 K and k is a numerical constant proportional
to ∆T (32). The plus case represents the down jump from
210.0 K and the minus case describes the up jump from 207.0 K.

Eqs. 2, 3, and 5 imply for the Kovacs–McKenna aging
rate Γ(t) =−d lnφ/dt =−(d lnφ/dξ)(dξ/dt) =−[φ′(ξ)/φ(ξ)]
γ(t) =−[φ′(ξ)/φ(ξ)]γeq exp[±kR(t)] in which ξ= ξ(t). Since ξ
by Eq. 3 is the same function of R for all jumps, one has by inver-
sion ξ= ξ(R). SPA thus predicts that for a given value of R, the
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ratio of the down- and up-jump KM aging rates is an exponen-
tial function of R. This is validated in Fig. 1C, Inset, which shows
that the difference of the logarithms of the 2 KM aging rates is a
linear function of R.

The 2 solid collapsing curves in the main plot in Fig. 1C
show the density KM aging rates compensated for the expo-
nential R dependence. This gives the KM aging rate pre-
dicted for an infinitesimal temperature jump, Γlin(R), corre-
sponding to k = 0 in the SPA characterizing equation γ(t) =
γeq exp(±kR(t)). The solid curves are not horizontal because
even linear aging is nonexponential, i.e., has a nonconstant KM
aging rate.

The density data in Fig. 1 conform to the SPA prediction of
a linear relation between the activation energy and the property
measured; for DC704 this has also been established for the high-
frequency shear-mechanical plateau modulus G∞ (32). We show
below, however, that this does not necessarily imply that Eq. 4
is obeyed because the same prediction applies for a more gen-
eral version of SPA (Eq. 6). Recently, glycerol was also shown to
conform to the SPA prediction (35), which is interesting because
hydrogen-bonding systems are generally more complex than van
der Waals bonded systems.

A major challenge in glass science is what determines the
activation energy of the dynamics of supercooled liquids. Is it
the configurational entropy as in the Adam–Gibbs model from
1965 (36, 37) and later more sophisticated theories (38, 39)?
Is it the density as in free-volume models (40, 41)? Is it the
high-frequency plateau shear modulus G∞ as in the shoving
and related elastic models (42, 43)? Or is the activation energy
not related to any well-known physical property? Answering
these questions would put the fundamental physics of glass-
forming liquids on a firm ground and, in particular, settle the
long-standing controversy about whether or not the relaxation
time of a glass-forming liquid diverges at a finite temperature
(44–48). Before addressing how to determine the aging-rate acti-
vation energy, we compare the normalized relaxation functions
of density and G∞.

Comparing Density and G∞ Aging
Fig. 2B compares the normalized relaxation functions of ρ and
G∞ for small temperature jumps. The density data represent the
linearized overlapping solid curves in Fig. 1C; the G∞ data are
from resonance-frequency measurements for which aging follow-
ing a temperature jump of just 0.15 K may be probed with good
resolution (Fig. 2A). Fig. 2B shows that ρ and G∞ both experi-
ence a fast change. This initial fast jump is significantly larger for
ρ than for G∞, however. Fig. 2B, Inset shows that after rescaling
the 2 relaxation curves superpose.

The different magnitudes of the fast changes right after t = 0
show that both quantities cannot obey SPA (Eq. 4) because
∆E ≈ ρ and ∆E ≈G∞ leads to ρ≈G∞, implying identical nor-
malized relaxation functions for ρ and G∞. The single-parameter
aging tests in Fig. 1C and ref. 32 relate only to the relaxing part
of the quantity X monitored, however, and these tests apply also
if ∆E is equivalent to X in the more general sense

X1∼X2 ⇔ X1 =α12(T ) +β12X2 . [6]

This allows for independent fast contributions of X1 and X2 upon
a temperature jump. We henceforth say the quantity X obeys
“rigorous SPA” if ∆E ≈X (Eq. 4) and “general SPA” if the
more general relation ∆E ∼X of Eq. 6 applies.

Determining the Aging-Rate Activation Energy
Fig. 2B showed that ρ and G∞ cannot both be equivalent to
∆E in the sense of Eq. 4, i.e., at most one of them obeys rigor-
ous SPA. To investigate this more closely, one needs to find the
aging-rate activation energy, which is done by arguing as follows
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Fig. 2. Aging of the high-frequency plateau modulus G∞ and the den-
sity ρ. (A) Resonance frequency fres of a piezo-ceramic disc with DC704
sandwiched between the disc and a metal cylinder, which determines G∞
by the expression G∞ = Af2

res− B in which A and B are constants (see SI
Appendix for how these constants are determined) (49). The resonance fre-
quency is shown as a function of time after a temperature down jump of
magnitude 0.15 K, which is small enough to be virtually linear. The temper-
ature is stabilized and uniform throughout the sample after about 100 s.
(B) The normalized relaxation function of G∞ (green circles) and of the
linearized density relaxation data in Fig. 1C. The fast contributions to the
2 normalized relaxation functions differ, implying that at most 1 of the 2
quantities can be equivalent to the activation energy in the sense of Eq. 4. B,
Inset shows that the 2 curves superpose when scaled empirically. This is
consistent with the general single-parameter aging scenario for ρ and G∞
defined by ∆E∼X (Eq. 6) in which X is the quantity monitored.

(21). Fig. 3A shows the equilibrium dielectric loss of DC704 at 2
temperatures above the glass transition. The loss-peak frequency
is identified with the equilibrium aging rate. If temperature is
lowered, the equilibrium loss curve moves to lower frequencies.
Fig. 3A illustrates the so-called shift-factor method of determin-
ing the aging rate γ(t) (1, 5), which identifies γ(t) by monitoring
the dielectric loss at a fixed frequency fc above the loss-peak
frequency (vertical arrow) (21). DC704 obeys time–temperature
superposition (TTS); moreover, DC704 has no measurable beta
process (50) and a high-frequency loss that follows an approxi-
mate power law∝ f −a [a ∼= 0.5 (51)]. From these facts, assuming
the so-called time-aging–time-superposition property that is a
prerequisite of the TN formalism (7, 52), it follows that γ(t) dur-
ing aging may be identified from a ln γ(t) = ln ε′′(fc , t) + Const.
(21). Fig. 3B validates this method of determining the aging rate
by showing that it predicts equilibrium aging rates consistent with
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Fig. 3. Shift-factor method for determining the aging rate γ(t). A shows
the principle of the method, which utilizes the fact that DC704 has no beta
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power law ∝ f−a in which f is the frequency. In equilibrium, the loga-
rithm of the dielectric loss measured at a fixed frequency fc much above
the loss peak (vertical arrow) is a linear function of the logarithm of the
loss-peak frequency fmax. This identifies the aging (relaxation) rate in equi-
librium; the TN formalism implies that this method identifies the aging rate
also in nonequilibrium situations (21). B demonstrates that the equilibrium
rates obtained in this way are consistent with extrapolations of higher-
temperature equilibrium loss-peak frequencies; the black circles show the
initial and final values of the aging rate for the 207.0-K to 208.5-K jump.

extrapolations of higher-temperature equilibrium loss-peak data
(black circles).

Due to the time it takes to establish a spatially constant
temperature profile in our measuring cell after a jump, G∞
can only be evaluated reliably for times longer than 100 s.
Fig. 4A shows the aging-rate activation energy ∆E(t) follow-
ing a jump from 207.0 K to 208.5 K, evaluated assuming
γ(t) = γ0 exp[−∆E(t)/kBT (t)] in which T (t) = 208.5 K. Ini-
tially, there is a fast change of the activation energy. This is
consistent with the recent finding by Niss (22) for polyisobutylene
625, which also showed a fast change in the activation energy.
Fig. 4C compares the normalized relaxation function of the acti-
vation energy to that of the G∞ aging data (Fig. 4B). The 2 curves
superpose to a good approximation.

Is the activation energy proportional to the plateau modu-
lus G∞ as in the shoving model (42, 43)? The above analysis
allows for α 6= 0 in Eq. 4 in which case ∆E ∝G∞ does not
apply. Fig. 5 investigates more closely the relation between ∆E
and G∞. Fig. 5A plots the change of the activation energy from
its equilibrium value at the starting temperature divided by the
same for G∞, showing that the 2 changes are proportional to a
good approximation. This is confirmed by plotting in Fig. 5B the
same ratio where instead the long-time limits were subtracted.
Finally, Fig. 5C demonstrates directly that ∆E(t)∝G∞(t)
throughout the aging process with a minor deviation at the
shortest times.

Thermodynamic Description of General Single-Parameter
Aging
A single-parameter description of linear scalar thermoviscoelas-
ticity was proposed some time ago, based on the following
reasoning (53, 54). If temperature and pressure are externally
controlled, each of their complementary variables entropy and
volume is a linear combination of the temperature and pressure
deviations from equilibrium plus a relaxing variable, i.e., a quan-
tity that cannot change abruptly and which contains all mem-
ory of the thermal prehistory. A single-parameter description
applies if the 2 relaxing variables are proportional in their time
variation (53).

According to the Narayanaswamy recipe, linear scalar thermo-
viscoelasticity generalizes to the nonlinear case by replacing time

by the material time. In the spirit of SPA it is reasonable to expect
that the aging-rate activation energy is also a linear combination
of temperature, pressure, and the relaxing variable. By express-
ing the latter in terms of volume, temperature, and pressure, a
description of general SPA is arrived at which involves the sys-
tem’s temperature T , pressure p, and density ρ. Considering only
small variations as in the above experiments, a thermodynamic
description of general SPA is thus (5, 6, 55)

∆(∆E) = A∆T +B∆p +C∆ρ . [7]

This “Tpρ model” is understood as follows. If the equilibrium
reference state point has activation energy ∆E0, temperature T0,
pressure p0, and density ρ0, the aging-rate activation energy as
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a function of the material time ξ is given by ∆E(ξ)−∆E0 =
A(T (ξ)−T0) +B(p(ξ)− p0) +C (ρ(ξ)− ρ0). Note that most
glass-forming liquids are “super-Arrhenius” in which case A< 0.

In ambient-pressure experiments ∆p = 0 and Eq. 7 reduces
to ∆(∆E) =A∆T +C∆ρ. Consider a temperature jump to
the reference state point, starting from equilibrium at T0 +
∆T . Before the jump the density is ρ0 + ∆ρ in which ∆ρ=
−ρ0αp∆T where αp is the isobaric thermal expansion coef-
ficient. Thus before the jump the activation energy is ∆E0 +
(A−Cρ0αp)∆T . After the jump T (ξ) =T0 and the activa-
tion energy is given by ∆E(ξ) = ∆E0 +C (ρ(ξ)− ρ0) = ∆E0−
Cρ0(αp −αp(ξ))∆T in which αp(ξ) is the time-dependent iso-
baric thermal expansion coefficient (αp =αp(ξ→∞)). Thus the
normalized relaxation function of the activation energy is for
ξ > 0, i.e., after the fast change

R∆E (ξ) =
αp −αp(ξ)

−A/(Cρ0) +αp
. [8]

For comparison, the normalized density relaxation function is

Rρ(ξ) = (αp −αp(ξ))/αp . [9]

The 2 functions are proportional for ξ > 0 and can be scaled to
identical functions of the material time (and therefore also of the
actual time).

Recently Niss (22) presented high-precision data for the aging
rate as a function of volume for polyisobutylene 625 subjected
to a number of different temperature jumps at ambient pressure
(lower part of figure 2a in ref. 22). These data conform to the
Tpρ model (Eq. 7). Struik’s (5) old polymer shift-factor aging
data also obey Eq. 7 to a good approximation (figure 85 in ref.
5). For R-simple systems, i.e., those obeying hidden scale invari-
ance believed to include most van der Waals liquids and metals
(56), because of the strong correlations between virial and poten-
tial energy, Eq. 7 implies that besides temperature and density,
the potential energy determines the aging-rate activation energy.
This is the main assumption of the potential-energy-clock model

of Adolf et al. (57, 58), which describes well several different
experiments.

Concluding Remarks
We have introduced 2 versions of SPA for a quantity X
monitored during aging, rigorous SPA defined by ∆E ≈
X (Eq. 4) and general SPA for which ∆E ∼X (Eq. 6),
which includes a term that follows the temperature instanta-
neously on the aging time scale. The density of the silicone oil
DC704 obeys general SPA (Fig. 1) (32). The activation energy
∆E and G∞ are found to be proportional throughout the aging
toward equilibrium (Fig. 5C). This means that α= 0 in the rigor-
ous SPA aging condition ∆E ≈G∞. We conclude that physical
aging of DC704 is determined by G∞.

Our findings for the out-of-equilibrium situation of physical
aging are consistent with the shoving model for the equilibrium
non-Arrhenius temperature dependence of the alpha relaxation
time. According to this model, which describes the temperature
dependence of the relaxation time of some but not all glass-
forming liquids (59), the activation energy may be identified with
the elastic work done locally on the surroundings to, for a brief
moment, create the space needed for the molecules to rearrange
(43, 60, 61).

Which function fits the aging data? The linear G∞ aging data,
which represent the single-parameter aging function φ(ξ), are
well described by φ(ξ) = exp(−c1− c2ξ− c3

√
ξ) (SI Appendix).

This function is the green dashed line in Fig. 2B. If c1 =
c2 = 0, this corresponds to the TNM approach to aging based
on the stretched exponential function φ(ξ) = exp(−c3ξ

β) with
β= 1/2 (3).

A long-standing discussion in the field is whether or not the
relaxation time of a metastable supercooled liquid diverges at
a finite temperature (14, 36, 45, 62, 63). Prominent models like
the Adam–Gibbs entropy model (36) and the more sophisticated
random first-order theory (RFOT) of Wolynes and Lubchenko
(64) predict such a divergence, while a recent related approach
predicts a zero-temperature divergence of the relaxation time
(65). Experimental evidence for a finite-temperature divergence
has been reported (66), but other experiments question this con-
clusion (45, 48). The findings of this paper suggest that, at least
for the silicone oil in question, the relaxation time does not
diverge at a finite temperature because it is difficult to imagine
that G∞ diverges.

Our results imply that G∞ is not a unique function of the den-
sity because if that were the case, density would also conform
to rigorous SPA. This conclusion in conjunction with our find-
ing that ∆E ≈G∞ is consistent with high-pressure equilibrium
experiments according to which isochoric relaxation is gener-
ally non-Arrhenius temperature dependent (67). On a more
general note, we suggest that while high-pressure studies have
been important for throwing light on the relaxation mecha-
nism of supercooled liquids (54, 68), studies of physical aging
at ambient pressure provide valuable additional information.
For R-simple liquids, in particular, qualitatively new informa-
tion is not obtained from high-pressure studies because structure
and dynamics are invariant along the system’s isomorphs. For
such systems, studies of physical aging at ambient pressure like
those presented here may provide a way forward for illuminat-
ing the long-standing puzzle of the origin of the non-Arrhenius
temperature dependence of the relaxation time.

Materials and Methods
The setup used is described in SI Appendix.
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