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ABSTRACT: Rosenfeld proposed two different scaling
approaches to model the transport properties of fluids,
separated by 22 years, one valid in the dilute gas, and another
in the liquid phase. In this work, we demonstrate that these
two limiting cases can be connected through the use of a novel
approach to scaling transport properties and a bridging
function. This approach, which is empirical and not derived
from theory, is used to generate reference correlations for the
transport properties of the Lennard-Jones 12-6 fluid of
viscosity, thermal conductivity, and self-diffusion. This
approach, with a very simple functional form, allows for the
reproduction of the most accurate simulation data to within
nearly their statistical uncertainty. The correlations are used to confirm that for the Lennard-Jones fluid the appropriately scaled
transport properties are nearly monovariate functions of the excess entropy from low-density gases into the supercooled phase
and up to extreme temperatures. This study represents the most comprehensive metastudy of the transport properties of the
Lennard-Jones fluid to date.

1. INTRODUCTION

In 1977 Rosenfeld published a paper suggesting that transport
properties are controlled by the excess entropy sex;

1 the excess
entropy is the change in entropy compared to the ideal gas at
the same temperature and density caused by intermolecular
interactions. Molecular interactions tend to reduce the entropy
compared to that of the noninteracting ideal gas at the same
temperature and density; therefore, the excess entropy is
generally negative. In other words, interactions between
molecules reduce the allowable microstates of the system,
resulting in a reduction in entropy (compared to the ideal gas
at the same temperature and density).
In this paper we follow the tradition of physical chemistry by

defining the excess entropy by

s T s T s T( , ) ( , ) ( , )ex
0ρ ρ ρ≡ − (1)

where s is the total entropy per particle and s0 is the ideal gas
entropy per particle. The thermodynamic quantity sex goes by
many other names in the literature, including residual
entropy,2−5 internal entropy,1 and isometric residual entropy.6

In the chemical thermodynamics community, the term excess
entropy is strictly reserved for deviations from Raoult’s law,7

and the term residual entropy is used in the place of excess
entropy, though the residual entropy has precisely the same

definition as the excess entropy in eq 1. There are at least two
definitions for excess entropy, one based upon the difference in
entropy between the given state and the ideal gas at the same
temperature and density and another at the same temperature and
pressure. Whenever any of these entropy difference terms are
used, they should be defined explicitly.
In his seminal work, Rosenfeld considered the available

simulations for the Lennard-Jones (LJ) 12-6 fluid, which
included four simulations for shear viscosity, and four
simulations for the self-diffusion coefficient. Since then, the
number of simulations for the Lennard-Jones 12-6 fluid has
increased dramatically, due to the popular approach of
modeling the thermodynamic and transport properties of real
fluids by analogy with the Lennard-Jones 12-6 fluid.2,8

Here, in this work, we have collected the most
comprehensive set of transport data for the Lennard-Jones
12-6 fluid from the literature and applied a novel scaling
approach that is based on approaches proposed by Rose-
nfeld.1,9 Following the approach of ref 2, we use reference-
quality thermodynamic models in order to minimize the
uncertainty in excess entropy.
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From the analysis of the data collected in this work for the
Lennard-Jones fluid, we offer the following new insights:

• Modified entropy scaling allows for a means of
connecting the transport physics of the gas phase with
that of the liquid phase with a single independent
variable, the excess entropy. The macroscopically scaled
linear transport coefficients are entirely governed by the
excess entropy, and the scaling between excess entropy
and scaled transport properties is valid from the dilute-
gas limit to supercooled states and states at very high
temperatures.

• The empirical correlations for the transport coefficients
allow for a means of quantifying the monovariability of
this scaling, and the deviations of the correlations from
the simulation data are shown to be approximately equal
to the uncertainty of the simulations.

• The scaled transport data for the Lennard-Jones
truncated and shifted (LJTS) and Lennard-Jones
truncated with long-range corrections (LJT+LRC)
potentials cannot be distinguished in these scaled
coordinates. Therefore, impacts from truncation of the
potential on the scaled transport property and residual
entropy approximately cancel.

• This scaling demonstrates monovariate collapse of the
transport data as a function of excess entropy even
where isomorph theory should not be valid (R < 0.9).
Entropy scaling appears to have a wider range of
applicability than isomorph theory.

2. BACKGROUND
To demonstrate the relationship between excess entropy and
transport properties from the numerical data available at the
time, Rosenfeld converted the relevant physical properties
(diffusion coefficient, viscosity, and thermal conductivity) into
dimensionless quantities by using a particular unit system,
sometimes referred to as macroscopic reduced units. These
units, which were used already in the 1930s by Andrade in his
theory of viscosity,10−12 are based on the length unit l0 = ρN

−1/3

in which ρN = N/V is the particle number density (V is
volume), the energy unit e0 = kBT, and a time unit constructed
from l0 and e0 as follows: t l e m/ /0 0 0= (m is the particle
mass; t0 is the time it takes to travel the distance l0 if the
particle has thermal velocity). Thus, t m k T/0 N

1/3
Bρ= − .

For instance, the diffusion coefficient D is made dimension-
less by dividing by l0

2/t0, denoted as the macroscopically
reduced diffusion coefficient by D∼. Thus

D m k T D/N
1/3

Bρ∼ ≡ (2)

In this section, we henceforth focus on D; the viscosity and
heat conductivity are treated analogously.
Rosenfeld’s excess-entropy scaling is the observation that D∼

is a unique function of sex throughout the thermodynamic
phase diagram. For the “ordinary” condensed liquid phase, i.e.,
not very far from the freezing line, the isomorph theory
explains entropy scaling.13 In this theoretical framework, which
works whenever the equilibrium fluctuations in the virial of the
system are strongly correlated with those in the potential
energy,14,15 excess-entropy scaling is a consequence of “hidden
scale invariance”.13,16 This is the condition such that the
ordering of potential energies of system configurations is
maintained upon a uniform scaling of all particle coordinates

(keeping all intramolecular distances unchanged).13,17,18

Hidden scale invariance applies to a good approximation for
the condensed liquid phase (as well as the crystalline phase) of
most or all metals and van der Waals bonded systems, whereas
it is not expected to work for systems with strong directional
bonds like hydrogen-bonded or covalently bonded systems.
Ionic liquids and dipolar systems constitute an in-between case
for which hidden scale invariance is expected to apply if the
interactions are not very strong.
Hidden scale invariance has been demonstrated in extensive

computer simulations, as well as in experiments, on van der
Waals bonded molecular liquids (see, e.g., the reviews given in
refs 13, 16, and 18). In particular, the LJ system has hidden
scale invariance in the condensed-phase part of the phase
diagram. However, the virial potential-energy correlations of
the LJ system decrease when the gas phase is approached (see
Section 4.1). Interestingly, excess-entropy scaling still works in
this part of the phase diagram. In fact, Rosenfeld in 1999
showed that the dilute-gas phase obeys excess-entropy scaling.9

How does one rationalize this fact within a theoretical
framework that generalizes the isomorph theory? This is not
clear, but we have identified a novel way of scaling that
addresses the challenge of extending excess-entropy scaling to
the gas phase2 and which may provide a good starting point for
further theoretical developments.
In order to justify the new modified excess-entropy scaling,

which was introduced as a practical tool in ref 2, we first
consider the liquid phase. The physics of hidden scale
invariance is the nontrivial fact that the relevant length scale
is not the length parameter σ of the LJ pair potential. This scale
is relevant for determining the density at moderate pressures,
but hidden scale invariance is independent of the
pressure.15,16,18,19 Instead, the relevant length scale is the
average interparticle distance, which is ρN

−1/3.
Things are different in the gas phase. Here, the molecule

size, which can be identified with the σ of the LJ pair potential,
is one relevant length scale. There is, however, one more
relevant parameter, namely, the so-called mean-free path l (the
average distance traveled between collisions). In the gas phase
the relation between the three lengths, where the third length
is the average particle distance determined by ρN, is given by20

l 12
Nσ ρ ∼ (3)

The diffusion constant scales as follows20

D lv∼ (4)

in which v k T m/B∼ is the thermal velocity. These two
simple equations are the most important identities of kinetic
theory, and they are direct consequences of the physical
picture that a gas behaves like a collection of continuously
colliding hard spheres. In eq 3, as number density ρN goes to
zero, l goes to ∞, and as a consequence, the self-diffusion from
eq 4 diverges for any given temperature. We proceed to derive
Rosenfeld’s 1999 result that excess-entropy scaling works even
in the gas phase, with the following prediction:

D s k( / ) ( 0)ex B
2/3

Nρ∼ ∝ − →−
(5)

Combining eq 3 with eq 4 we get

D
v

2
Nσ ρ

∼
(6)

which via eq 2 implies that
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D ( )N
1/3

2
N

N
3 2/3ρ

σ ρ
ρ σ∼ ∼ = −

(7)

On the other hand, sex → 0 as density goes to zero, so a first-
order Taylor expansion results in sex/kB ∼ − ρNσ

3 at low
densities (sex/kB is dimensionless and can only depend on
density via the dimensionless combination ρNσ

3; recall also
that sex is negative). Inserting this into eq 7 leads to the
following low-density scaling

D s k( / )ex B
2/3∼ ∼ − −

(8)

Note that this applies even if the effective hard-sphere radius σ
depends both on temperature and density.
How does one smoothly connect the gas- and liquid-phase

descriptions? The challenge is that while the only relevant
length scale in the liquid phase is the average interparticle
distance l0 ≡ ρN

−1/3, the gas phase has two relevant length scales,
l and σ, connected by eq 3. This suggests defining different
reduced units for the gas phase in order to arrive at the relevant
dimensionless variables like D∼. On the other hand, the
macroscopic reduced units of the traditional Rosenfeld scaling
have the advantage that no knowledge about the molecular size
is required; i.e., these are pragmatic units that directly refer to
experiments.
Instead of changing the unit system, we propose to keep

Rosenfeld’s reduced units throughout the phase diagram but
make an entropy-dependent correction that removes the gas-
phase divergence of eq 8. Thus, we define the following new
reduced variables:

D s k D( / )ex B
2/3≡ − ∼+

(9)

This is to be used throughout the phase diagram, i.e., also in
the liquid phase. Here, however, the new factor (−sex/kB)2/3
introduces an excess-entropy dependence that is approximately
exponential throughout the liquid phase and when approach-
ing the melting line (and continuing into the supercooled
phase if that is relevant).
2.1. Practical Applications. In recent years there has been

a growing interest in making use of Rosenfeld’s discoveries to
develop empirical correlations of the transport properties of
real fluids over the entire fluid domain. The review of Dyre13

provides a comprehensive view of the application of excess-
entropy scaling to the transport properties of real fluids, and
we discuss a few studies relevant to this work here. One of the
bedeviling features of Rosenfeld’s entropy scaling is that the
scaled properties all diverge at zero density (zero excess
entropy), which has led to a number of approaches for means
of circumventing this problem.
One approach for managing the zero-density divergence is to

subtract the dilute-gas transport properties from the value of
the dense phase, but not apply macroscopic scaling.21 This
approach yields the correct values in the zero-density limit but
does not utilize the macroscopic scaling required for the
application of isomorph theory.
Another approach proposed in the literature is to divide the

transport properties by their value in the dilute-gas limit.3,22−28

While these formulations are able to quite accurately
empirically fit the transport properties of real fluids, they are
not suitable to model small and spherically symmetric particles
such as the Lennard-Jones fluid.2 The weakness of the zero-
density-limit-scaling approach is that the zero-density-limit-
scaled transport properties are not equivalent to macroscopic

reduction of the transport properties, a necessary condition for
the application of isomorph theory.
The group of Truskett proposed the generalized Rosenfeld

scaling29−31 which shares features with the scaling employed in
this work. The second virial coefficient term B2 + T dB2/dT is
used to scale the self-diffusion in the dilute gas, which is quite
similar to the term (B2 + T dB2/dT)

2/3 used in this work at low
densities.
The scaling approach proposed in this work has a well-

characterized limit at zero density, does not have the zero-
density divergence of Rosenfeld’s liquid-phase scaling, and
retains the required macroscopic scaling throughout the dense
phases. As such, we believe this scaling repairs the deficiencies
of prior scaling approaches based on Rosenfeld’s proposals and
allows for the application of the same scaling approach for all
fluid states.

3. POTENTIALS
The Lennard-Jones 12-6 potential is the canonical pair
potential for a spherically symmetric monatomic molecule
(e.g., the noble gases) and, as such, has been studied
extensively. This potential is given by

i

k
jjjjj
i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

y

{
zzzzzV r

r r
( ) 4LJ

12 6

ε σ σ= −
(10)

Two common methods exist for simulating the Lennard-
Jones potential in a finite box with periodic boundary
conditions. The first approach is to truncate the potential
(VLJT) at a cutoff distance (rcut):

l
m
ooo
n
ooo

V r
V r r r

r r
( )

( )

0
LJT

LJ cut

cut

=
<

≥ (11)

Analytical long-range corrections (LRC) to the energy and
pressure are often used to account for neglecting interactions
at r > rcut. The second approach is to truncate and shift the
potential (VLJTS), yielding

l
m
ooo
n
ooo

V r
V r V r r r

r r
( )

( ) ( )

0
LJTS

LJ LJ cut cut

cut

=
− <

≥ (12)

For both approaches, frequently rcut = 2.5σ.
The Lennard-Jones 12-6 potential has the characteristics of a

real molecular fluid with both repulsion and attraction; it has
liquid phases, a vapor−liquid critical point, and vapor−liquid
phase equilibrium. The family of fully repulsive potentials
include the inverse-power-law, the repulsive part of the
Weeks−Chandler−Anderson decomposition of the Lennard-
Jones potential, and many others like the exponentially
repulsive EXP pair potential.32,33 The fully repulsive potentials
do not show these liquid-like features; they have only a fluid
phase and a solid phase.
The exponent 6 of the attractive part of the Lennard-Jones

12-6 potential is consistent with theory,34,35 while the
exponent 12 of the repulsive part has no rigorous justification.
Generalizing this repulsive exponent yields the Mie family of
Lennard-Jones potentials, which have also been considered as
model systems for transport property modeling.36,37 Even
though the exponent 12 cannot be justified theoretically, it has
been shown to be suitable to model both thermodynamics and
transport properties.38 The equation of state (EOS) of Lafitte
et al.39 could be used to calculate the excess entropy for the
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Mie potential, but this EOS provides erroneous predictions of
some thermodynamic properties.
The inverse-power-law potential (IPL) is directly related to

the family of Mie potentials. The functional form of the IPL is
given by

i
k
jjj

y
{
zzzV r

r
( )

n

ε σ=
(13)

The IPL is sometimes referred to as the soft-sphere potential
(usually with n = 12). The IPL potential is a mathematically
simple potential; a consequence of its simplicity is that closed-
form solutions are possible for some of its properties. We will
refer to the IPL potentials in the discussion of zero-density
limit transport properties in Section 8. Note that excess-
entropy scaling is exact for all IPL systems.

4. CLASSICAL ROSENFELD SCALING
One of the key insights of Rosenfeld is that the macroscopically
reduced transport properties are what count.1,9 Therefore, the
macroscopically reduced transport properties are indicated
with a tilde

k k T m/B N
2/3

B

λ λ
ρ

∼ =
(14)

mk TN
2/3

B

η η
ρ

∼ =
(15)

D
D

k T m/
N
1/3

B

ρ∼ =
(16)

where λ is the thermal conductivity, η is the viscosity, D is the
self-diffusion coefficient, m is the mass of one particle, kB is
Boltzmann’s constant 1.380649 × 10−23 J K−1,40 and T is the
temperature.
In molecular simulations, reduced simulation units are used,

which results in the identical definitions for the macroscopi-
cally reduced transport properties in simulation units given by

T( )2/3
λ λ

ρ
∼ =

*
* * (17)

T( )2/3
η η

ρ
∼ =

*

* * (18)

D
D

T

D

T

( ) ( )

( )

1/3

2/3

ρ ρ

ρ
∼ =

* *

*
=

* *

* * (19)

where k m/( / )2
Bλ λσ ε* = , D D m/( / )σ ε* = , m/2η ησ ε* = ,

ρ* = ρNσ
3, T* = kBT/ε, and D D m( )( / / )N

2ρ ρ σ ε* * = . In
the case of self-diffusion, the second suggestive form highlights
the similarity of the reduced transport properties in simulation
units; each is a reduced transport property divided by

T( )2/3ρ* * . The value ρ*D* is employed as the scaled
transport property rather than D* because while D* diverges in
the zero-density limit, ρ*D* remains finite.41

Before describing in depth the considered molecular
simulations and their methodology, we first introduce the
Rosenfeld-scaled transport properties for the Lennard-Jones
fluid. The set of data obtained was originally based on the
collection of Lautenschlaeger42 with extensive data corrections

and the addition of data sets from other publications. Figures
1−3 present the macroscopically scaled transport properties as

a function of the excess entropy. The evaluation of the excess
entropy is explained in Section 6.1. This scaling results in a
divergence of all three properties at zero density (zero excess
entropy) due to the presence of the term 1/(ρ*)2/3. The novel
scaling proposed in this work does not have the zero-density-
limit divergence.

4.1. Range of Applicability. According to the isomorph
theory,15,32,72−76 when the correlation between the virial and
the potential energy is strong, the macroscopically reduced
transport properties according to eqs 17−19 should be
monovariate functions of the excess entropy. It is common
practice within the isomorph literature14,77 to define a
correlation coefficient R greater than 0.9 as being “strongly
correlating”.

Figure 1. Rosenfeld-scaled viscosity values from simulations42,42−62

for the Lennard-Jones 12-6 potential. Each marker/color pair is
associated with a given data set. A larger version of this figure is
available in the SI (Figure S1), along with a legend describing each
data set.

Figure 2. Rosenfeld-scaled thermal conductivity values from
simulations42,42,46,50,52−55,57,62−68 for the Lennard-Jones 12-6 poten-
tial. Each marker/color pair is associated with a given data set. A
larger version of this figure is available in the SI (Figure S2), along
with a legend describing each data set.

Figure 3. Rosenfeld-scaled self-diffusion values from simula-
tions41,42,42,46−48,50−53,58,59,69−71 for the Lennard-Jones 12-6 potential.
Each marker/color pair is associated with a given data set. A larger
version of this figure is available in the SI (Figure S3), along with a
legend describing each data set.
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The correlation coefficient R between the virial W and
potential energy U fluctuations can be calculated from NVT
simulations using the formula

R T
W U

W U
( , )

( ) ( )2 2
ρ* * = ⟨Δ Δ ⟩

⟨ Δ ⟩⟨ Δ ⟩ (20)

where Δ denotes instantaneous equilibrium fluctuations from
the mean value and the brackets that an NVT ensemble
average is taken. In the case of the LJ system the correlation
coefficient R is increasing toward its maximum value 1 when
either density or temperature is increased, as can be seen from
Figure 4. State points which are close to the LJ freezing

(liquidus) line have a high correlation coefficient (R > 0.9)
while approaching the gas−liquid coexistence leads to a
decrement in R.

5. LITERATURE REVIEW
We will work with the simulation data presented in the
literature. An overview of the simulation results that are
available is presented in graphical form in Figure 5. Tables S1−

S3 in the SI describe the simulation setup for each of the
literature studies. In general, these various methods and setup
parameters yield consistent transport property estimates.
However, the simulation specifications are important to
consider when elucidating the possible source for a discrepancy
between two data sets and for ensuring reproducibility of
results. A brief description of the various simulation
approaches follows.

5.1. Simulation Method. Several methods exist for
computing transport properties with molecular simulation.
These methods are classified as either equilibrium or
nonequilibrium molecular dynamics. Equilibrium molecular
dynamics (EMD) follows an unperturbed MD trajectory,
whereas nonequilibrium molecular dynamics (NEMD) per-
turbs the system and observes the response to this
perturbation.81,82

EMD is ideal for computing multiple transport properties
(D, η, and λ) from a single simulation.83 By contrast,
traditional NEMD methods are only capable of predicting a
single property from a given NEMD simulation, and typically,
a sequence of NEMD simulations is required to extrapolate to
the zero perturbation limit. The exception is the recently
proposed NEMD approach utilized by Lautenschlaeger et al.,
which yields all three transport properties from a single
simulation.84

Two related EMD methods are available for computing
transport properties, namely, the Green−Kubo (GK) method
and the Einstein relationship (ER). In principle, these two
postprocessing approaches should yield indistinguishable
results; however, due to numerical approximations and some
user judgment, deviations of a few percent between GK and
ER are not uncommon.83,85

Several NEMD methods exist where different perturbations
are applied to the system.82 We refer the reader to the
literature for details regarding these various NEMD
methods.49,84,86−91

For the literature studies considered in this work, all self-
diffusivity data (with the exception of those from Lautens-
chlaeger et al.) were obtained with EMD, while EMD and
NEMD were equally popular for computing thermal

Figure 4. Correlation coefficient R for the Lennard-Jones 12-6
potential from the simulations of ref 47 (for ρ* ≥ 0.605) and
simulations from this work (for ρ* < 0.605). Triangles indicate state
points with R > 0.9, and circles indicate state points with R < 0.9. The
solidus and liquidus lines (indicated by dashed lines) were obtained
from ref 78 and from refs 79 and 80, respectively. The thick solid line
is the vapor−liquid equilibrium for the full LJ potential.

Figure 5. Distribution of transport property simulations in the phase diagram as well as excess entropy calculated for each point. The graphic is
truncated at T* = 20 (data are available up to T* = 10800) and at ρ* = 1.6 (data are available up to ρ* = 3.39). The dashed−dotted lines
correspond to the solidus and liquidus lines and were obtained from ref 78 and refs 79 and 80, respectively. The excess entropy −sr/kB varies from
3.6 to 3.9 along the liquidus line for T* < 15, and from 4.3 to 4.7 for the solidus line for T* < 15. The thick solid line is the vapor−liquid
equilibrium for the full LJ potential, and the thick dashed line is the vapor−liquid equilibrium for the LJTS potential.
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conductivity and viscosity. Frequently, NEMD values are
verified by comparison with their simpler EMD counterparts,
such that some studies report both EMD and NEMD results.
Agreement between EMD and NEMD values is typically
within the combined uncertainties.92

GK is used for computing thermal conductivity and viscosity
in nearly all of the EMD studies, while GK and ER are equally
popular for computing self-diffusivity. No single NEMD
method was found to be more popular than the others.
5.2. Simulation Ensemble. Another important distinction

among the literature EMD simulations is the use of the
microcanonical (NVE) or canonical (NVT) ensembles. Both
the NVE and NVT ensembles utilize a constant number of
molecules (N) and volume (V). The difference is that the NVE
ensemble enforces a constant overall energy, while the NVT
ensemble maintains a constant temperature (or kinetic energy)
by applying a thermostat.93−97 If implemented properly, both
the NVE and NVT ensembles are considered reliable for
estimating transport properties, although advantages and
disadvantages exist for each ensemble.98

For example, one advantage of the NVT ensemble is that
transport properties are generally desired at a given temper-
ature, not a given energy. One disadvantage of the NVT
ensemble is the potential effect of certain thermostats and/or
thermostat coupling strengths on the resultant system
dynamics, whereas NVE dynamics are undisturbed by these
artificial thermostats.98

Approximately the same number of EMD studies utilize the
NVE or NVT ensemble. Including the NEMD simulations that
also utilize thermostats, four different thermostats are found in
the literature with similar popularity.
5.3. Finite-Size Effects. 5.3.1. Number of Molecules.

Because the literature spans approximately 40 years and
computational speed has increased dramatically during that
time, the number of molecules simulated in recent studies is
often an order of magnitude greater than those in earlier
studies. The degree to which results are impacted by the
number of simulation particles N depends on both the
transport property and the state point. While a well-known
linear relationship exists to relate the system size (1/N1/3) to D
(see below),99,100 the relationship is less-understood for λ and
η. Fortunately, the influence of N on η and λ is typically
negligible compared to that for D.
In the case of self-diffusion, the analytic infinite-particle-

count self-diffusion limit D∞ can be obtained by one of two
methods:

1. Multiple simulation runs are performed for several
numbers of particles N. The infinite-particle-count self-
diffusion is obtained by extrapolating the linear curve fit
of D versus 1/N1/3 to (1/N1/3 = 0). This has the
significant disadvantage that multiple simulations must
be done at every state point.

2. Apply the empirical finite-size correction term given by
ref 99

D D
k T

L6N
B

πη
= +∞

(21)

where L = (N/ρN)
1/3, and 2.837298= . Conversion to

simulation units yields

D D
T

L6N πη
* = * +

*
* *∞

(22)

where L* = (N/ρ*)1/3.

In this work the second method was selected; the correction
term was applied to every self-diffusion data point.
Unfortunately, the method of ref 99 was originally validated
for a rather narrow range of state points.
The viscosity η* used in eq 22 is evaluated from the

correlation developed below in eq 54. This method has the
disadvantage that the uncertainty of the viscosity correlation
will “infect” the self-diffusion data corrected for finite-size
effects. But this is a more satisfactory situation than the
converse: errors in self-diffusion of more than 20% are caused
by small particle counts when the correction for finite-size
effects is ignored (see SI Appendix, Figure S8). The inclusion
of the uncertainty in the viscosity correlation increases the
uncertainty in the self-diffusion. For instance, from an
uncertainty propagation analysis (see the SI, Section 3.3),
considering worse-case uncertainty of the viscosity correlation
of 10%, the uncertainty in the self-diffusion of Meier41

increases from an uncertainty of roughly 1% to an uncertainty
of never more than 1.3% for the simulations with 1372
particles; the relative uncertainty for the simulations of Meier
with fewer particles are greater, but still never more than 1.7%.

5.3.2. Cut-Off Distance. For a truncated Lennard-Jones (but
not shifted, LJT or LJT+LRC) potential, it was traditionally
assumed that simulation results do not depend strongly on the
reduced cutoff distance (rcut* = rcut/σ) for rcut* ≥ 2.5. Some of
the more recent studies have utilized significantly larger cutoff
distances (rcut* ≥ 5) to test this assumption. Analytical long-
range tail corrections do not impact self-diffusion calculations
in the NVE or NVT ensemble, but neglecting this correction
may result in deviations for viscosity and thermal conductivity,
particularly for shorter values of rcut* . Unfortunately, most
studies do not explicitly state whether or not tail corrections
are included; i.e., it is not always clear if simulations were
performed with the LJT or the LJT+LRC potential. A few
studies also utilize a Lennard-Jones truncated-and-shifted
(LJTS) potential with rcut* = 2.5. Although Lautenschlaeger et
al. suggest that the LJTS and LJT+LRC potentials yield
indistinguishable transport properties at a given (T*, ρ*) state
point,42 the equations of state and, thereby, the excess-entropy
estimates for the same T*−ρ* state point are different for the
LJTS and LJT+LRC potentials.

5.4. Simulation Time. Simulations are typically divided
into an equilibration and production stage, where averages are
only computed during production. With advancements in
computational speed and resources over the past few decades,
the reduced simulation times t t m( /( / ))σ ε* = for both
equilibration (teq*) and production (tprod* ) have increased by a
few orders of magnitude. The consequence of the lower teq*
values prevalent in earlier studies is the risk of poor
equilibration, while the lower tprod* values lead to higher
uncertainties from less sampling.
The reduced simulation time-step (δt*) varies by a factor of

5 among studies. Higher values of δt* can result in spurious
simulation output.101 This is particularly problematic at higher
temperatures because particles travel at increased velocities,
and thus, some configurations may contain extremely close-
range (repulsive) interactions. Although lower values of δt* are
more reliable, they are less preferred in practice because lower
δt* values increase the elapsed real time to simulate a fixed
value of tprod* .
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5.5. Data Curation. A screening was used to separate each
data set into primary and secondary categories. The primary
data sets, indicated in the sections that follow, were identified
on the basis of their coverage of the phase space, their internal
consistency, the description of their methodology, and
agreement with other data sets.
In addition to categorization of the data sets, we endeavored

to identify points that seemed to be typographical errors, for
instance, two state points at very similar temperatures and
densities with very different transport properties, or data points
that did not follow the trends of the neighboring points. Points
that were inside the spinodal of the equation of state were not
considered because empirical equations of state may yield
erroneous values for thermodynamic properties for the
thermodynamically unstable states between the spinodals
(see for instance Figure S11 in the SI of ref 2). Data points
for temperatures T* > 400 were also removed from further
consideration because the collision integral correlations used
for the zero-density-limit demonstrate poor high-temperature
extrapolation (see the SI, Figure S11a,b).
Inspired by the work of Lautenschlaeger,42 we have provided

all of the literature data that we collected in comma-separated-
value tables in the SI; further information is given in the SI.
The “FLAG” column in the data collection indicates the reason
that we removed the data point, and the presence of an entry
in this column causes the data processing script to ignore the
given data point. If the column is empty, the point was
considered in our analysis.

6. THERMODYNAMIC MODELS
The equation of state for any fluid at low and moderate
densities can be written in virial expansion form as

Z
p
k T

B T1 ( )
j

j
j

N B 2
N

1∑
ρ

ρ≡ = +
=

∞
−

(23)

where Z is the compressibility factor, p is the pressure, ρN is the
number density in particles per volume, kB is Boltzmann’s
constant, T is the temperature, and Bj is the jth virial
coefficient.
For all thermodynamic states, the reduced residual

Helmholtz energy αr = ar/(kBT), where ar is the residual
Helmholtz energy per particle, can be obtained from103

Z T( , ) 1
dr

0

N

N
N

N∫α
ρ
ρ

ρ=
−ρ

(24)

and the negative of the reduced residual entropy can be
obtained from
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where sr is the residual entropy per particle. As a reminder, our
definition of the excess entropy is that it is the difference
between the total entropy and that of the ideal gas at the same
temperature and density, defined to be equal to the residual
entropy, and equal to

s T s T s T s T( , ) ( , ) ( , ) ( , )ex
r 0ρ ρ ρ ρ≡ = − (26)

where s is the total entropy per particle and s0 is the ideal gas
entropy per particle.

In general, if the virial expansion from eq 23 is truncated at
B2 (Bj ≡ 0 for j > 2), then the excess entropy (equal to residual
entropy) can be given by
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This result was also used by Krekelberg et al.29 in their study
of self-diffusion.

6.1. Empirical EOS. Over the past 70 years, the Lennard-
Jones potential has been comprehensively investigated by
molecular simulation in the entire fluid domain as well as in
the solid state. These data were used to set up equations of
state by several different authors. An overview of available
thermodynamic properties as well as the most prominent
equations of state for the fluid region is given by Thol et al.104

The most recent fundamental equation of state for the
calculation of thermodynamic properties of the LJT+LRC
potential was published in the same paper. It is formulated in
terms of the Helmholtz energy a as a function of temperature
T and density ρ. For simplicity, the Helmholtz energy and its
independent variables are used in a dimensionless form.
Furthermore, the reduced Helmholtz energy α = a/(kBT) is
separated into an ideal part α0 and a residual part αr with
independent variables of reciprocal reduced temperature τ =
Tc*/T* and reduced density δ = ρ*/ρc*:

a T a T
k T

( , )
( , ) ( , )

( , ) ( , )
0 r

B

0 rα τ δ ρ ρ α τ δ α τ δ= + = +

(28)

The advantage of applying the Helmholtz energy as the
fundamental potential is that it can be used to calculate every
thermodynamic state property by combining the equation itself
and its partial derivatives with respect to the density and
reciprocal temperature:
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where m is the order of derivative with respect to the reciprocal
temperature and n with respect to the density.
For instance, the isobaric heat capacity can be calculated

from
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Further mathematical relations for other thermodynamic
properties are listed in Thol et al.104 Today, the most accurate
equations of state are empirical multiparameter equations of
state with 15−40 temperature- and density-dependent
polynomial(-like) and exponential terms. The corresponding
parameters are commonly adjusted to thermodynamic state
properties such as density, speed of sound, vapor−liquid−
equilibrium data, etc. Due to the large number of adjustable
parameters, a comprehensive data set comprising different
thermodynamic properties is needed. However, since these
properties are always combinations of derivatives of the
Helmholtz energy, it is not possible to optimize the
fundamental potential of its derivatives individually. This
shortcoming was first addressed by Rutkai et al.105 who
presented a novel approach for the development of Helmholtz
energy equations of state. On the basis of the methodology of
Lustig,106,107 the Helmholtz energy and its partial derivatives
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up to an arbitrary order can be computed from molecular
dynamics simulations. This allows for a direct fitting of the
equation of state to the results of molecular dynamics
simulations. The fundamental equation of state for the LJT
+LRC potential proposed by Thol et al.104 is the first equation,
which was developed on the basis of this new approach. Only
simulation data for the Helmholtz derivatives and exact virial
coefficients calculated from statistical mechanics were included
in the fitting process. Furthermore, modern fitting techniques
(see, e.g., Lemmon et al.108) were employed, which could be
used to ensure a correct extrapolation behavior in the low-
temperature limit as well as at high temperatures, pressures,
and densities.
There are a number of other empirical equations of state for

the LJ fluid of varying quality and accuracy.109−113 Thol et al.
also developed an empirical multiparameter equation of state
for the truncated-and-shifted potential (LJTS, with rcut* =
2.5).114 The LJT+LRC and LJTS potentials have qualitatively
similar behavior, and their important temperatures and
densities are summarized in Table 1. While the critical

densities are quite similar, the critical temperatures differ
significantly. To our knowledge, no high-accuracy equations of
state exist for any other truncations of the Lennard-Jones 12-6
potential.
The equations of state for LJT+LRC (with rcut* = L*/2, i.e.,

half the reduced box length) and LJTS (with rcut* = 2.5)
represent two treatments that are commonly employed in
molecular simulations. Nonetheless, there are many simu-
lations that applied neither a truncated potential at half the box
length (which typically corresponds to rcut* > 2.5) nor a
truncated-and-shifted potential for rcut* = 2.5. Therefore, some
approach must be applied to the in-between cases. Our
approach was to use the full (LJT+LRC) EOS for all
simulations, except for cases where the authors explicitly
state that they used a truncated-and-shifted potential (LJTS)
with rcut* = 2.5.42,47 For other cases, such as those of the LJTS
potential but truncated and shifted at rcut* = 5, we utilized the
equation of state for the full (LJT+LRC) potential.

7. SCALED TRANSPORT PROPERTIES
7.1. Novel Scaling. Rosenfeld9 showed that the values of λ̃,

η̃, and D∼ are each proportional to (−sex/kB)−2/3 for dilute gases
of finite density modeled by inverse-power-law pair potentials
for a virial expansion truncated at the second virial coefficient.
The constant of proportionality is a closed-form constant that
is only a function of the hardness of the IPL potential. The
excess entropy of a dilute gas at zero density is equal to zero by
definition. See the SI for a complete rederivation of this result
(SI Section 5.1) following the proposal of Rosenfeld. An
empirical scaling approach based on the same technique
(though it was not fully investigated at that time) was

providentially used by Bell2 to repair the divergence of η̃ in the
zero-density limit.
For the Lennard-Jones fluid, as will be shown in the next

section, the relationship between excess entropy and transport
properties in the zero-density limit is not quite as simple as
that of IPL potentials. The IPL potential, while being
unsuitable to model real fluids with high accuracy, provides
glimpses into theory that inspire more complicated modeling
efforts.
We propose new scaled variables η+, λ+, and D+, with the

feature that these scaled variables do not diverge at zero
density and reflect the notion of the traditionally scaled
transport properties being proportional to the excess entropy
to a power of −2/3 in dilute gases. Thus, the new reduced
transport coefficients η+, λ+, and D+ are given by

s k( / )ex B
2/3η η≡ ∼ −+

(31)

s k( / )ex B
2/3λ λ≡ ∼ −+

(32)

D D s k( / )ex B
2/3≡ ∼ −+

(33)

These ansatz formulations have the characteristic that they are
still monovariate relationships between the macroscopically
reduced transport properties and the excess entropy, while
adding additional desired behavior.
The definitions of the above variables make no assumption

about the form of the interactions between particles. These are
simply conveniently scaled variables that have some elegant
mathematical properties and allow for an effective scaling of
transport properties in general, as is demonstrated in the
sections that follow.
The selection of the exponent 2/3, while accidental in the

work of Bell,2 can be shown (SI Appendix, Section 1.3) to be
the only exponent that results in a nonzero value of the scaled
transport properties for the zero-density limit. That is to say,
2/3 is indeed a special exponent, and no other exponent is
possible in this scaling framework that simultaneously satisfies
the constraints on behavior in the zero-density limit and the
dense phase.
Krekelberg et al.,29 by making the assumption that the

product ρ*D* should be constant in the dilute gas of finite
density, arrived at a similar scaled self-diffusion coefficient,
though different from the one used here.

7.2. Viscosity. Figure 6 presents the newly scaled viscosity
η+ in terms of −sex/kB for the Lennard-Jones potentials studied

Table 1. Available Lennard-Jones Helmholtz-Energy-
Explicit Equations of Statea

potential rcut* Tc* ρc* Ttriple*

LJT+LRC104 L*/2 1.32 0.31 0.661
LJTS114 2.5 1.086 0.319 0.64b

aCritical points correspond to the values that were obtained in the
course of the development of the equation of state. L* = L/σ where L
is the box length, i.e., L = V1/3. bEstimated from corresponding states
plus a correction factor.

Figure 6. Overview of all of the viscosity data from simulations42,42−62

with the novel scaling in eq 31 for the Lennard-Jones 12-6 potential.
The solid yellow line represents the correlation from eq 34, and the
dashed lines the extrapolation behavior. Each marker/color pair is
associated with a given data set. A larger version of this figure is
available in the SI (Figure S4), along with a legend describing each
data set.
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here. As can be seen, the collapse of the data for the Lennard-
Jones potentials is similarly tight to the “conventional” excess-
entropy scaling of Rosenfeld in Figure 1. In addition, the
relationship between η+ and −sex/kB is approximately
exponential (linear in semilogarithmic coordinates) from the
dilute gas (at −sex/kB ≈ 0) into the supercooled liquid region,
and the divergence at zero density has been removed. As these
scaled variables have been proposed for the first time in this
work, the theoretical explanation for this quasiexponential
behavior remains elusive for now. While a more comprehensive
empirical model covering the entire domains of the fluid is
presented in Section 9.1, a linear fit to the data in the liquid
region for 1 ≤ −sex/kB ≤ 3 yields

s k0.2163 exp(1.068( / ))ex Bη ≈ −+
(34)

This same quasiexponential behavior no longer holds in the
supercooled liquid region (beyond −sex/kB of roughly 3.5),
where the data are consistently above the correlation fit to the
data for the liquid phase. Similarly, the data in the dilute-gas
region at low excess entropy are also consistently above the
correlation fit in the liquid region.
Nonetheless, this scaling allows for a coherent picture from

zero density into the supercooled liquid, even if additional
empiricism might be required to yield a more quantitative
agreement between the model and the simulation data.
Figure 7 presents a detailed view of the gaseous region for

the Lennard-Jones fluid. The gaseous region, where −sex/kB is

less than approximately 1, is a region where isomorph theory
breaks down (see Figure 4) and the thread linking excess
entropy and transport properties should fray. Nevertheless, the
dense-phase exponential behavior continues well into the
gaseous region. At very low densities (very low −sex/kB), the
dense phase correlation does not reproduce the data even
qualitatively, but the fanning-out behavior can be entirely
captured (aside from uncertainty of the simulations) by the
zero-density limit. When the dilute-gas limiting values are
subtracted off (Section 9.1), the dilute-gas viscosity can be
reproduced to within its simulation statistical uncertainty. The
zero-density limit can be fully described by theory in the case
of the Lennard-Jones potential, as shown in Section 8.
7.3. Self-Diffusion. The scaled data for self-diffusion are

presented in Figure 8. An absolutely essential element of
analyzing the self-diffusion data from the literature is to apply
the finite-size correction of Yeh and Hummer99 described in
Section 5.3.1. Above −sex/kB of approximately 1, the data tell a

very coherent story; the data agree very closely, and the
interset deviations are governed by the uncertainty in the
viscosity correlation used to correct the self-diffusion data to
infinite system size. In concurrence with the viscosity data, the
monovariability in the liquid phase continues into the
supercooled liquid phase. The zero-density self-diffusion
provides a much larger relative contribution to self-diffusion
than the equivalent contribution for viscosity. In addition,
although we have included all the data in the figure, a number
of the gas-phase simulations must be considered as highly
suspect. For instance, the self-diffusion data of Lautenschlaeger
et al. do not approach the correct zero-density-limit governed
by theory and described in the next section (see the SI, Section
3.4.2).
In the same fashion as for viscosity, we fit a simple

correlation of the form

D s k0.494 exp( 0.402( / ))ex B≈ − −+
(35)

proposed by Rosenfeld9 to the simulation data for 1 ≤ −sex/kB
≤ 3 and, also, show the extrapolation behavior of this curve
outside of this region.
In the gaseous region, the data of Meier et al.41 are the most

comprehensive in their coverage of the thermodynamic phase
diagram and also appear to be of the highest quality.

7.4. Thermal Conductivity. Figure 9 shows the scaled
thermal conductivity data from molecular dynamics simu-
lations. In the same fashion as for viscosity, we fit a simple
correlation of the form

s k1.377 exp(0.839( / ))ex Bλ ≈ −+
(36)

Figure 7. Detailed view of the gaseous region of the novel scaled
viscosity data from simulations for the Lennard-Jones 12-6 potential.
The dashed yellow line represents the extrapolation of the correlation
from eq 34. Each marker/color pair is associated with a given data set.
A larger version of this figure is available in the SI (Figure S5), along
with a legend describing each data set.

Figure 8. Overview of all of the self-diffusion data from
simulations41,42,42,46−48,50−53,58,59,69−71 with the novel scaling in eq
33 for the Lennard-Jones 12-6 potential. The yellow curve is the
correlation from eq 35. Each marker/color pair is associated with a
given data set. A larger version of this figure is available in the SI
(Figure S7), along with a legend describing each data set.

Figure 9. Overview of all the novel scaled thermal conductivity data
from simulation42,42,46,50,52−55,57,62−68 with the novel scaling in eq 32
for the Lennard-Jones 12-6 potential. The yellow curve is the fitted
correlation from eq 36. Each marker/color pair is associated with a
given data set. A larger version of this figure is available in the SI
(Figure S6), along with a legend describing each data set.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b05808
J. Phys. Chem. B 2019, 123, 6345−6363

6353

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b05808/suppl_file/jp9b05808_si_004.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b05808/suppl_file/jp9b05808_si_004.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b05808/suppl_file/jp9b05808_si_004.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.9b05808/suppl_file/jp9b05808_si_004.pdf
http://dx.doi.org/10.1021/acs.jpcb.9b05808


proposed by Rosenfeld9 to the simulations for 1 ≤ −sex/kB ≤ 3
and, also, show the extrapolation behavior of this curve outside
of this region. Evidently, the relationship between λ+ and −sex/
kB is not even roughly exponential for the entire fluid domain.
A much more accurate empirical model for the scaled thermal
conductivity is presented in Section 9.3.

8. ZERO-DENSITY LIMIT
Carrying Rosenfeld’s thoughts about the transport properties
of dilute gases of finite density to their logical conclusion, we
desire to understand the behavior of these scaled transport
properties as the density goes to zero (the zero-density limit).
In Rosenfeld’s derivations,9 the dilute-gas transport properties
were proportional to the excess entropy to the power of −2/3,
but this formulation is invalid at zero excess entropy.
Nonetheless, the scaling proposed in Section 7.1 has a well-
defined zero-density limit, and it also results in another
fascinating connection between transport properties and
thermodynamic properties.
The zero-density transport properties of the Lennard-Jones

12-6 potential (to first order) are given by115,116
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and correction terms ( fη
(3), fλ

(3), f D
(2))117 (all within 1.2% of unity

in 0.3 ≤ T* ≤ 400) are available to bring the Sonine expansion
up to higher order, as shown in the SI (Section 1.4). This
correction yields

f T( )0 0 1
(3)η η* = [ * ] *

ρ ρ η→ → (40)

f T( )0 0 1
(3)λ λ* = [ * ] *ρ ρ λ→ → (41)

D D f T( ) ( ) ( )D0 0 1
(2)ρ ρ* * = [ * * ] *ρ ρ→ → (42)

In the case of η+ (approach is the same for all three transport
coefficients), evaluation of the zero-density limit of η+ from eq
31 is undefined due to the fraction (0/0)2/3. The rule of de
l’Hôpital is used on the limit with a variable transformation
(see the SI, Section 1.2) with a useful (and exact) intermediate
result (this is the same result obtained from the derivative of eq
27) that
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The approaches for thermal conductivity and self-diffusion are
analogous, resulting in
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8.1. Moderate Temperatures. For “reasonable” temper-
atures, the values of η+, λ+, and D+ in the zero-density limit
may be obtained by leveraging the virial coefficients B2*
obtained from the equation of state of Thol et al.104 along with
the correlations for the collision integrals of Kim and
Monroe.115 Figure 10 shows the values of the Lennard-Jones

12-6 potential along with the (constant) values for the hard-
sphere potential and selected inverse-power-law potentials. A
similar figure for the thermal conductivity would be obtained
by multiplying all values by roughly 15/4 (deviation from 15/4
based on higher-order corrections differing between thermal
conductivity and viscosity).
The second virial coefficient of the IPL potential is known

exactly, and the virial coefficient term in the zero-density
transport properties for the IPL potential can be obtained from
(see the SI)
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where Γ is the Euler gamma function. Therefore, as shown in
the SI, the value of the scaled viscosity in the zero-density limit
for IPL potentials of hardness n is equal to

F nlim ( )
0 IPL ,IPL

N

η =
ρ

η
→

+

(48)

where Fη,IPL is a parameter that is only a function of n (see the
SI, eq 56). The SI provides tabulated values of Fη,IPL (Table
S5) as well as code in Python to carry out the necessary
numerical integration to evaluate Fη,IPL (SI Section 4.4).
Note that this parameter has no temperature dependence

because the temperature dependence of η+ for IPL potentials
has been captured entirely by the second virial coefficient term.
In the case of n→∞ (the hard-sphere limit), the value of η+ in
the zero-density limit is given by

Figure 10. Zero-density limit of Lennard-Jones 12-6 viscosity along
with hard-sphere and inverse-power-law results. The IPL potentials of
hardness n are labeled in blue, and the hard-sphere value is shown in
red.
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The approach for the self-diffusion is exactly analogous.
Figure 11 shows the values of the Lennard-Jones 12-6 potential

along with the (constant) values for the hard-sphere potential
and selected inverse-power-law potentials. The value of D+ for
the IPL potential in the zero-density limit is a unique function
of the hardness of the IPL potential (has no temperature
dependence) and is given in the SI (eq 59). The ratio of D+/η+

in the zero-density limit is in general defined as118
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In the case of the hard sphere, ΩHS
(2,2)* ≡ ΩHS

(1,1)* ≡ 1; thus,
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The SI provides tabulated values of FD,IPL (Table S5) as well as
code in Python to carry out the necessary numerical
integration to evaluate FD,IPL (SI Section 4.4).
8.2. High-Temperature Limit. At very high temperatures,

the dilute Lennard-Jones 12-6 gas behaves like an inverse-
power-law potential with n = 12 (see refs 14, 119, and 120)
because at high temperatures only the large positive energies in
the r−12 repulsive term are significant compared to the thermal
energies. As such, the high-temperature limits of the transport
properties should approach those of the n = 12 IPL.
Unfortunately, the high-temperature limit of the empirical

models of Kim and Monroe115 and Thol et al.,104 for the zero-
density-limit transport properties and second virial coefficient,
respectively, are incorrect. This can be seen by consideration of
each term individually. The respective figures are shown in the
SI Appendix (Figures S11a,b and S12).

9. SEMIEMPIRICAL MODELS
Historically, highly accurate transport property models for a
transport property Y (where here Y is one of η+, D+, or λ+)
have taken the form

Y Y Y Y0 r crit= + + Δρ→ (52)

in which Yρ→0 is the zero-density contribution, Yr is the
residual contribution, and ΔYcrit is the critical enhancement
contribution.
The motivation for the development of empirical correla-

tions for the transport properties of the Lennard-Jones fluid is
3-fold:

1. We posit that the excess entropy is the parameter that
determines the scaled transport properties (except for
dilute gases). The deviations between correlation and
simulation provide a means of quantifying the
monovariability of this relationship.

2. Real molecules that are approximately spherical are
frequently modeled as being like Lennard-Jones fluids,8

for which fitted values of ε/kB and σ are used to convert
between physical units and Lennard-Jones units.

3. Many nonassociating real molecular fluids behave
qualitatively like the Lennard-Jones fluid, and insight
gained from developing correlations for the transport
properties of the Lennard-Jones fluid can be directly
applied to the transport property modeling of real fluids.

In order to assess the “goodness” of our models, we consider
the conventional average absolute deviation (AAD) of a
property Y defined by

N

Y

Y
AAD 100

1
1Y

i

N

1

corr,i

sim,i
∑= × −
= (53)

In addition, while the term “uncertainty” is frequently used
when discussing model fidelity, in this work we prefer to
consider the distribution of deviations, and we define the term
U95 which is the central 95 percentiles of the signed deviation,
from the 2.5 percentile to the 97.5 percentile. If the
distribution of deviations were normally distributed, this
would correspond roughly to two standard deviations above
and below the mean.

9.1. Viscosity. In the case of viscosity, the critical
enhancement term ΔYcrit is usually ignored because there is
only a very narrow region in the region of the critical point
where the critical enhancement of viscosity is measurable.121

As such, engineering transport correlations usually involve a
zero-density limit correlation and another for Yr; we follow the
same approach. The zero-density-limit is fully captured by the
highly accurate collision integral analysis described above, and
the zero-density reduced viscosity ηρ→0

+ is obtained by the
combination of eq 44 and eq 40 along with the higher-order
corrections described in the SI, Section 1.4.
Therefore, in order to develop the empirical correlation for

viscosity, we first extract the residual viscosity by subtracting
the zero-density-limit viscosity (all in reduced coordinates) for
the primary data sets. In order to achieve a reasonable
extrapolation behavior in the liquid region, the state points
from Baidakov et al.69 at densities greater than values
corresponding to the solidus line of van der Hoef78 were not
included in the fit. As the residual reduced viscosity varies over
a few decades, we would like to take the logarithm of the
reduced viscosity, but the logarithm of a zero residual viscosity
in the zero-density limit is mathematically problematic, so we
add one to the residual viscosity. This results in a value that is
mathematically well-defined from zero density to beyond the
solidus line. The residual scaled viscosity is shown in Figure 12.
Therefore, the empirical model for residual viscosity is
expressed as the logarithm of η+ − ηρ→0

+ + 1 as a function of

Figure 11. Zero-density limit of Lennard-Jones 12-6 self-diffusion
along with hard-sphere and inverse-power-law results. The IPL
potentials of hardness n are labeled in blue, and the hard-sphere value
is shown in red.
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−sex/kB. A polynomial in reduced excess entropy is fit to the
residual viscosity data with conventional least-squares poly-
nomial fitting routines (the polyfit function in the numpy
Python library).
This approach results in the functional form

i

k
jjjjjj

y

{
zzzzzzc s kexp ( / ) 1

k
k

k
fit 0

1

4

, ex B∑η η= + − −ρ η
+

→
+

= (54)

where the coefficients are in Table 2, and the zero-density
viscosity is obtained from eq 41. The value for η* is then
obtained from

T
s k

( )
( / )fit fit

2/3

ex B
2/3η η ρ* =

* *

−
+

(55)

where eq 43 can be used to evaluate (−sex/kB)/ρ* at zero
density. Sample verification data are available in Table S6 in
the SI.
Figure 13 shows a deviation plot of the correlation for

viscosity along with the primary data sets, and Figure 14 shows
the same figure for the secondary data sets. In general, the
deviations of the model are within the uncertainty of the
simulations. For instance the data of Meier et al.43 are
estimated to have a statistical uncertainty of 10% in the gas
phase, to 5% in the liquid phase,43 and a discussion of Meier’s
uncertainty analysis is provided elsewhere.65 The dilute-gas
viscosity correlation is matched exactly, by construction. In the
supercooled liquid, the data of Baidakov44 extend beyond the
solidus line, and even for these very extreme states, the
behavior of the correlation is reasonable; the liquid phase ends
at an excess entropy of approximately −sex/kB = 3.5.
The secondary data sets are shown in Figure 14. These

secondary data sets generally correspond to older simulations
in which computational limitations of the day mandated a
smaller number of particles or shorter simulation times. While
the bulk of the data are still predicted within 10%, there are
some definite outliers. The data set of Heyes51 both is one of

the oldest simulations as well as systematically deviates from
the bulk of the dense phase data.
An exceptional case is the study of Costigliola et al.,47 in

which simulations were carried out for some states with T* >
10000 (and many above T* > 400, in which case they were not
included in further analysis according to our curation criteria
above). Of the modern simulations, these data correspond to
some of the largest deviations. The origin of these deviations is
not currently well-understood. One hypothesis was that the
equation of state of Thol104 provided erroneous values for the
excess entropy at extreme temperatures. The EOS has a stated
maximum temperature of T* = 9; however, confirmatory
simulations of the excess entropy4,5 for temperatures exceeding
T* = 1000 showed that the excess-entropy calculations were all
within 5% of the predictions of the EOS of Thol.104 A second
possible explanation is that excess-entropy scaling does not
work at these extreme temperatures. As the temperature
increases for a given density, the motion of the particles should
become more and more dominated by repulsion, and the
correlation (in the R-simple sense) should increase; this should

Figure 12. Scaled residual viscosity data from the primary data sets
considered in the development of the correlation43−45 and the
correlation from eq 54. Each marker corresponds to a single data
point.

Table 2. Coefficients for the Correlation in Equation 54

k cη,k

1 0.125364
2 0.220795
3 −0.0313726
4 0.00313907

Figure 13. Deviation plot for the primary viscosity data sets43−45

compared with the correlation from eq 54. SLE refers to the
approximate region of solid−liquid equilibrium, and solid to the
approximate region of equilibrium solid.

Figure 14. Deviation plot for the secondary viscosity data
sets42,42,46−62 compared with the correlation from eq 54. The range
of the ordinate from −20% to 20% is linearly scaled, and
logarithmically scaled outside this range. SLE refers to the
approximate region of solid−liquid equilibrium, and solid to the
approximate region of equilibrium solid.
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in theory be a part of the phase diagram where excess-entropy
scaling is the most successful. Further study is needed to
investigate the origin of this breakdown in this scaling
approach. This question is of rather more theoretical interest,
as a temperature of T* = 400 corresponds to (for argon with
an ε/kB on the order of 100 K) a temperature on the order of
40000 K. Nonetheless, when the deviations between the data
of ref 47 and the correlation are compared with those of other
empirical models in the literature (see Section 9.4), it is clear
that the excess-entropy scaling approach is by far the most
successful in capturing the behavior of viscosity at extremely
high temperatures.
9.2. Self-Diffusion. The self-diffusion represents a rather

more challenging modeling problem than either viscosity or
thermal conductivity. The impact of finite-size effects is rather
significant, and the correction term in eq 22 can be as much as
20% of the value of the self-diffusion for some older data sets.
In addition, the self-diffusion in the zero-density limit is larger
in magnitude than the value in the dense phase, so subtracting
off the dilute contribution is problematic.
In the entire fluid domain, the self-diffusion can be

represented by

D W D T WD s k(1 ) ( ) ( / )0 dense ex BN
= − * + −ρ

+
→

+ +
(56)

where W is a parameter that crosses over from being
approximately 0 in the zero-density to 1 in the dense phase.
In this case we use a smoothed Heaviside step function given
by

W
s k s k

1
1 exp (( / ) ( / ) )D ex B ex B crossκ

=
+ [− − − − ] (57)

where κD is a parameter that controls the sharpness of the
transition (the larger the κD, the sharper the transition), and
(−sex/kB)cross is the center of the step function. Figure 15 shows

a graphical representation of this function. A similar kind of
crossover approach has been previously used in empirical
model development.122,123 The dense contribution is given by
a polynomial in the excess entropy, in an analogous fashion to
viscosity (Table 3)

D c s k( / )
k

k
k

dense
0

4

D, ex B∑= −+

= (58)

Figure 15 shows the deviations for the primary data sets.
The claimed uncertainties from Meier et al.41 are on the order
of 1% in the gas phase to 0.5% in the liquid phase, and the
empirical model approaches, but does not quite reproduce, the
data within these claimed uncertainties. Nonetheless, the
extrapolation into the supercooled liquid is quite reasonable,
and overall, the agreement with the primary data sets is
acceptable. Figure 16 shows the same figure for the secondary

data sets. Here, too, simulation data are available up to
temperatures of T* = 400 (and are also available at even higher
temperatures that we did not include), and the very high-
temperature data are still reproduced generally within 20%.
This stands in marked contrast to a number of the empirical
models proposed in the literature (Section 9.4).

9.3. Thermal Conductivity. The modeling of thermal
conductivity is more demanding than that of the viscosity
because of the presence of critical enhancement. According to
the state-of-the-art theory regarding the critical region, the
thermal conductivity is infinite at the critical point and decays
to its background value away from the critical point somewhat
slowly.121 The viscosity, while also infinite at the critical point,
decays to its background value much more rapidly, which is
why the critical enhancement of viscosity was not included in
Section 9.1. The critical enhancement complicates the
application of excess-entropy scaling because isomorph theory
is not expected to be valid in the vicinity of the critical
point,124 and therefore, knowledge of the excess entropy

Figure 15. Deviation plot for the primary self-diffusion data
sets41,59,69 compared with the correlation from eq 58 and the
smoothing function.

Table 3. Coefficients for the Correlation in Equation 58a

k cD,k

0 0.342982
1 0.000201587
2 −0.0428472
3 0.00783515
4 −0.000362634

aThe values of the constants are κD = 10 and (−sex/kB)cross = 0.75.

Figure 16. Deviation plot for the secondary self-diffusion data
sets42,42,46−48,50−53,58,70,71 compared with the correlation from eq 58.
The range of the ordinate from −20% to 20% is linearly scaled, and
logarithmically scaled outside this range.
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should not be expected to be sufficient to predict the thermal
conductivity. Indeed, as we will see, the critical enhancement
of thermal conductivity is significant.
9.3.1. Critical Enhancement. For molecular fluids, the

recent engineering reference correlations use the simplified
critical enhancement of Olchowy and Sengers.121,125 In
simulation units (see the SI, Section 1.5), the critical
enhancement is given by

R c T
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with κ = cp*/cv*, y = ξ*/(qD
−1)*, δ = ρ*/ρc*. The viscosity is

obtained from eq 54. If ϒ* < 0, the critical enhancement term
Δcλ* is set to zero. The quasiuniversal constants126 are given
by RD = 1.02, νλ = 0.630, and γλ = 1.239. The values of Γλ =
0.0496, ξ0* = 1.2, and (qD

−1)* = 3.2 were obtained by manual
optimization.
Figure 17 shows the relative critical enhancement of thermal

conductivity from each of the simulations of thermal

conductivity. The critical enhancement is evaluated in eqs
59−63, with the thermodynamic parameters coming from the
appropriate equation of state.104,114

9.3.2. Empirical Correlation. When both of the critical and
zero-density contributions to the thermal conductivity are
subtracted off, all that remains is the residual contribution,
which is a nearly monovariate function of −sex/kB, as can be
seen in Figure 18.
The residual reduced thermal conductivity is defined by

r,
0 critλ λ λ λ≡ − − Δρ

+ +
→

+ +
(64)

and we fit the residual thermal conductivity by the polynomial
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where the coefficients are in Table 4. A similar fitting approach
is used to that of the viscosity. The thermal conductivity is
then obtained from
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0 critλ ρ λ λ λ* =

* *

−
+ + Δρ

+
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(66)

where, again, eq 43 can be used to evaluate (−sex/kB)/ρ* at
zero density.
Figure 19 shows a plot of the deviations between the

simulation data and the correlation scheme for the primary
data sets. In this case, the deviations between the correlation
and the primary data sets are all less than 6%. The data are

Figure 17. Critical enhancement of thermal conductivity as a function
of excess entropy, where the critical enhancement is evaluated from
eqs 59−63.

Figure 18. Scaled residual thermal conductivity data from the primary
data sets57,63−65 considered in the development of the correlation and
the correlation from eq 65. Each marker corresponds to a single data
point.

Table 4. Coefficients for the Correlation in Equation 65

k cλ,k

1 1.02796
2 0.439252
3 0.487628
4 −0.0679026

Figure 19. Deviation plot for the primary thermal conductivity
data57,63−65 compared with the correlation from eq 65. The dashed
vertical lines indicate the excess entropy evaluated at the critical point
of the LJTS and full Lennard-Jones 12-6 potentials.
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evenly distributed around the zero deviation line and are
represented within their uncertainties. Unlike for viscosity, the
data are mostly found in the homogeneous liquid phase, and
only a few data points approach, or indeed enter, the
supercooled domain.
Figure 20 shows the same figure for the secondary data sets.

Aside from a few outliers, the data are all generally represented

within 10%. There are a few data points from Baidakov et al.66

that are in the supercooled (−sex/kB ≳ 4) region, and even
those points are well-represented by the correlation. In the
critical region, indicated by the two dashed lines, there are a
few points that deviate more strongly from the correlation, but
they are indeed outliers, and the general behavior of the
correlation is a faithful representation of the data, even in the
critical region and for supercooled states.
9.4. Model Comparison. There are several empirical

models available in the literature for the transport properties of
the Lennard-Jones fluid; Lautenschlaeger and Hasse42

provided a small review of the existing models. These empirical
models were generally fit to the simulations carried out by the
author who proposed the model. We summarize the average
absolute relative deviation (AAD) of the models according to
the primary and secondary data sets and list them in Table 5.
Additional figures are available in the SI (see SI Section 7) with
deviation plots corresponding to each model.
For viscosity, the empirical model of Galliero and Boned is

able to reproduce the simulation viscosity data with an AAD
lower than the AAD of the correlation proposed in this work.
Their empirical model has 6 adjustable parameters (ours has
4) but it suffers from poor extrapolation at extreme
temperatures and, to a lesser extent, at high densities. The
representation of the data of Costigliola et. al47 with the
correlation of Galliero and Boned is much worse than our
proposed model. The empirical model of Lautenschlaeger and
Hasse42 is able to reproduce their own data within 10%, but it
yields much larger errors in prediction for other data sets. As
published, the correlation of Rowley and Painter has two
typographical errors (as corrected in Woodcock128 and also
fixed in our implementation in the SI); its extrapolation
behavior into the supercooled liquid phase is erroneous, and
results in quite poor predictions. The model of Woodcock128

could not be compared because working in concert with the
author its typographical errors could not be corrected, but in
general it produces similar predictions to those of ref 59.
Lötgering-Lin et al.27 also provide a correlation for the
Lennard-Jones viscosity, but it is only valid in a portion of the
liquid phase.
Thermal conductivity is the transport property for which the

models are in the best agreement. All three models in the
literature yield AADs that are less than 5% for the primary data
sets. The secondary data sets are predicted somewhat more
poorly, just as is the case for our study. Again, the correlation
of Galliero and Boned63 is the empirical model that comes
closest to reproducing the AAD of the model presented in this
work.
In the case of self-diffusion, the existing empirical

models42,59,127 provide poor predictions of the finite-size-
corrected transport properties of the Lennard-Jones fluid. Two
primary factors contribute to this unfortunate state of affairs:

• The correlations were fit to uncorrected self-diffusion
data, and the finite-size correction shifts the self-diffusion
data significantly for some of the older data sets.

• In the case of Rowley and Painter,59 the maximum
temperature of the correlation is below the maximum
temperature of the newer data set from Meier,41 and the
extrapolation behavior of the correlation is poor.

9.5. Verification Data. A Python script is provided in the
Supporting Information that implements the necessary parts of
the equation of state of Thol et al.104 as well as the transport
property correlations provided in this work. In order to ensure
reproducibility of these results, sample values calculated from
the correlations were programmatically generated from that
script and are presented in Table S6 in the SI. In the event of
discrepancies between the description in this work and the
script, the script in the SI should be considered as the
canonical source of information.

10. CONCLUSIONS
The empirical correlations developed in this work are based on
the most comprehensive meta-study to date of the transport
properties of the Lennard-Jones 12-6 model system, and they
represent the most accurate transport property correlations
published in the literature for the Lennard-Jones 12-6 fluid.
These correlations demonstrate excellent extrapolation to
extreme temperatures and densities.

Figure 20. Deviation plot for the secondary thermal conductivity data
sets42,46,50,52−55,62,66−68 compared with the correlation from eq 65.
The dashed vertical lines indicate the excess entropy evaluated at the
critical point of the LJTS and full Lennard-Jones 12-6 potentials.

Table 5. Average Absolute Deviation (AAD) of the Model
Predictions According to the Primary and Secondary Data
Setsa

prop. 1st author AAD1 AAD2

η* Galliero45 3.0% 8.48 × 107%
η* Lautenschlaeger42 19.8% 18.5%
η* Rowley59 3.66 × 1023% 5.04 × 1075%
λ* Galliero63 2.2% 3.9%
λ* Lautenschlaeger42 3.2% 3.9%
λ* Bugel67 4.1% 6.8%
ρ*D* Lautenschlaeger42 11.3% 951.5%
ρ*D* Ruckenstein127 12.4% 12.3%
ρ*D* Rowley59 667.7% 153.0%

aAAD1: AAD for the primary data sets. AAD2: AAD for the secondary
data sets.
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The condition of the Pearson coefficient R between the virial
energy and the potential energy being greater than 0.9 (the
Roskilde simpleness condition) guarantees that entropy scaling
will apply, but it does not appear to be a necessary condition.
Considering the data in the gaseous phase, where the
correlation parameter R is much less than 0.9 (see Figure 4),
the gas-phase data still collapse in the same way as the liquid
phase.
The new scaling of viscosity is to a surprisingly good

approximation given by η+ ∝ exp(−sex/kB) from the dilute-gas
phase well into the supercooled liquid. Thermal conductivity
and self-diffusion demonstrate a very strong correlation
between the excess entropy and our novel scaled transport
properties. We hope that these results will form the basis of
new theoretical insights.
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