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This article gives an overview of excess-entropy scaling, the 1977 discovery by Rosenfeld that entropy
determines properties of liquids like viscosity, diffusion constant, and heat conductivity. We give
examples from computer simulations confirming this intriguing connection between dynamics and
thermodynamics, counterexamples, and experimental validations. Recent uses in application-related
contexts are reviewed, and theories proposed for the origin of excess-entropy scaling are briefly
summarized. It is shown that if two thermodynamic state points of a liquid have the same microscopic
dynamics, they must have the same excess entropy. In this case, the potential-energy function exhibits
a symmetry termed hidden scale invariance, stating that the ordering of the potential energies of
configurations is maintained if these are scaled uniformly to a different density. This property leads to
the isomorph theory, which provides a general framework for excess-entropy scaling and illuminates,
in particular, why this does not apply rigorously and universally. It remains an open question whether
all aspects of excess-entropy scaling and related regularities reflect hidden scale invariance in one
form or other. Published by AIP Publishing. https://doi.org/10.1063/1.5055064

I. INTRODUCTION

Entropy is one of the most fascinating concepts of the
physical sciences. It is deeply connected to another funda-
mental concept—time—because the direction of time is that
of increasing entropy. In fact, the second law of thermody-
namics is the only fundamental law of physics that is not
time reversible. In 1977, a brief paper by Rosenfeld appeared
in Physical Review A entitled “Relation between the trans-
port coefficients and the internal entropy of simple systems,”1

which proposed a relation between entropy and time with no
obvious connection to irreversibility: a liquid’s equilibrium
dynamical properties are controlled by its entropy. Despite the
intriguing nature of this claim, what became known as excess-
entropy scaling for many years attracted little interest from the
scientific community. Thus until his death in 2002, Rosenfeld’s
seminal paper had been cited less than twenty times, half of
which were autocitations.

Rosenfeld reported computer simulation results for sim-
ple model liquids of point particles like the well-known
Lennard-Jones (LJ) system.2 His argument for excess-
entropy scaling was based on the quasiuniversality of simple
liquids traditionally explained by reference to the hard-sphere
system based van der Waals picture of liquids.3–5 A pos-
sible explanation of the initial lack of interest in excess-
entropy scaling is that after about 1980, the consensus in
the liquid-state community was that simple liquids are well
understood in terms of the hard-sphere reference system
via the Weeks-Chandler-Andersen6 and Barker-Henderson7

perturbation theories; consequently, the focus had moved to
more complex systems.

a)dyre@ruc.dk

Since the onset of the new millennium, there has been
steadily growing interest in excess-entropy scaling, which
has turned out to apply more generally than originally
thought, e.g., also for mixtures, molecular liquids, confined
systems, etc. While this has highlighted the importance of
the excess entropy, at the same time it has been realized
that excess-entropy scaling has exceptions and thus cannot
be a general, rigorous consequence of statistical mechan-
ics. In regard to the non-rigorous nature of excess-entropy
scaling, Hoover already in 1986 described the situation as
follows: “this scaling relationship is, like van der Waal’s
equation of state, a semiquantitative model, rather than a
theory.”8 Rosenfeld confirmed this characterization in 1999,
adding “like any corresponding-states relationship that links
non-scaling force laws, excess-entropy scaling can only be
approximate.”9

There is no universal link between thermodynamics and
dynamics because thermodynamics reflects the equilibrium
probabilities of states, whereas dynamics reflects the rate
of transitions between the states.10 As an illustration, con-
sider the random barrier model of a particle jumping on a
lattice with identical energies and randomly varying nearest-
neighbor jump probabilities. This model has a trivial thermo-
dynamics, in fact zero specific heat, but a highly complex
and spatially heterogeneous dynamics as reflected, e.g., in
the particle mean-square displacement as a function of
time.11

This article provides a brief review of excess-entropy
scaling aimed at non-experts. After summarizing some nec-
essary preliminaries in Sec. II, Sec. III presents examples of
excess-entropy scaling from computer simulations. Selected
experimental data are shown in Sec. IV. Section V gives exam-
ples of how excess-entropy scaling has been applied recently,
e.g., for deriving viscosity models for industrial purposes.
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Section VI summarizes theoretical explanations of excess-
entropy scaling proposed over the years, beginning with
Rosenfeld’s own hard-sphere-model based justification. Sec-
tion VII shows that if excess-entropy scaling is a consequence
of the property that state points with the same excess entropy
have the same microscopic dynamics, the system in question
must conform to “hidden scale invariance.” This symmetry,
which states that a uniform scaling of configurations main-
tains the ordering of their potential energies, compare Eq. (19)
below, applies to a good approximation for many liquids and
solids but is never exact for realistic systems. Hidden scale
invariance implies that the thermodynamic phase diagram
becomes effectively one-dimensional in regard to structure and
dynamics. The “isomorph theory” for the dynamics of systems
that obey hidden scale invariance to a good approximation
is a semi-rigorous theoretical framework, which quantifies
the consequences of hidden scale invariance. Isomorph the-
ory does not apply universally, only for systems with strong
virial potential-energy correlations. On the other hand, it cov-
ers not just bulk, single-component, simple liquids, but also
mixtures, molecular systems, solids, confined systems, out-
of-equilibrium situations, etc. In this way, the isomorph the-
ory takes excess-entropy scaling beyond Rosenfeld’s original
focus (Sec. VIII). Section IX gives a brief outlook.

II. PRELIMINARIES

Consider a system in thermodynamic equilibrium at tem-
perature T with (number) density ρ ≡ N /V, in which N is the
number of atoms or molecules (“particles”) and V is the vol-
ume. The system may consist of identical particles or mixtures
of two or more different types of particles. If S(ρ, T ) is the sys-
tem’s entropy, the excess entropy Sex is defined by subtracting
from S the entropy of an ideal gas at the same temperature and
density, Sid,

Sex(ρ, T ) ≡ S(ρ, T ) − Sid(ρ, T ). (1)

According to statistical mechanics, entropy is the logarithm
of the phase-space volume of all microscopic states consistent
with the given macroscopic thermodynamic condition; thus
entropy quantifies our ignorance about the system’s micro-
scopic state.10,12 Because the molecules of an ideal gas are
“all over the place” with equal probability, the ideal-gas state
corresponds to maximum ignorance or, as often stated, is
maximally disordered. Consequently, Sex ≤ 0 always applies.
Note that Sex increases with temperature just like the full
entropy S does; in fact Sex → 0 as temperature goes to infin-
ity at fixed density because the system approaches to an ideal
gas.

Not just the entropy but also the Helmholtz and Gibbs
free energies may be written as sums of an ideal-gas term and
an excess term.5,13 The system energy itself, E, is a sum of
the kinetic energy and the potential energy U; the latter is
zero for an ideal gas, so U is the excess energy. The general
relation T = (∂E/∂S)ρ has the following analog referring to
the configurational degrees of freedom:12,14,15

T =

(
∂U
∂Sex

)
ρ

. (2)

Just as entropy and free energy are sums of an ideal-gas term
and a term reflecting the loss of configurational degrees of
freedom due to interactions, the same is the case for their
derivatives. The pressure p, for instance, is given13 as

pV = NkBT + W , (3)

in which W is the virial, an extensive quantity of dimension
energy that is zero for an ideal gas, so W /V is the excess pres-
sure. The virial, which can be both positive and negative, is
related to the potential energy5,13 by

W =

(
∂U
∂ ln ρ

)
Sex

. (4)

Excess-entropy scaling uses the so-called macroscopi-
cally reduced units. In contrast to traditional unit systems,
reduced units vary with the thermodynamic state point in
question. The density defines the length unit l0, the temper-
ature defines the energy unit e0, and the density and thermal
velocity define the time unit t0. If m is the average parti-
cle mass, the length, energy, and time units are given1,8,14

by

l0 = ρ
−1/3 , e0 = kBT , t0 = ρ

−1/3
√

m/kBT . (5)

It may seem impractical to employ a unit system that depends
on the state point. On the other hand, these units do not require
knowledge of the system’s Hamiltonian [the fact that the aver-
age particle mass m appears in Eq. (5) is immaterial since this
is just a constant].

Quantities made dimensionless by scaling with the above
units are referred to as reduced, and this is henceforth indicated
by a tilde. Consider, for instance, two quantities that Rosen-
feld discussed in his original paper:1 the diffusion constant D
and the viscosity η.16 Since D has dimension length squared
over time, which is formally written as [D] = l2/t, one defines
D̃ ≡ D/(l2

0/t0), i.e.,

D̃ ≡
(
ρ1/3

√
m/kBT

)
D. (6)

Viscosity is shear stress over shear rate. The former has dimen-
sion energy over volume, and the latter has dimension inverse
time, so [η] = et/l3 = m/(lt) since [e] = ml2/t2 (compare the
kinetic energy expression mv2/2). Thus

η̃ ≡
(
ρ−2/3/

√
mkBT

)
η. (7)

This dimensionless viscosity is found already in Andrade’s
theory of viscosity from the 1930s.17

We can now define: A liquid obeys excess-entropy scaling
if its reduced dynamic properties at different temperatures and
pressures are determined exclusively by Sex. In other words,
the lines of constant Sex in the thermodynamic phase diagram
are lines of invariant reduced dynamics. This is the ideal situ-
ation; in practice, a system may obey excess-entropy scaling
for some variables and not for others. For instance, one could
imagine that all standard reduced transport coefficients—each
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FIG. 1. Figure from Rosenfeld’s seminal 1977 excess-entropy paper show-
ing simulation data for the reduced diffusion constant (left) and the reduced
viscosity (right) as a function of the negative excess entropy per particle. Data
are shown for the standard Lennard-Jones (LJ) liquid and the purely repul-
sive “soft-sphere” inverse-power-law pair potential v(r) ∝ r−12. Rosenfeld
discovered that the two systems give almost the same results for the depen-
dence on excess entropy and, moreover, that the reduced diffusion constant
and viscosity—in the figure denoted by D∗ and η∗—are both approximately
exponential functions of the excess entropy [Eq. (8)]. Reproduced with per-
mission from Rosenfeld, Phys. Rev. A 15, 2545–2549 (1977). Copyright 1977
American Physical Society.

of which corresponds to an integral of a time-autocorrelation
function—are function exclusively of Sex, while, e.g., the rel-
evant reduced time-autocorrelation functions themselves are
not. In this paper, we adopt the pragmatic point of view that
excess-entropy scaling is a property that may or may not apply
for the dynamics of any given reduced quantity.

Figure 1 is reproduced from Rosenfeld’s original publi-
cation.1 The x-axis is the negative excess entropy per particle.
The figure shows simulation data for the reduced diffusion con-
stant and the viscosity of the LJ system and a purely repulsive

inverse-power-law pair-potential system. The reduced diffu-
sion constant is shown on the left, the reduced viscosity on
the right (denoted by D∗ and η∗, respectively). By the Stokes-
Einstein relation these two quantities are inversely related. The
systems follow very similar trends. The same was reported
for the one-component plasma, the system of same-charge
particles interacting via Coulomb forces in a neutralizing back-
ground of opposite charge, as well as for the hard-sphere
system.1 The diffusion data fall roughly on a line, indicating
an exponential dependence on the excess entropy per particle,

D̃ ∝ eαSex/(NkB). (8)

Here α � 0.8 is a numerical constant. A similar expression
applies for the viscosity data in Fig. 1. Such an exponential
dependence on Sex of a reduced transport coefficient is nowa-
days referred to as “Rosenfeld scaling.” As we shall see, many
systems conform to excess-entropy scaling, but not all of them
obey Rosenfeld scaling.

III. SIMULATION

Much of the evidence for excess-entropy scaling comes
from computer simulations. We show in this section examples
of this and discuss, at the end, how lines of constant excess
entropy in the thermodynamic phase diagram are identified.

Figure 2 shows data for liquids of point particles,
with (a) giving the reduced diffusion constant of the iconic
Kob-Andersen binary Lennard-Jones liquid at different tem-
peratures and densities, a standard model in the study of
viscous liquids and the glass transition.18,21 The data col-
lapse nicely, demonstrating excess-entropy scaling; Rosenfeld
scaling Eq. (8) does not apply, although it is a good approx-
imation to the high-temperature data. Figure 2(b) shows data

FIG. 2. Excess-entropy scaling for systems of point particles. (a) Simulations of the reduced diffusion constant of the Kob-Andersen binary Lennard-Jones
model18 at different densities and temperatures. These data conform to excess-entropy scaling, but the exponential Rosenfeld scaling Eq. (8) does not apply
at low temperatures (the left part of the figure). Reproduced with permission from Agarwal et al., J. Chem. Phys. 134, 014502 (2011). Copyright 2011 AIP
Publishing LLC. (b) Reduced diffusion constant and viscosity of liquid tantalum and molybdenum described by many-body potentials. The excess entropy is
here represented by the two-particle entropy S2, which often provides a good estimate of Sex (see, however, Fig. 7 below). Rosenfeld scaling works well for
these data. Reproduced with permission from Cao et al., Chin. Phys. Lett. 31, 066202 (2014). Copyright 2014 Chinese Physics Letters.20
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for two metals modeled by many-body potentials. Rosenfeld
scaling applies here, but note that the dynamic range is much
smaller than in Fig. 2(a). In Fig. 2(b), the excess entropy is
approximated by the two-particle entropy S2 (see below).22

Figure 3 shows simulation data for molecular models with
(a) giving results for united-atom models of four hydrocarbons
and (b) showing data for the symmetric dumbbell model con-
sisting of two LJ spheres connected by a rigid bond. In both
cases, excess-entropy scaling works well. Figure 3(b) gives
data for two different inverse relaxation times. The fast pro-
cess is the reorientation dynamics, the slow one is the decay of
periodic density fluctuations at the wave vector correspond-
ing to the maximum of the static structure factor. Despite
a difference of more than one decade, both relaxation pro-
cesses conform to excess entropy scaling. Rosenfeld scaling
applies for all state points studied in (a), whereas in panel
(b)—like in Fig. 2(a)—Rosenfeld scaling only applies at high
temperatures, corresponding to low magnitudes of Sex. (c)
shows data for the incoherent intermediate scattering func-
tion as a function of time for the asymmetric dumbbell model
probed along a curve of constant Sex. The figure demonstrates
that for this model not only the average relaxation time, but

the entire dynamic signal is invariant along configurational
adiabats. In experiments, such an invariance is referred to
as “isochronal superposition;”26 in practice, this is tested by
checking whether, independent of temperature and pressure,
the average relaxation time determines the entire relaxation
curve27 (compare Fig. 9 below).

A molecular model with internal degrees of freedom
is considered in Fig. 4 presenting data for the flexible
LJ-chain model, which consists of LJ particles connected
by fixed-length, freely rotating bonds. Figure 4(a) shows the
reduced viscosity for chain lengths 2, 4, 8, and 16, while
(b) shows the reduced thermal conductivity. Excess-entropy
scaling applies in both cases. The viscosity is chain-length
dependent, but the thermal conductivity is not. Rosenfeld
scaling applies for the viscosity at low temperatures, indi-
cated by dashed lines in (a). Figure 4(c) shows data for
three different intermediate scattering functions of the LJ-
chain model, demonstrating invariant dynamics along a line
of constant excess entropy, i.e., isochronal superposition. For
comparison, (d) shows the same quantities along an isotherm
for less than half the density variation. In all cases, Fig. 4
shows results for chain lengths that are too short to exhibit

FIG. 3. Numerical data demonstrating excess-entropy scaling for molecular liquids. (a) Reduced diffusion constant at different densities of united-atom models
of n-octane, 2,5-dimethylhexane, 2,2-dimethylhexane, and 3-methyl-3-ethylpentane, all conforming to Rosenfeld scaling Eq. (8). Reproduced with permission
from Chopra et al., J. Phys. Chem. B 114, 16487–16493 (2010). Copyright 2010 American Chemical Society.23 (b) Inverse relaxation times of the coherent
intermediate scattering function (“collective dynamic”) and of the individual molecular reorientation dynamics for the symmetric dumbbell model consisting of
two Lennard-Jones spheres connected by a rigid bond.24 Although the two dynamics are quite different, they both conform to excess-entropy scaling. Reproduced
with permission from Chopra et al., J. Chem. Phys. 133, 104506 (2010). Copyright 2010 AIP Publishing LLC. (c) Incoherent intermediate scattering function
for the asymmetric dumbbell model of two different LJ particles, evaluated along a curve of constant excess entropy. The data refer to highly viscous liquid state
points; similar data along an isotherm with a smaller density variation exhibit more than three decade’s change of the average relaxation time.25 Reproduced
with permission from Ingebrigtsen et al., J. Phys. Chem. B 116, 1018–1034 (2012). Copyright 2012 American Chemical Society.
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FIG. 4. Numerical data for the system of Lennard-Jones chains consisting of LJ particles connected by fixed-length freely rotating bonds, a primitive polymer
model. (a) Reduced residual viscosity, i.e., subtracting the zero-density viscosity, for different chain lengths (from right to left: 2, 4, 8, and 16). Reproduced
with permission from Galliero et al., J. Chem. Phys. 134, 064505 (2011). Copyright 2011 AIP Publishing LLC. (b) Reduced thermal conductivity for the
indicated chain lengths, showing little length dependence. Reproduced with permission from Galliero and Boned, Phys. Rev. E 80, 061202 (2009). Copyright
2009 American Physical Society.29 (c) Reduced incoherent intermediate scattering functions for seven state points with the same excess entropy. Reproduced
with permission from Veldhorst et al., J. Chem. Phys. 141, 054904 (2014). Copyright 2014 AIP Publishing LLC. (d) The same quantity for seven state points at
the same temperature. In (c) and (d), three different dynamics are considered for a chain-length 10 system: the dynamics of the individual segments, of the center
of mass, and of the end-to-end vector. Reproduced with permission from Veldhorst et al., J. Chem. Phys. 141, 054904 (2014). Copyright 2014 AIP Publishing
LLC.

entanglement. For longer chains, the picture is more complex;
here excess-entropy scaling applies only if a renormalization
of the diffusion constant is allowed for.31

Figure 5 compares data for liquids confined to small
volumes to those of the corresponding bulk liquids, with (a)
giving data for the hard-sphere diffusion constant. The same

FIG. 5. Excess-entropy scaling of bulk and confined liquids. (a) Diffusion constant of hard-sphere fluids in 2d channels and in the bulk (solid curve); the symbols
correspond to different confining square-well potentials. The inset includes data also for 1d channels.32 Independent of confinement conditions, the diffusion
constant is the same function of the excess entropy. Reproduced with permission from Mittal et al., Phys. Rev. Lett. 96, 177804 (2006). Copyright 2006 American
Physical Society. (b) Reduced spatially averaged structural relaxation time for the asymmetric dumbbell model plotted as a function of the excess entropy. Again,
the same Sex dependence applies for bulk- and confined-liquid data. Reproduced with permission from Ingebrigtsen et al., Phys. Rev. Lett. 111, 235901 (2013).
Copyright 2013 American Physical Society.
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excess-entropy dependence applies for confined and bulk liq-
uids. This behavior is also observed in (b), which shows the
relaxation-time data for the asymmetric dumbbell model in
both bulk and confinement. The fact that data referring to
quite different boundary conditions collapse as a function of
the excess entropy emphasizes the fundamental role of this
thermodynamic variable.

Excess-entropy scaling does not always apply.34,36–39 Fig-
ure 6 reports data for (a) the Hertzian model, (b) a standard
water model, (c) the Stillinger-Weber potential, and (d) the
Fermi-Jagla model. Liquids with anomalies like water or
silica that have, e.g., a diffusion constant which increases
instead of decreases upon isothermal compression or which
expand upon freezing, usually disobey excess-entropy scaling
in the regions of the phase diagram where the anomalies
appear.35,40–42

How is the excess entropy determined in simulations?
Chopra et al.24 employed a two-step process to deter-
mine the Helmholtz free energy F by first determining F’s

density dependence from a grand-canonical transition-matrix
Monte Carlo simulation at a high temperature, subsequently
using a canonical-ensemble simulation to determine the free
energy’s temperature variation at constant density. From F, the
excess entropy is easily determined. Agarwal et al. calculated
Sex using thermodynamic integration with an ideal-gas refer-
ence state.19 Vasisht et al. used thermodynamic integration by
first finding the excess entropy at zero pressure at a reference
temperature and from this calculating Sex for p = 0 at other
temperatures, finally moving to non-zero pressure.36

The excess entropy may be evaluated analytically if
the equation of state is known.28 Rosenfeld, for instance,
for the hard-sphere reference system used the Carnahan-
Starling equation of state to calculate Sex as a function of the
hard-sphere packing fraction.1

A systematic expansion of Sex exists in terms of two-
particle, three-particle contributions, etc.,46,47

Sex = S2 + S3 + S4 + . . . . (9)

FIG. 6. Counterexamples to excess-entropy scaling. (a) Reduced diffusion constant along several isotherms for the Hertzian sphere system defined by interaction
energy varying with distance as (σ − r)5/2 below a cutoff atσ. The inset shows additional data from higher-temperature isotherms. Reproduced with permission
from Fomin et al., Phys. Rev. E 81, 061201 (2010). Copyright 2010 American Physical Society. (b) Reduced inverse collective relaxation time for the SPC/E water
model. Reproduced with permission from Chopra et al., J. Phys. Chem. B 114, 10558–10566 (2010). Copyright 2010 American Chemical Society. (c) Reduced
diffusion constant for silicon modeled by the Stillinger-Weber potential. If a density-dependent empirical scaling is allowed for, approximate Rosenfeld scaling
Eq. (8) applies (inset). Reproduced with permission from Vasisht et al., J. Chem. Phys. 141, 124501 (2014). Copyright 2014 AIP Publishing LLC. (d) Reduced
viscosity of the Fermi-Jagla model. Reproduced with permission from Higuchi et al., J. Chem. Phys. 148, 094507 (2018). Copyright 2018 AIP Publishing
LLC.
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FIG. 7. Numerical data demonstrating violations of the often assumed near identities Sex � S2 and Sex � S2 + S3. (a) The residual multiparticle entropy SRMPE
≡ Sex − S2 relative to Sex for melts of selected elements modeled by realistic potentials.43 For the metals S2 constitute at least 70% of Sex, but for silicon
and germanium deviations are larger than 30%. Reproduced with permission from Cao et al., Physica B 406, 3114–3119 (2011). Copyright 2011 Elsevier. (b)
Correlation between Sex and S2 + S3 for different models. In many cases Sex � S2 + S3, but for the monatomic water (mW) and Stillinger-Weber (SW)44 models
this is not a good approximation at low temperatures. Reproduced with permission from Dhabal et al., J. Chem. Phys. 143, 164512 (2015). Copyright 2015 AIP
Publishing LLC.45

The two-particle contribution is calculated from the radial
distribution function g(r) as follows:46,47

S2/N = −2πρ
∫ ∞

0

(
g(r) ln g(r) − g(r) + 1

)
r2dr. (10)

In many cases, this gives the dominant contribution to Sex.47

This is fortunate because g(r) is a standard outcome of simula-
tions. It is not generally the case, however, that Sex � S2.48–53

Some examples where this identity does not work well are
given in Fig. 7.

If one is primarily interested in whether or not excess-
entropy scaling applies, more than in how different reduced
quantities depend on Sex, the lines of constant Sex in the ther-
modynamic phase diagram are conveniently identified without
knowledge of Sex by means of the following statistical-
mechanical fluctuation identity:14(

∂ ln T
∂ ln ρ

)
Sex

=
〈∆U∆W〉

〈(∆U)2〉
. (11)

Here, the angular brackets denote NVT canonical thermal
averages at the state point in question and ∆ refers to the
given quantity minus its state-point average. If, for instance,
the right-hand side is 3, a 1% increase of density is to be
accompanied by a 3% increase of temperature in order to
keep Sex constant. Recalculating the right-hand side at the new
state point, etc., allows for step-by-step mapping out a line of
constant excess entropy in the phase diagram.14

IV. EXPERIMENT

Figure 8 shows experimental data for the viscosity and
diffusion constant measured at various pressures and tem-
peratures. The first three figures report the reduced viscosity
of argon, carbon dioxide, and methane, as a function of the
excess entropy (“reduced residual entropy”). These data are
from experiments by Abramson measuring the viscosity over
a large range of temperatures and pressures up to 6-8 GPa,
using a rolling-ball technique. (d) and (e) give the diffusion

constant of alkanes and a colloidal monolayer, respectively, as
a function of the excess entropy.

Identifying Sex in experiments is not straightforward. We
refer to the references of Fig. 8 for details of how this is done.
Briefly, the determination of Sex at a given state point is often
based on the use of an equation of state, e.g., expressed via the
Helmholtz free energy as a function of temperature and density,
fitted to the thermodynamic data.55,60,61 Alternatively, if one
assumes the system in question obeys excess-entropy scaling
for all dynamic processes, the dynamics measured on a cer-
tain time scale may be used to identify the lines of constant
Sex. This leads to the above-mentioned principle of isochronal
superposition,26,27 according to which two state points with
the same average reduced relaxation time have the same relax-
ation spectra. As shown in Sec. VII, if two state points have
the same microscopic dynamics (except for a uniform scaling
of space and time), they must have the same Sex. Figures 3(c)
and 4(c) show instances of isochronal superposition in com-
puter simulations. Experimental examples are given in Fig. 9
in which (a) shows how dielectric spectra at different tem-
peratures and pressures superpose if the loss-peak frequency
is the same. An example of isochronal superposition over
fourteen orders of magnitude was recently given by Hansen
et al.59 For two van der Waals liquids, it was shown that state
points with different temperatures and pressures, but the same
relaxation time on the second time scale (probed by dielectric
spectroscopy) have the same dynamics on the picosecond time
scale (probed by neutron scattering). Isochronal data for one of
these liquids are shown in Fig. 9(c), which may be compared
to the isothermal data on the same liquid shown in Fig. 9(b).
Interestingly, isochronal superposition does not apply for the
hydrogen-bonded liquid studied with the same techniques.59

V. APPLICATION

Of relevance to industrial applications, excess entropy
has recently been identified as the crucial quantity for
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FIG. 8. Experimental viscosity data demonstrating excess-entropy scaling. The first three figures show data for the following fluids: (a) Argon. Reproduced with
permission from Abramson, High Pressure Res. 31, 544–548 (2011). Copyright 2011 Taylor & Francis Ltd.54 (b) Carbon dioxide. Reproduced with permission
from Abramson, Phys. Rev. E 80, 021201 (2009). Copyright 2009 American Physical Society. (c) Methane. Reproduced with permission from Abramson, Phys.
Rev. E 84, 062201 (2011). Copyright 2011 American Physical Society.56 In (a)–(c), the reduced viscosity is a function of the excess entropy, referred to as the
“reduced residual entropy.” (d) shows diffusion-constant data for n-alkanes. Reproduced with permission from Vaz et al., Chem. Eng. Sci. 79, 153–162 (2012).
Copyright 2012 Elsevier.57 (e) shows data for a colloidal monolayer. Reproduced with permission from Ma et al., Phys. Rev. Lett. 110, 078302 (2013). Copyright
2013 American Physical Society.58

rationalizing, e.g., how the bulk or confined-geometry vis-
cosity and diffusion constant vary throughout the thermo-
dynamic phase diagram.61–67 Excess-entropy-scaling based

models have been applied to the transport properties of
electrolytes and silica melts,68,69 methane and hydrogen
absorption in metal-organic frameworks,70,71 the viscosity
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FIG. 9. Isochronal superposition in experiments. Lines of constant excess entropy in the thermodynamic phase diagram are identified from the invariance of
a selected dynamic characteristic. Isochronal superposition predicts the invariance of all dynamic characteristics along these lines. (a) Dielectric loss data at
different temperatures and pressures for the chlorinated biphenyl PCB62. When loss-peak frequencies are identical, the entire spectra overlap. Reproduced
with permission from Ngai et al., J. Phys. Chem. B 109, 17356–173 (2005). Copyright 2005 American Chemical Society. (b) and (c) show the dynamics of
5-polyphenyl-ether (PPE) probed on the picosecond time scale by inelastic time-of-flight neutron scattering experiments. (b) shows spectra at 300 K at three
different pressures, while (c) shows the spectra at three different state points along the glass-transition isochrone, i.e., with the same slow dynamics. The overlap
in (c) demonstrates isochronal superposition over fourteen decades in time. Panels (b) and (c) are reproduced with permission from Hansen et al., Nat. Commun.
9, 518 (2018). Copyright 2018 Author(s), licensed under a Creative Commons License.

and thermal conductivity of refrigerants and other liquids,72,73

the viscosity of the Earth’s iron-nickel liquid core at the
relevant extreme pressures,74 separation of carbon isotopes
in methane with nanoporous materials,75,76 etc. As stated
by Novak, models based on the excess entropy provide a
“practical approach to determining viscosity in process engi-
neering, product engineering, oil and gas reservoir engineer-
ing, pipelines, and fracking applications.”77 A basic-research
oriented application of excess-entropy scaling was recently
reported in a paper on understanding water’s structure and
dynamics in protein hydration layers.78

Figure 10 gives examples of how experimental data in
application-relevant contexts are rationalized, either by the
use of excess entropy itself or by models based on it, usu-
ally with one or more fitting parameters. Panel (a) shows
data for methane diffusion in zeolites, and (b) shows data
for bulk n-alkane viscosity. Panel (c) shows ketone data ver-
sus excess entropy calculated from the so-called perturbed-
chain statistical associating fluid theory (PCP-SAFT),81 while

(d) shows isopropyl-benzene’s reduced thermal conductivity
versus excess entropy.

VI. THEORY

Since excess-entropy scaling is only approximate and
does not apply universally (Fig. 6), it cannot be rigorously
derived for systems in general. Arguments for excess-entropy
scaling that have been given over the years are summarized
below.

First, however, we note that there is one particular case
for which excess-entropy scaling is exact. This happens if the
potential-energy function is Euler homogeneous, i.e., obeys
the following requirement, in which λ is a uniform scaling
parameter

U(λR) = λ−nU(R). (12)

In this case, the reduced-unit microscopic dynamics is exactly
invariant along the lines in the thermodynamic phase diagram
defined by ρn/3/T = Const.82,83 Physically, this reflects the
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FIG. 10. Data relevant for industrial applications rationalized via the excess entropy. (a) Reduced diffusion constant of methane in zeolites versus the negative
excess entropy per particle, demonstrating excess-entropy scaling. Reproduced with permission from He et al., Chem. Phys. Lett. 593, 83–88 (2014). Copyright
2014 Elsevier.79 (b) Predictions of an “entity-based” scaled viscosity model versus data over the entire fluid region for seventeen n-alkanes, ranging from methane
to molecular-weight 1280 g/mol linear polyethylene. Reproduced with permission from Novak, Ind. Eng. Chem. Res. 52, 6841–6847 (2013). Copyright 2013
American Chemical Society. (c) Reduced viscosity data for ketones versus residual entropies calculated from the PCP-SAFT equation of state. Reproduced with
permission from Lötgering-Lin and Gross, Ind. Eng. Chem. Res. 54, 7942–7952 (2015). Copyright 2015 American Chemical Society.80 (d) Reduced thermal
conductivity versus excess entropy of isopropyl-benzene using also this equation of state. Reproduced with permission from Hopp and Gross, Ind. Eng. Chem.
Res. 56, 4527–4538 (2017). Copyright 2017 American Chemical Society.

fact that a change of density can be compensated entirely
by a change of temperature. Since the dynamics is invariant
along certain lines except for a uniform scaling of space and
time, this is the case also for the excess entropy that basi-
cally measures the available reduced volume in configuration
space.15,84 Accordingly, the lines of constant excess entropy
are lines of invariant reduced dynamics, which implies that,
e.g., D̃ and η̃ are unique functions of the excess entropy when-
ever the potential-energy function is Euler homogeneous. An
often studied example is that of particles interacting via purely
repulsive inverse-power-law pair potentials.41,82,85–87

A. Rosenfeld-Hoover-Dzugutov
hard-sphere argument

The first justifications of excess-entropy scaling came
from three authors giving closely related arguments based on

the hard-sphere (HS) reference system. In Rosenfeld’s original
publication,1 the reasoning was basically as follows. If a simple
liquid is well represented by a HS system, its excess entropy
is equal to that of the corresponding HS liquid, which is deter-
mined by the packing ratio φ (the occupied fraction of space).
If the excess entropy per particle is denoted by sex ≡ Sex/N,
this implies that sex = sex(φ). Assuming the HS representation
applies also for dynamic properties, one has D̃ = D̃(φ), which
by elimination implies D̃ = D̃(sex). The new idea of Ref. 1
was that one can avoid the issue of determining the effective
HS packing fraction of the system at the state point in ques-
tion by referring instead to a thermodynamic property that is
in a one-to-one relation with φ, namely, the excess entropy.88

At the time, Rosenfeld did not thoroughly justify the use of
macroscopically reduced units [Eq. (5)], but in 1999 he stated
that these are suggested “by elementary kinetic theory for a
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dense medium of particles with thermal velocities but with a
mean free path between collisions which is of the order of the
average interparticle distance.”

An important finding in Rosenfeld’s 1977 paper was that
the function D̃(sex) is quasiuniversal. In particular, virtually
the same function applies for systems of purely repulsive pair
forces and for the Lennard-Jones system, and this finding
is highly nontrivial. From simulation data, Rosenfeld found
that Eq. (8) applies; similarly he found for the viscosity that
η̃ ∝ exp(−βsex/kB), in which β like α of Eq. (8) is a numeri-
cal constant of order unity (Fig. 1). This exponential Rosenfeld
scaling, which is now known not to work in all cases of excess-
entropy scaling (compare the above figures), was derived in
1986 by Hoover using an effective Einstein model for the HS
system’s “cage rattling” particles,8 arguing as follows: Ifω0 is
the effective Einstein vibration frequency, i.e., the inverse of
the time between collisions, any diffusion constant is estimated
by D ∼ l2

0 ω0, in which l0 = ρ−1/3 is the average interparticle
distance. This applies to the heat diffusion constant, the parti-
cle diffusion constant, and the transverse momentum diffusion
constant, which is the so-called kinematic viscosity. According
to the Navier-Stokes equation, the latter is η/(mρ),89 i.e., one
has η/(mρ) = l2

0 ω0. In terms of the vibrational mean-square
displacement 〈x2〉, the excess entropy per particle is the
logarithm of the available space relative to the interparti-
cle distance, sex = kB ln(

√
〈x2〉/l0).10,12 Writing the single-

particle effective potential as (1/2)mω2
0x2, equipartition

implies mω2
0〈x

2〉 = kBT . Eliminating 〈x2〉 leads to exp(sex/kB)
= l−1

0 ω−1
0

√
kBT/m or ω0 = l−1

0

√
kBT/m exp(−sex/kB). Com-

bining this with η/(mρ) = l2
0 ω0 leads to η = mρl2

0ω0

= ρ2/3
√

mkBT exp(−sex/kB), which in reduced units [compare
Eq. (7)] is simply η̃ = exp(−sex/kB).

Unaware of Rosenfeld’s little known paper, Dzugutov
in 1996 rediscovered excess-entropy scaling.48 He did
not use macroscopically reduced units, but instead scaled
length by the effective hard-sphere radius and time by the
inverse Einstein frequency. Nevertheless, Dzugutov’s physical
ideas and arguments are quite similar to those of Rosenfeld
and Hoover. Dzugutov justified the exponential excess-entropy
dependence of the transport coefficients he found from sim-
ulations as follows: “The frequency of local structural relax-
ations, which defines the rate of the cage diffusion, is obvi-
ously proportional to the number of accessible configurations
(per atom),” which by definition of the entropy is given by
exp(sex/kB). This argument, like the above, leads to Rosen-
feld scaling Eq. (8) with α = 1. Dzugutov argued, moreover,
that the most important contribution to sex is the two-particle
entropy, making it possible to estimate diffusion constants
from radial-distribution-function data.90

B. Excess-entropy scaling for gasses

By reference to Enskog theory91 and a second-order virial
expansion, Rosenfeld in 1999 showed that excess-entropy scal-
ing applies also for dilute gases of particles interacting via
inverse power-law repulsive pair potentials, v(r) ∝ r−n. For
exponents n > 3, the reduced kinematic viscosity, the reduced
diffusion constant, and the reduced thermal conductivity all
vary with excess entropy per particle in proportion to −s−2/3

ex .

This extends excess-entropy scaling to the gas phase, although
Rosenfeld scaling Eq. (8) does not apply in this part of phase
space.

C. Kolmogorov-Sinai entropy connection

The dynamics of the hard-sphere system is determined by
the rate at which trajectories in the multidimensional phase
space diverge from one another in the course of time.92

This rate is quantified by the so-called Kolmogorov-Sinai
(KS) entropy defined as the sum of all positive Lyapunov
exponents.92–94 In 1998, an interesting connection to excess-
entropy scaling was proposed by Dzugutov and co-workers in
a paper demonstrating a linear relation between the KS entropy
and the excess entropy for simple liquids.95 The existence of a
universal relation between diffusion constant and KS entropy
for simple liquids was confirmed in 2000 in simulations by
Pang and co-workers,96 as well as in a theoretical study by
Samanta et al. in 2004; the latter paper’s arguments apply also
to mixtures.97,98

D. Mode-coupling theory

The main postulate of mode-coupling theory is that the
structure determines the dynamics.99 In its simplest version,
the pair distribution function g(r) determines the incoher-
ent intermediate scattering function. On the other hand, g(r)
also determines the two-particle contribution to the excess
entropy S2 [Eq. (10)], which as we have seen is often the
dominant contribution to Sex. Thus it makes good sense that
mode-coupling theory predicts excess-entropy scaling in the
Sex � S2 approximation.53,97,100,101

E. Generalized excess-entropy scaling

Truskett and co-workers in 2009 addressed the challenge
that systems with soft pair potentials tend to disobey excess-
entropy scaling. To remedy this, they proposed a modified
scaling of the diffusion constant that by construction ensures
excess-entropy scaling in the low-density (gas) limit. This is
done by scaling D with the product of Dρ (evaluated at a ref-
erence density) and B(1 + d ln B/d ln T ), in which B is the
second virial coefficient.102 In the dilute limit, rigorous theory
implies that the diffusion constant scaled in this way varies as
1
/
sex.102 For binary hard-sphere mixtures, Widom-Rowlinson

mixtures, the Gaussian core model,103 and Hertzian particle
fluids, this alternative form of excess-entropy scaling col-
lapses diffusion-constant data much better than regular excess-
entropy scaling, also in the non-dilute phase.104 The novel
scaling is not consistent with standard Rosenfeld scaling, how-
ever, so for any given system these two ways of scaling cannot
both collapse dynamic quantities as a function of the excess
entropy.

F. Diffusion in a rugged potential-energy landscape

The potential-energy landscape of a liquid is very com-
plex.105 Representing complexity by randomness,106 liquid
dynamics has been modeled as jumps in a random land-
scape,107–109 for instance with energies distributed according
to a Gaussian.110–113 For this model, Bagchi and co-workers in
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2014 and 2015 showed via the effective-medium approxima-
tion that at moderate disorder, the diffusion constant is given
by the Rosenfeld relation Eq. (8) with α = 1.114,115

Excess-entropy scaling applies also in the “extreme disor-
der limit”11 of the Gaussian random landscape model, the limit
in which barriers are much larger than kBT and where diffu-
sion is, consequently, controlled by percolation.112 To see this,
consider a system in d dimensions with a Gaussian density of
states n(E) ∝ exp(−E2/2σ2). At temperature T, the energy
probability distribution is given by P(E) ∝ n(E) exp(−E

/
kBT )

∝ exp(−(E − Ē)2/2σ2), in which Ē(T ) = −σ2/kBT is the aver-
age energy. If the percolation energy is denoted by Ec, the
effective barrier for escaping entirely from a state of low energy
E is given by ∆E = Ec − E.112 At low temperatures, the rel-
evant energies move far into the negative tail of the Gaussian
and one has ∆E � −E. The diffusion constant is estimated by
D ∼ 〈l〉2

/
〈τ〉, in which 〈l〉 is the average distance between the

most likely states [of energy close to Ē(T )] and the relaxation
time τ is given by τ = τ0 exp(∆E

/
kBT ) ∼ τ0 exp(−E

/
kBT ),

where τ0 is a prefactor. We estimate 〈l〉 from 〈l〉−d ∼ n(Ē(T ))
leading to 〈l〉 ∼ exp(Ē(T )2/(2dσ2)). After evaluating a Gaus-
sian integral, one finds 〈τ〉 ∼ exp(3σ2/(2(kBT )2)). In terms
of Ē(T ), the excess entropy is given by Sex

/
kB ∼ ln n(Ē(T ))

= −Ē(T )2/2σ2 = −σ2/(2(kBT )2). Combining these equations
leads to D̃ ∼ exp(αSex

/
kB), i.e., Rosenfeld scaling with α = 3

− 2
/
d.

G. Other theoretical connections

This section discusses briefly some interesting studies in
which entropy is related to dynamics in various ways without
aiming at excess-entropy scaling.

1. The Adam-Gibbs configurational entropy
theory for the glass transition

In the study of glass-forming liquids, going back in time
more than half a century there have been proposals of a link
between the relaxation time and the “configurational entropy”
defined as the entropy relative to the perfect crystalline state,
just as Sex is defined relative to the gas state.116–118 In fact, ever
since the studies of Simon119 and Kauzmann120 in 1931 and
1948, respectively, it has been noted that the rapid increase in
structural relaxation time of liquids cooled toward their glass
transition correlates with a significant drop in entropy. Mar-
tinez and Angell in 2001 reviewed the parallelism between the
dramatic temperature dependence of the viscosity/relaxation
time of supercooled liquids and the configurational entropy’s
temperature dependence.121 Wolynes and co-workers have
developed the so-called random first-order transition theory
(RFOT) of the glass transition, in which the configurational
entropy plays a crucial role for the dynamics.122 More recently,
a generalized entropy theory of glass formation has been pro-
posed,123,124 which combines the Adam-Gibbs model118 with
the so-called lattice cluster theory.

2. Relating to the geometry
of the potential-energy-landscape

Chakraborty and Chakravarty have shown numerically
for the Lennard-Jones system that the diffusion constant

depends linearly on a number of properties characterizing the
potential-energy landscape, e.g., the fraction of negative cur-
vature directions, and mean, maximum, and minimum eigen-
values of the Hessian matrix.125 Assuming Rosenfeld scaling
Eq. (8), this implies that the logarithm of the excess entropy
exhibits the same linear dependencies, which provides inter-
esting connections between the excess entropy and landscape
properties.

3. Coarse-graining with the relative entropy

Scott Shell has shown that the optimal approximation
to a given system by one from a specified class of simpler
systems126 is obtained by minimizing the so-called relative
entropy, an information-theoretic quantity also known as the
Kullback-Leibler divergence, which measures the information
lost upon coarse graining.127 Shell’s “relative-entropy coarse-
graining method” was designed for reducing the number of
degrees of freedom as in proper coarse-graining,128 but it has
also been used to approximate the LJ system by a system with
inverse power-law pair interactions.128 In the latter case, since
the relative entropy is the difference between the two systems’
excess entropies, assuming Rosenfeld scaling Eq. (8) one con-
cludes that the smaller the relative entropy is, the better does the
coarse-graining approximation work for dynamic properties.

4. String-theory-based lower bound on viscosity

A surprising connection between entropy and viscosity
appeared in a paper in 2005 by Kovtun et al., which showed that
for a large class of strongly interacting quantum field theories
whose dual description involves black holes in anti-de Sitter
space, the ratio of viscosity over entropy density is~/(4πkB).129

The paper conjectured that this number provides a lower bound
to the entropy density η/(sρ), where s is the entropy per particle
(the excess entropy plus the ideal-gas entropy), i.e., that

η

s ρ
≥
~

4πkB
� 6 · 10−13 Ks. (13)

This lower-bound prediction, which obviously excludes super-
fluids for which η = 0, has been applied to strongly inter-
acting systems like the quark-gluon plasma created in a
heavy ion collision129 and to the electron fluid of cuprate
strange metals.130 Equation (13) is obeyed by helium and
other rare gasses, as well as by water, nitrogen, ammonia,
and molten alkali metals.129,131–133 For these systems, η

/
(sρ)

reaches its minimum close to the critical point, where it is
10-100 times larger than the string-theory based lower bound
Eq. (13).133

5. Rationalizing the behavior of anomalous systems

It is well known that water exhibits a multitude of anoma-
lies, e.g., by having a diffusion constant that increases instead
of decreases upon isothermal compression. Such anomalies
are common for tetrahedrally coordinated systems and have
also been reported, e.g., for the Gaussian-core model of
spherically symmetric interactions based on a Gaussian func-
tion.103 Interestingly, the anomalies correlate with entropy
anomalies.35,51,134,135 Thus regions of anomalous diffusiv-
ity and density behavior appear as “nested domes” in the
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thermodynamic phase diagram within a structurally anoma-
lous envelope.51 Despite the fact that water does not obey
excess-entropy scaling, a given property exhibits anomalous
behavior when the strength of the excess entropy anomaly
exceeds a property-specific threshold.51

6. Excess-entropy scaling in
out-of-equilibrium situations

The excess entropy is an equilibrium thermodynamic
quantity. In order to extend excess-entropy scaling to out-of-
equilibrium situations, Krekelberg et al. proposed using the
two-body excess entropy S2 of Eq. (10).136,137 The point is
that S2 is given by the radial distribution function g(r), which is
also defined in, e.g., a steady-state flow. This idea was applied
recently by Ingebrigtsen and Tanaka to collapse relaxation time
data for different systems with shear rates extending far into
the nonlinear regime, in a version in which the anisotropic
structure under shear was taken into account in the definition
of S2.138

VII. HIDDEN SCALE INVARIANCE

Rosenfeld’s 1977 paper1 reported that state points with
different densities and temperatures but the same Sex have the
same reduced diffusion constant, viscosity, and thermal con-
ductivity. The simplest explanation is that at state points with
the same excess entropy, the system’s atoms or molecules move
about each other in the same way to a good approximation, as
suggested by the observation of the isochronal superposition
in Figs. 3(c) and 4(c). This section investigates the possibility
that the equation of motion is approximately invariant along
the configurational adiabats.

If one imagines filming a liquid’s particles, the same
movie cannot be seen at state points with different densities.
The best one can hope for is that the particle motions are iden-
tical at two state points with the same Sex except for a uniform
scaling of space and time. To eliminate the density depen-
dence, coordinates must be scaled by the density as in the
units defined in Eq. (5), compare the definition of the reduced
coordinate vector R̃ ≡ R/l0 = ρ1/3R. Likewise, time must be
scaled to ensure invariant thermal velocities along the lines of
constant Sex, and this is precisely what is obtained by using
the reduced time coordinate t̃ defined via Eq. (5).

Assuming a system of identical particles, if F̃ ≡ l0F/e0

= ρ−1/3F/kBT is the reduced 3N-dimensional vector of all
particle forces, it is straightforward to show that Newton’s
equation of motion in reduced coordinates is

d2R̃
dt̃2

= F̃. (14)

No mass appears on the left-hand side because the particle
mass has been absorbed into the reduced time, compare Eq. (5).
Equation (14) refers to the case of a single-component system,
but the arguments given below apply also for mixtures. For
a mixture, the left-hand side of Eq. (14) is for each particle
(mi/〈m〉)d2r̃i/dt̃2 = F̃i.

Equation (14) applies for any system in equilibrium at a
specified state point, whether or not the system obeys excess-
entropy scaling. In general, the reduced force vector F̃ depends

on the coordinate vector R, not just on R̃, and the reduced
dynamics at different state points are consequently not identi-
cal. If, however, the reduced force depends only on the reduced
coordinates, i.e., if F̃ = F̃(R̃), there is invariance because in
this case the equation of motion has no reference to the density.

How to check whether a given system obeys this require-
ment to a good approximation? To answer this question it is
convenient to define the following microscopic excess-entropy
function Sex(R):84

Sex(R) ≡ Sex(ρ, U(R)). (15)

On the right-hand side, Sex(ρ, U) is the excess entropy of
the thermodynamic state point with density ρ and average
potential energy U. In other words, Eq. (15) defines the excess
entropy of the configuration R as the excess entropy of the ther-
modynamic state point with average potential energy equal to
U(R) and density corresponding to R. The thermodynamic
excess entropy of a given state point is then the average of
its microscopic excess entropies, i.e., Sex = 〈Sex(R)〉, just as
the thermodynamic pressure is the average of the microscopic
pressures.

The above is completely general and so is the inverse of
Eq. (15),

U(R) = U(ρ, Sex(R)). (16)

Recalling the expression for temperature Eq. (2), Eq. (16)
implies for the force vector F = −∇U(R) = −T ∇Sex(R).
The reduced force vector is given by F̃ = ρ−1/3F/kBT
= −∇̃Sex(R)/kB, in which ∇̃ = ρ−1/3∇ is the gradient operator
with respect to the reduced coordinates. If F̃ = −∇̃Sex(R)/kB

depends only on the reduced coordinate vector R̃, by integra-
tion one conludes that Sex(R) is a function of R̃ plus a function
of the system’s overall density ρ, denoted by ψ(ρ). Letting T
go to infinity at fixed ρ takes the system to the gas limit in
which Sex→ 0. Thus ψ(ρ) is independent of ρ and may be put
to zero without loss of generality. In summary, if λ is a uni-
form scaling factor, the “same-movie requirement” F̃ = F̃(R̃)
implies

Sex(R) = Sex(λR). (17)

In particular, it follows that the only possible lines of invariant
microscopic dynamics in the phase diagram are the configura-
tional adiabats, the lines of constant Sex. This is not surprising,
given the fact that the excess entropy is the logarithm of the
reduced volume traced out in the course of time.10,12

Since Sex for a system with hidden scale invariance
depends only on a configuration’s reduced coordinates R̃,
Eq. (16) becomes

U(R) = U(ρ, Sex(R̃)). (18)

How does one test whether Eq. (17) or, equivalently Eq. (18),
applies to a good approximation for a given system? Con-
sider two arbitrary configurations corresponding to the same
density, Ra and Rb, and suppose that U(Ra) < U(Rb). Since
(∂U/∂Sex)ρ = T > 0, one concludes from Eq. (18) that
Sex(R̃a) < Sex(R̃b). Equation (18) then implies that a uni-
form scaling of the two configurations to a different den-
sity preserves the relation between their potential energies.
That is, if one configuration has lower potential energy than
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FIG. 11. Potential energies of configurations generated by uniform scaling of equilibrium configurations. At each density, the average potential energy was
subtracted, after which the data were normalized to unit variance. Equation (19) applies to a good approximation if the curves rarely cross one another. (a) Data
for the Lennard-Jones-Gaussian model with twenty configurations selected from an equilibrium simulation (at the density marked by the red dashed line) scaled
uniformly ±20% in density.84 There are several crossings, showing that Eq. (19) does not apply very well. Reproduced with permission from Schrøder and Dyre,
J. Chem. Phys. 141, 204502 (2014). Copyright 2014 AIP Publishing LLC. (b) Similar data for the EXP exponentially repulsive pair-potential system.139

another, this is the case also after a uniform scaling. For-
mally, this property is expressed by the following logical
implication:84

U(Ra) < U(Rb)⇒ U(λRa) < U(λRb). (19)

This is referred to as the hidden-scale-invariance condition.
It can be shown that Eq. (18) is mathematically equivalent
to Eq. (19).84 Equation (19) applies rigorously only for an
Euler-homogeneous potential-energy function [Eq. (12)] plus
a constant. Hidden scale invariance is easily checked in
a simulation. Figure 11 shows in (a) data for the poten-
tial energies of scaled Lennard-Jones-Gaussian model con-
figurations for which Eq. (19) is not a good approxima-
tion and, for comparison, in (b) data for the exponen-
tially repulsive pair potential where Eq. (19) works much
better.139

Because of continuity, Eq. (19) always applies to a good
approximation for small density changes, so how does one

judge to which degree hidden scale invariance applies? A
quantitative measure for this is provided by the constant-
density virial potential-energy Pearson correlation coefficient
R defined140,141 as follows:

R ≡
〈∆U∆W〉√

〈(∆U)2〉〈(∆W )2〉
. (20)

Here W is the microscopic virial, the thermal average of which
(also denoted by W ) obeys Eq. (3). In general, −1 ≤ R ≤ 1. If
Eq. (18) applies rigorously, one has R = 1 (in exotic cases, R
= −1142). This is because at any given density, knowledge of
U(R) via Eq. (18) implies knowledge of Sex(R̃), which deter-
mines the microscopic virial via the analog of Eq. (18), W (R)
= W (ρ, Sex(R̃)) (this expression follows from the definition
W (R) ≡ (∂U(R)/∂ ln ρ)R̃

13). Thus if R is close to unity, the
hidden-scale-invariance condition Eq. (19) applies to a good
approximation and Newton’s equation of motion [Eq. (14)]
is approximately invariant along the configurational adiabats.

FIG. 12. State-point jumps monitored in NVT simulations. Isomorphs were traced out numerically in the phase diagram using Eq. (11) in a step-by-step fashion,
involving a density change of 1%. (a) Relaxation of the potential energy toward its equilibrium value after three jumps at t = 0 in the thermodynamic phase
diagram for the viscous Lewis-Wahnström ortho-terphenyl model.165 The black curve is for a jump between two state points on the same isomorph. Here there is,
after an initial instantaneous jump in potential energy (not visible), no subsequent relaxation toward equilibrium. The red and green curves are for non-isomorph
jumps. Reproduced with permission from Ingebrigtsen et al., J. Phys. Chem. B 116, 1018–1034 (2012). Copyright 2012 American Chemical Society. (b) Same
after jumps from three different state points of a face-centered cubic crystal of gold modeled via a realistic effective medium non-pair potential. Only the jump
from a state point on the final state point’s isomorph (red curve) leads to instantaneous equilibration. Reproduced with permission from Friedeheim et al., e-print
arXiv:1810.07255 (2018). Copyright 2018 Author(s).166
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The criterion R > 0.9 has been used for defining the class
of “strongly correlating systems,”140,141,143,144 which to avoid
confusion with strongly correlated quantum systems have
been termed “Roskilde (R)-simple” systems.41,145–158 These
are the systems that obey hidden scale invariance to a good
approximation.

All systems have lines in the thermodynamic phase dia-
gram of constant excess entropy. For R-simple systems, these
lines are termed isomorphs14,159 because the reduced-unit
structure and dynamics are invariant to a good approximation
along isomorphs.

VIII. BEYOND EXCESS-ENTROPY SCALING

The simplest explanation of excess-entropy scaling is that
the microscopic dynamics at state points with the same excess
entropy is virtually the same. If this is the case, the sys-
tem in question has hidden scale invariance [Eq. (19)]. This

property, however, only applies approximately and only for
certain systems, and even for these it applies only in part of
the thermodynamic phase diagram. This explains why excess-
entropy scaling is neither exact nor universal. The class of
R-simple systems—those with hidden scale invariance—is
believed to include most metals and van der Waals bonded sys-
tems, but exclude most systems with strong directional bonds
like hydrogen-bonded or covalently bonded systems.159 Ionic
and dipolar systems constitute in-between cases that may or
may not exhibit hidden scale invariance, depending on how
strong the Coulomb forces are.159–162 Whenever hidden scale
invariance applies, however, it has a number of interesting
consequences beyond the classical excess-entropy scaling of
transport coefficients. The present section gives examples of
this.

While Rosenfeld originally proposed excess-entropy scal-
ing for single-component liquids of particles interacting via
pair forces, hidden scale invariance applies equally well to

FIG. 13. The hidden scale invariance of the Lennard-Jones system leads to quantitative predictions for the variation along the melting line of the system’s density,
melting entropy, diffusion constant, and Lindemann ratio. Red lines are isomorph-theory predictions with all free parameters determined from simulations carried
out at T = 2 (marked by arrows); black dots are simulation results. (a) The freezing and melting lines in the density-temperature phase diagram; the colored area
marks the coexistence region. The triple point of the Lennard-Jones system is at T � 0.7. Close to it, there are small deviations from the theoretical prediction
(inset), which are also apparent in (c) and (d). Reproduced with permission from Pedersen et al., Nat. Commun. 7, 12386 (2016). Copyright 2016 Author(s),
licensed under a Creative Commons Attribution License. (b) The melting entropy along the freezing line, which is constant in the simplest melting theories.
Reproduced with permission from Pedersen et al., Nat. Commun. 7, 12386 (2016). Copyright 2016 Author(s), licensed under a Creative Commons Attribution
License. (c) The liquid-state diffusion constant. The blue dashed line is the prediction if the reduced diffusion constant were constant, i.e., if the melting
line were an exact isomorph. Reproduced with permission from Pedersen et al., Nat. Commun. 7, 12386 (2016). Copyright 2016 Author(s), licensed under a
Creative Commons Attribution License. (d) The crystal’s vibrational mean-square displacement relative to the interatomic spacing, the so-called Lindemann ratio.
Reproduced with permission from Pedersen et al., Nat. Commun. 7, 12386 (2016). Copyright 2016 Author(s), licensed under a Creative Commons Attribution
License.
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mixtures,100,163,164 non-pair-force systems, confined systems,
molecular systems, and solids. For molecules, Eq. (19) relates
to a uniform scaling of the center-of-mass coordinates, while
orientations and molecular sizes are kept fixed. An example
of isomorph-invariant dynamics was given in Fig. 4(c) report-
ing simulations of a liquid of ten-bead flexible Lennard-Jones
chain molecules.

Isomorph invariance of the dynamics implies that a uni-
form scaling of a configuration selected from an equilibrated
simulation at one state point results in an equilibrium config-
uration corresponding to a state point of different density and
temperature (with the same excess entropy).14 Such a scal-
ing is referred to as an “isomorph jump” because the system
jumps instantaneously from equilibrium to equilibrium along
an isomorph, in effect creating kind of a wormhole in the
thermodynamic phase diagram.14 Two examples of this are
provided in Fig. 12 showing in (a) an isomorph jump for a
united-atom model of ortho-terphenyl and in (b) for a gold
crystal. The latter figure illustrates that hidden scale invari-
ance is not limited to the liquid phase; in fact, although this has
not yet been studied very much, isomorph-theory predictions
appear to apply equally well for solids as for liquids.167,168

A recent application of the isomorph theory was to the
thermodynamics of melting. For R-simple systems, the melt-
ing line is an approximate isomorph.14,151,168,169 Via first-order
Taylor expansions, this fact makes it possible to predict from
simulations carried out at a single coexistence state point the
variation along the melting line of quantities like pressure,
density, heat of melting, viscosity, Lindemann ratio, etc.168

Examples are given for the LJ system in Fig. 13, in which
the red curves are theoretical predictions based on simulations
carried out at T = 2 and the black dots are numerical data.

The isomorph theory has been applied to rational-
ize results from computer simulations of single-component
and binary LJ-type systems,14,170,171 simple molecular mod-
els,25 crystals,167 nano-confined liquids [compare Fig. 5(b)],33

non-linear shear flows,172 zero-temperature plastic flows
of glasses,173 polymer-like flexible molecules [compare
Fig. 4(c)],30,174 metals studied by ab initio density-
functional-theory computer simulations,175 plasmas,176 phys-
ical aging,177 and for justifying a quasiuniversal viscosity
equation for supercritical R-simple liquids.65

Experimental confirmations of isomorph-theory predic-
tions were presented for van der Waals bonded liquids in
Refs. 59 and 178–180. As an example, the isomorph the-
ory predicts how much the dielectric loss is suppressed
by the application of pressure (Fig. 14). For hydrogen-
bonded liquids, the theory does not work,59,181 though; this
confirms earlier findings from simulations of water and
methanol.141

On the theoretical side, the isomorph theory led to “NVU
molecular dynamics” defined as motion at a constant veloc-
ity along geodesic curves on the high-dimensional constant-
potential-energy hypersurface.182–184 Despite the fact that the
potential and kinetic energies are both strictly conserved in
NVU dynamics, this novel dynamics gives results that are for
most quantities identical to those obtained by standard NVE or
NVT Newtonian dynamics.183 The isomorph theory has also
been applied to formulate a theoretical tool, the “isomorph

FIG. 14. The frequency-dependent dielectric losses C′′(f ) of five-
polyphenyl-ether (5PPE) measured at different temperatures at ambient pres-
sure (green dashed lines), from which the losses at corresponding high-
pressure isochronal states are predicted. Data are shown for (a) 100 MPa,
(b) 200 MPa, and (c) 300 MPa.179 The red curves are the isomorph-theory
predicted high-pressure dielectric losses (no free parameters); the black dots
are the high-pressure data. Reproduced with permission from Xiao et al., J.
Non-Cryst. Solids 407, 190–195 (2015). Copyright 2015 Elsevier.

filter,” according to which any universally valid theory for
the relaxation time of glass-forming liquids must be based on
isomorph-invariant quantities since the (reduced) relaxation
time is itself an isomorph invariant. This makes it possi-
ble to rule out a number of well-known models of the glass
transition.14

According to the standard explanation of quasiuniversal-
ity, two systems have the same structure and dynamics to a
good approximation if they correspond to hard-sphere sys-
tems with the same packing fraction.1,3,4 Rosenfeld realized
that this translates into the two systems having the same excess
entropy. The isomorph theory has recently made it possible to
derive simple liquids’ quasiuniversality without reference to
the hard-sphere system. The proof is based on using the expo-
nentially repulsive EXP pair-potential system as a reference
system.15,185 Different simple liquids with the same Sex have
virtually the same structure and dynamics because they have
virtually the same reduced-coordinate potential-energy func-
tion, and this function is conveniently identified with that of the
exponentially repulsive pair-potential system.186 Systems that
are quasiuniversal are those for which the pair potential may
be approximated by a finite sum of exponentially repulsive
pair potentials with prefactors that in reduced units are numer-
ically much larger than unity.15,185 This provides a method for
determining which pair-potential systems are quasiuniversal
and which are not.

Maimbourgh and Kurchan recently showed that for sys-
tems with strong repulsive forces, the isomorph theory is exact
in infinite dimensions.187 This suggests the intriguing scenario
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that excess-entropy scaling is a finite-dimensional manifesta-
tion of a high-dimensional regularity and that, consequently,
deviations from excess-entropy scaling should be quantified
via an expansion in 1/d in which d is the spatial dimension.171

Readers that are further interested in the isomorph theory are
referred to recent reviews of the theory.15,144,159,162

IX. CONCLUDING REMARKS

Rosenfeld’s discovery of excess-entropy scaling more
than forty years ago was based on those time’s primitive
computer simulations. It provides an early example of a theo-
retical insight generated by simulation results, which preceded
experimental confirmation. Rosenfeld’s explanation of excess-
entropy scaling was based on the fact that simple liquids
have virtually the same physics as the hard-sphere system.
Thus he viewed excess-entropy scaling as a confirmation of
quasiuniversality and, in particular, as a demonstration that
quasiuniversality applies not just to the structure but also to
the dynamics.1,188–190

The hard-sphere system has a trivial potential-energy
function, which is either zero or infinite, whereas the scaling
properties of U(R) [Eq. (19)] are central in isomorph the-
ory. Despite this fundamental difference, the isomorph theory
is fully compatible with Rosenfeld’s explanation of excess-
entropy scaling based on simple liquids’ quasiuniversality.
However, while Rosenfeld explained excess-entropy scaling
from quasiuniversality, the isomorph theory in a sense does the
opposite and explains quasiuniversality from the exponentially
repulsive pair-potential system’s hidden scale invariance.15,185

For the hard-sphere system, the packing fraction deter-
mines quantities like the reduced diffusion constant, viscosity,
and thermal conductivity.1 While many suggestions exist for
how to determine the effective HS-system packing fraction of
a simple liquid at a given state point,191–199 Rosenfeld avoided
this by referring instead to the system’s excess entropy, a purely
thermodynamic quantity that for the hard-sphere system is in a
one-to-one correspondence with the packing fraction.5,200 This
is how excess-entropy scaling was arrived at; it also led to the
proposal of a universal Sex dependence of the reduced transport
coefficients.1 The exponential Sex dependence of Rosenfeld
scaling Eq. (8) was not justified theoretically in Ref. 1 but
reported as an approximate empirical fact; this is now known
to apply only in some cases of excess-entropy scaling.

The basic message of hidden scale invariance is the irrele-
vance of the pair potential’s characteristic length scale.159 The
Lennard-Jones potential-energy minimum is found at the pair
distance r = 21/6σ, in which σ is the characteristic length of
the LJ pair potential. If the average nearest-neighbor distance
is close to this value, the pressure is small. Hidden scale invari-
ance reflects the non-trivial fact that the length σ is irrelevant
for the physics15,162 because the pressure is irrelevant for the
reduced-unit structure and dynamics. By contrast, for the hard-
sphere system the virial part of the pressure is determined by
the packing fraction (equivalently: the excess entropy), and
the pressure determines the excess entropy and the dynamical
properties.200

A quantitative measure of how well hidden scale
invariance applies for a given system is provided by the virial

potential-energy correlation coefficient R of Eq. (20). When-
ever R is close to unity, excess-entropy scaling applies to
a good approximation. If this is the case, the system obeys
isochronal superposition, the property that two different
state points of a given system with, e.g., the same dielec-
tric loss-peak frequency have the same reduced relaxation
functions.26,27,181

Isomorph theory is not limited to explaining excess-
entropy scaling for single-component pair-potential liquids;
it applies also for solids, non-pair-potential systems, mixtures,
molecules, confined systems, aging systems, etc. Note that S2,
as well as the higher-order configurational entropies [Eq. (9)],
are all isomorph invariant because the reduced-unit structure is.
This means that for tracing out the lines of invariant dynamics,
i.e., the isomorphs, instead of keeping Sex constant, one might
just as well keep S2, S3, or the so-called residual multiparticle
excess entropy SRMPE ≡ Sex − S2 constant.53,201

Isomorph theory provides insights into why excess-
entropy scaling may apply also for molecular systems quite
different from the quasiuniversal simple point-particle liquids
traditionally studied in liquid-state theory.5 The above “deriva-
tion” of isomorph theory from excess-entropy scaling showed
that if the phase diagram has lines of the invariant structure and
dynamics, these lines must be the configurational adiabats, i.e.,
excess-entropy scaling must apply.

It must be emphasized that not all observations in this
intriguing field of research are explained by the isomorph
theory. Rosenfeld scaling Eq. (8) cannot be derived from
the hidden-scale-invariance condition Eq. (19), which is not
surprising given that there are cases of excess-entropy scal-
ing for which Rosenfeld scaling does not apply. Moreover,
excess-entropy scaling or closely related regularities have been
observed to apply also for a number of systems that do not have
strong virial potential-energy correlations.35,51,103,134,135 Iso-
morph theory cannot explain this, at least not in its present
version. There are examples of systems, e.g., with vibrational
degrees of freedom modeled by harmonic springs, which do
not have strong virial potential-energy correlations, but can be
coarse-grained into a system that obeys isomorph theory by
replacing harmonic molecular bonds by rigid bonds.174 More
work is needed to clarify to which extent coarse-graining may
lead to hidden scale invariance of the remaining degrees of
freedom, and it remains an open question whether hidden scale
invariance in one form or the other will eventually be able to
provide a full explanation of excess-entropy scaling and related
regularities.
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