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This paper continues the investigation of the exponentially repulsive EXP pair-potential system of
Paper I [A. K. Bacher et al., J. Chem. Phys. 149, 114501 (2018)] with a focus on isomorphs in the low-
temperature gas and liquid phases. As expected from the EXP system’s strong virial potential-energy
correlations, the reduced-unit structure and dynamics are isomorph invariant to a good approximation.
Three methods for generating isomorphs are compared: the small-step method that is exact in the limit
of small density changes and two versions of the direct-isomorph-check method that allows for much
larger density changes. Results from the latter two approximate methods are compared to those of
the small-step method for each of the three isomorphs generated by 230 one percent density changes,
covering one decade of density variation. Both approximate methods work well. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5043548

I. INTRODUCTION

This paper and its companion (Paper I, Ref. 1) present
an investigation of the exponential (EXP) pair-potential sys-
tem consisting of identical particles interacting via the purely
repulsive pair potential,

vEXP(r) = ε e−r/σ . (1)

Both papers focus on the region of the thermodynamic phase
diagram where temperature is so low that the finite value
vEXP(0) plays little role for the physics, i.e., where kBT � ε.
The focus is, moreover, on the low-density gas and liquid
phases, i.e., where ρσ3 � 1. While the densities considered
are low in relation to the σ parameter of Eq. (1), it should be
emphasized that at low temperature the densities are not, in
fact, low relative to the effective hard-sphere (HS) radius but
typical for studies of simple systems.

The EXP pair potential has not been studied much on its
own right, in fact even less than other purely repulsive pair
potentials like the family of inverse-power law pair poten-
tials.2–9 In most cases, an exponential function appears as a
term in mathematically more involved potentials, for instance,
(1) giving the repulsive part of the Born-Meyer pair potential
from 193210 or in embedded-atom models of metals,11,12 (2)
multiplied by a Coulomb term to give the Yukawa (screened
Coulomb) potential,13,14 or (3) giving the attractive long-
ranged part in a model that rigorously obeys the van der Waals
equation of state in one dimension.15

As shown below (Fig. 1), to a good approximation the EXP
system conforms to the following “hidden-scale invariance”
condition for uniform scaling of same-density configurations
Ra and Rb

16 [R is the vector of all particle coordinates and
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U(R) is the system’s potential-energy function],

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb) . (2)

Here λ > 0 is a scaling parameter. Equation (2) expresses that
if the potential energy of configuration Ra is lower than that
of configuration Rb, this applies also after a uniform scaling
of both configurations. For most systems, including the EXP
system, Eq. (2) is approximate and not obvious from the math-
ematical expression for the potential energy, hence the term
“hidden scale invariance.”17,18

Paper I1 demonstrated one of the consequences of
Eq. (2) for the EXP pair potential, namely, strong virial
potential-energy correlations in the constant-volume thermal-
equilibrium fluctuations. The EXP pair-potential system has
stronger such correlations than, e.g., the Lennard-Jones (LJ)
system.19,20 In fact, the EXP system’s virial potential-energy
Pearson correlation coefficient R is larger than 99% in a
large part of its phase diagram (see Paper I1 and Ref. 21).
A system is termed “R-simple” if it has better than 90%
correlation.

The fact that the EXP pair-potential system obeys Eq. (2)
to a good approximation implies that it has isomorphs, which
are curves in the phase diagram along which the structure and
dynamics are approximately invariant in proper units.16,22 Iso-
morphs are defined as curves of constant excess entropy; they
are the system’s configurational adiabats. While all systems
have configurational adiabats, only R-simple systems, i.e.,
those obeying the hidden-scale-invariance condition Eq. (2)
to a good approximation, have invariant physics along their
configurational adiabats.16,22–25

A derivation of simple liquids’ quasiuniversality based
on the EXP pair potential was given in Refs. 21 and 25;
an alternative proof utilizing constant-potential-energy (NVU)
dynamics26 was presented in Paper I.1 Both proofs are based on
the fact that under certain conditions a sum of two EXP pair
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FIG. 1. Investigating Eq. (2) for the EXP pair-potential system. R is the virial potential-energy correlation coefficient. (a) Potential energies of 20 statistically
independent configurations from an equilibrium simulation of a system with 1000 particles at density 10−3 and temperature 10−4 (red dashed line), scaled
uniformly to different densities and plotted as a function of density. (b) The same data with the average potential energy subtracted at each density, making it
easier to investigate the implication of Eq. (2) that no crossings should take place. This is seen to apply to a good approximation. (c) The same as in (b) for
configurations selected from a simulation at density 10−3 and temperature 10−2. There are here more crossings, meaning that Eq. (2) is less accurately obeyed,
consistent with the lower R. (d) The same as in (b) for configurations from simulations at density 10−3 and temperature 10−6; here, R = 99.8% and Eq. (2) is very well
obeyed.

potentials describes a system, which has virtually the same
physics as that of a single EXP pair-potential system. Thus,
quasiuniversality applies for any system with a pair potential
that to a good approximation may be written as a sum of EXP
terms with numerically large prefactors in reduced units (see
below).21 The EXP pair-potential system is thereby central
for understanding the physics of simple liquids.38 This justi-
fies a closer investigation of the properties of the EXP system
itself.

The isomorph theory is based on the use of reduced
units,2,22,23,27 which are different from those usually applied
for presenting simulation data using the potential-energy func-
tion’s characteristic energy and length. Instead reduced units
utilize macroscopic parameters that vary with the thermo-
dynamic state point. Consider a state point of temperature
T and density ρ = N /V (N is the number of particles and
V is the system volume). If the average particle mass is m,
reduced units make quantities dimensionless by scaling with
the length l0 = ρ−1/3, the energy e0 = kBT, and the time
t0 = ρ−1/3

√
m/kBT .22,24,25 Reduced quantities are denoted by

a tilde, for instance, R̃ ≡ R/l0 = ρ1/3R is the reduced configu-
ration vector. We can now make precise the statement that the
isomorphs of an R-simple system are lines of virtually iden-
tical physic; this refers to the system’s reduced-unit structure
and dynamics.

Besides demonstrating approximate isomorph invariance
of the EXP system’s structure and dynamics, the present paper
discusses methods for generating the system’s isomorphs in

computer simulations. Before doing this, we show in Sec. II
examples of the system’s hidden scale invariance, and Sec. III
presents results for the density-scaling exponent’s variation
throughout the thermodynamic phase diagram (the isomorph
slope in the log-log density-temperature phase diagram). Sec-
tions IV and V report results from computer simulations along
isomorphs traced out in different ways. Section IV presents the
“small-step” method which, in the limit of infinitely small den-
sity changes, rigorously identifies the configurational adiabats;
Sec. V discusses two versions of the so-called direct-isomorph-
check (DIC) method, both allowing for much larger density
changes. Finally, Sec. VI gives a brief discussion.

II. THE EXP SYSTEM’S HIDDEN SCALE INVARIANCE

The excess entropy Sex of a thermodynamic state point is
defined as the entropy minus that of an ideal gas at the same
density and temperature28 (note that Sex < 0 since no system is
more disordered than an ideal gas). Sex is the non-trivial part of
a system’s entropy, the contribution deriving from interactions.
In general, excess thermodynamic quantities are calculated by
leaving out the momentum degrees of freedom in the partition
function;28 excess quantities obey all standard thermodynamic
relations like T = (∂U/∂Sex)ρ, etc.

If one defines the microscopic excess entropy function
Sex(R) as the thermodynamic equilibrium excess entropy
of the state point with the density ρ of the configuration
R and with the average potential energy equal to U(R), it
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is straightforward to show that the hidden-scale-invariance
condition Eq. (2) implies a scale-invariant entropy function,
i.e., Sex(R) = Sex(λR) in which λ is a scaling parame-
ter.16 This means that Sex(R) depends only on the config-
uration’s reduced coordinates, R̃ = ρ1/3R. Inserting this
into the identity U(R) = U(ρ, Sex(R)) that defines Sex(R)
where U(ρ, Sex) is the thermodynamic average potential
energy as a function of density and excess entropy, one
arrives16 at

U(R) = U(ρ, Sex(R̃)) . (3)

This is the basic identity characterizing an R-simple system
from which the isomorph invariance of structure and dynam-
ics follows.16 Note that these invariances do not imply that
all excess thermodynamics is isomorph invariant since there
is also a density dependence in Eq. (3). For instance, the
Helmholtz and Gibbs free energies are not isomorph invariant.
A recent paper that used the isomorph theory for predicting
how a number of quantities vary along the melting line gives
an example of how the Gibbs free energy variation along a LJ
system isomorph may be calculated.29

Physically, the hidden-scale-invariance condition Eq. (2)
states that if configurations at some density are ordered accord-
ing to their potential energy, this ordering is maintained if the
configurations are scaled uniformly to a different density. It
is important to note that Eq. (2)—and thus Eq. (3) and the
entire isomorph theory—is approximate except for systems
with an Euler-homogeneous potential-energy function (plus a
constant).

A consequence of Eq. (3) is that an R-simple system
has strong correlations between its constant-density thermal-
equilibrium fluctuations of virial and potential energy. This
property was documented for the EXP system in Ref. 21 and
in Paper I,1 and previously for many other systems, includ-
ing molecular and polymeric systems.19,20,30,31 Recall that the
microscopic virial W (R) is defined from the change of poten-
tial energy upon a uniform scaling of all particle coordinates,
i.e., W (R) ≡ (∂U(R)/∂ ln ρ)R̃ since a uniform scaling leaves
R̃ unchanged. Substituting Eq. (3) into this expression, one
finds

W (R) =
∂U(ρ, Sex)
∂ ln ρ

���Sex=Sex(R̃) . (4)

In other words, W (R) = W (ρ, Sex(R̃)), in which the func-
tion W (ρ, Sex) is the thermodynamic virial, the average of
the microscopic virial at the state point with density ρ and
excess entropy Sex. In conjunction with Eq. (3), the identity
W (R) = W (ρ, Sex(R̃)) implies perfect correlation between the
virial and the potential energy at a fixed density in the sense
that one of these two quantities uniquely determines the other.
This one-to-one relation between W and U is predicted to apply
whether or not configurations are selected from an equilibrium
simulation, for instance, also during aging.32

We proceed to demonstrate numerically that the EXP
pair-potential system obeys the hidden-scale-invariance con-
dition Eq. (2) to a good approximation. While most quantities
below are reported in reduced units, density and tempera-
ture are by definition constant in reduced units. This makes
it impossible to specify a state point using reduced units for

density and temperature, so numerical values of the density are
reported below in units of 1/σ3 and numerical temperatures in
units of ε/kB. This is referred to as the “EXP unit system”
(Paper I1).

Figures 1(a) and 1(b) show results from an equilibrium
simulation at density 10−3 and temperature 10−4, a liquid
state point close to the melting line (simulation details are
provided in Paper I1). From the simulations, we selected
20 statistically independent configurations (separated by
5 · 105 time steps). Each configuration was scaled uniformly to
a different density ρ in the range 0.25 · 10−3 < ρ < 1.75 · 10−3,
i.e., a factor of seven density variation is involved. Figure 1(a)
plots the potential energies of the scaled configurations as a
function of their density. Note that no new simulations were
performed to generate this figure, we merely scaled the 20
configurations uniformly and then evaluated their potential
energies. Not surprisingly, for all configurations, the poten-
tial energy increases strongly with increasing density. While
they visually follow each other closely in Fig. 1(a), the fig-
ure does not allow for checking Eq. (2). To do this, Fig. 1(b)
plots the same data by subtracting at each density the aver-
age potential energy of the 20 scaled configurations, making
it possible to use a much smaller unit on the potential-energy
axis. There are only few crossings of the curves. This confirms
that the EXP system obeys Eq. (2) to a good approximation,
i.e., it is R-simple in this region of the thermodynamic phase
diagram.

Figure 1(c) shows a plot like (b) at the same density
but at the higher temperature 10−2. Here crossings are more
common, implying that Eq. (2) is less accurately obeyed.
This is consistent with the finding of Paper I1 that the virial
potential-energy correlation coefficient decreases if tempera-
ture is increased. Moving in the opposite direction, Fig. 1(d)
shows data for temperature 10−6 where the pattern is similar to
that of (b), but with even fewer crossings. In summary, Eq. (2)
works well at low temperatures but breaks down gradually as
higher temperatures are approached.

The absence of crossings upon a uniform scaling of all
particle coordinates is not trivial. Hidden scale invariance is
exact only for inverse power-law pair potentials, but it applies
to a good approximation for many pair-potential systems, e.g.,
LJ type systems.16 By contrast, there are many crossings, e.g.,
for the Lennard-Jones Gaussian pair potential for a density
change of merely 20%.16

III. THE DENSITY-SCALING EXPONENT

At any state point in the thermodynamic phase diagram,
one defines the so-called density-scaling exponent γ22 by

γ ≡

(
∂ ln T
∂ ln ρ

)
Sex

. (5)

For an R-simple system, since isomorphs are curves of con-
stant Sex,22 γ gives the slope of the isomorph through the state
point in the log-log density-temperature phase diagram. If γ
were constant, according to the isomorph theory there would be
invariance of the reduced-unit structure and dynamics along
the phase diagram’s lines of constant ργ/T. This is the ori-
gin of the name “density-scaling exponent.” Before isomorph
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theory was developed, density scaling was demonstrated
experimentally for many glass-forming liquids.33

By means of standard thermodynamic fluctuation theory,
γ may be calculated from the canonical-ensemble constant-
density (NVT ) equilibrium virial and potential-energy fluctu-
ations,22

γ =
〈∆U∆W〉

〈(∆U)2〉
. (6)

This identity makes it straightforward to determine γ in simu-
lations. Figure 2 shows results for the density-scaling exponent
with (a) giving γ’s density variation along isotherms and (b)
giving γ’s temperature variation along isochores. In the fig-
ure, we mark three phases: gas, liquid, and solid, although the
EXP system like any purely repulsive system has no liquid-
gas phase transition and merely a single fluid phase. There
is a large transition region between typical gas and typical
liquid states; the least dense isomorph studied below is located

in this region. The data in Fig. 2 reveal two regimes: At high
densities and low temperatures (liquid and solid phases), γ is
mainly density dependent; at low densities (gas phase), γ is
mainly temperature dependent.

It is possible to construct approximate analytical the-
ories for the two limiting behaviors. Consider first the
high-density case corresponding to the liquid and solid
phases, both of which are characterized by strong interac-
tions between a given particle and its several nearest neigh-
bors. To explain the strong virial potential-energy correla-
tions of the LJ pair-potential liquid, Ref. 34 developed an
approach based on the “extended inverse power-law” (eIPL)
approximation that works as follows. At typical liquid or
solid densities, within the first coordination shell, the LJ
pair potential is very well approximated34 by the eIPL pair
potential

veIPL(r) = Ar−n + B + Cr . (7)

FIG. 2. Density and temperature variation of the density-scaling exponent γ [Eq. (5)]. (a) shows γ along isotherms. At low densities, γ is mainly temperature
dependent. The dashed line gives the prediction of the eIPL approximation Eq. (11) 34 with Λ = 1.075, which describes the condensed liquid phase well. (b)
showsγ along isochores. The dashed line is here the prediction of the analytical theory for the gas phase, Eq. (15), in whichγ depends only on the temperature. (c)
showsγ in a continuous color plot, visualizing the fact thatγ at low densities is mainly temperature dependent, whereas it at high densities and low temperatures,
i.e., in the liquid and solid phases, is mainly density dependent. (d) reports the numerical values of γ (visible upon magnification) written into the phase diagram
at the densities and temperatures listed in Appendix B of Paper I.1 At each state point, γ is written with a slope marking the direction of the isomorph through
the state point in question; red indicates gas, blue indicates liquid, and green indicates solid phase state points.
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If one imagines a particle being displaced within its nearest-
neighbor cage, some distances increase and some decrease,
but the sum of all nearest-neighbor distances remains almost
unchanged. This means that the B + Cr term is almost con-
stant, so the eIPL pair potential may effectively be replaced
by veIPL(r) � Ar−n + D. When added over all particle pairs,
this implies that the hidden-scale-invariance condition Eq. (2)
applies to a good approximation.

The above explains the strong virial potential-energy
correlations found for the LJ and similar pair-potential
systems.20,35,36 It also suggests a means for approxi-
mately calculating the density-scaling exponent γ. Note first
that

γ = n/3 (8)

for the IPL system v(r) = Ar−n + D; this follows from Eq. (6)
and the definition of the pair virial w(r) ≡ (−1/3)ru′(r).34 How
to identify the effective IPL exponent n at a given state point?
For the eIPL pair potential, one has v ′eIPL(r) = −nAr−(n+1) + C,
v ′′eIPL(r) = n(n + 1)Ar−(n+2), and v ′′′eIPL(r) = −n(n + 1)(n + 2)
Ar−(n+3). This implies n = −2 − rv ′′′eIPL(r)/v ′′eIPL(r). Thus n is
given by n = n2(r) if one for any pair potential v(r) defines the
r-dependent effective IPL exponent np(r)34 by [v (p)(r) is the
pth derivative of v(r)]

np(r) ≡ −p − r
v (p+1)(r)

v (p)(r)
. (9)

Realistic values of n are arrived at by using for r a typical
nearest-neighbor distance. In the EXP unit system, this means
putting

r/σ = Λ ρ−1/3, (10)

in which Λ � 1 is a numerical constant. Using this value
of r for the EXP pair potential leads for p = 2, via
Eqs. (8)–(10), to the following estimate of the density-scaling
exponent in the EXP system’s condensed liquid and solid
phases:

γ(ρ) �
−2 + Λρ−1/3

3
. (11)

This prediction is shown as the black dashed line in Fig. 2(a),
in whichΛ= 1.075 was determined to get the best fit to data. At
high densities, the different isotherms collapse onto the line, a
collapse that at low temperatures takes place earlier than at high
temperatures.

Next we study the dilute gas limit. Here the system is
characterized by much longer typical distances between the
particles than the interaction range σ, i.e., ρ � 1. In this
limit, particle interactions predominantly take place via two-
particles collisions. As shown in Paper I,1 it is possible to
construct an analytical theory for the correlation coefficient R
in the gas phase by assuming that particle collisions are ran-
dom and uncorrelated. It is likewise possible to calculate γ
analytically in the gas phase via Eq. (6) (compare Appendix A
of Paper I1). The relevant equation is

γ =
〈wv〉

〈v2〉
, (12)

in which v is the EXP pair potential treated as an independent
variable, w = (−1/3)rv′(r) = ln(1/v)v/3 is the pair virial, and

averages are taken over the non-normalizable v-probability
distribution p(v) ∝ ln2(1/v) exp(−βv)/v . Equation (12) leads
to

γ =
A3

3A2
, (13)

in which

An =

∫ ∞
0

v lnn(1/v) e−βvdv . (14)

FIG. 3. (a) shows the density-temperature phase diagram with line slopes
given by the density-scaling exponent and color coding indicating the virial
potential-energy correlation coefficient R. Diamonds mark gas-phase state
points and circles mark liquid or solid state points. The line segments give the
isomorph slopes, compare Eq. (5). The black dashed line is the approximate
melting-line isomorph (covering the entire coexistence region). (b) Density-
scaling exponent γ versus the virial potential-energy correlation coefficient
R for all state points simulated. Red symbols are gas state points and blue
symbols are liquid and solid state points. The dashed line is the prediction of
the analytical gas-phase theory, which is obtained by combining Eq. (13) with
R = A3/

√
A2A4 derived in Appendix A of Paper I.1 For a given value of R,

the gas phase has the highest γ; for a given value of γ, the gas phase has the
lowest R.
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The integrals may be worked out analytically in terms of π,
Euler’s constant 0.577. . ., and the Riemann zeta function eval-
uated at 3 (Appendix A of Paper I1). Numerically, the result
is

γ =
ln3 β − 1.268 ln2 β + 2.471 ln β − 0.4895

3 ln2 β − 2.537 ln β + 2.471
. (15)

At low temperatures (β � 1), the dominant term is
γ � ln β/3. This corresponds to the p = 0 effective IPL exponent
in Eq. (9) evaluated at the distance at which the pair potential
equals kBT, the typical distance of nearest approach in a colli-
sion. Our numerical data indicate that Eq. (15) becomes exact
at low densities, compare Fig. 2(b) that shows Eq. (15) as the
black dashed line.

Figure 3(a) summarizes our numerical findings for the
virial potential-energy correlation coefficient R and γ in a
single phase diagram.21 The color coding gives R, the line-
segment slopes give γ. The line segments mark how the
isomorphs run in the phase diagram, basically parallel to
the melting line that is itself an approximate isomorph.21,22

Figure 3(b) plots all values of (R, γ) with the dashed line
marking the gas-phase analytical prediction. An important
conclusion from this figure is that as γ → ∞ one has R→ 1.
Since large γ corresponds to an effectively very strongly repul-
sive pair potential on the kBT energy scale, this means that
one expects R → 1 in the hard-sphere limit of the EXP sys-
tem, which is obtained by following an isomorph to zero
temperature.

IV. STRUCTURE, DYNAMICS, AND SPECIFIC
HEAT ALONG THREE ISOMORPHS

The “small-step” method for tracing out an isomorph in
the phase diagram is based on Eqs. (5) and (6). The present
section investigates predicted invariances along three iso-
morphs, which serve as reference “true” isomorphs in Sec. V
dealing with two faster, approximate methods for generating
isomorphs.

It is straightforward to calculate in an NVT computer sim-
ulation the canonical averages on the right-hand side of Eq. (6).
Typical values of γ for the EXP system are between 0.5 and
5 (Fig. 2). If, for instance, γ = 3, upon a 1% density increase,
the temperature is to be increased by 3% in order to keep Sex

constant [Eq. (6)]. After this change of density and temper-
ature, one recalculates the right-hand side of Eq. (6), and so
on. In this way, an isomorph is traced out with a method that
is, in principle, exact in the limit of infinitely small density
changes. The method is tedious since many steps are needed
if 1% density changes are used to generate an isomorph cov-
ering a large density variation. The many steps required also
mean that, in order to avoid accumulation of errors, each state-
point simulation must be long enough to provide accurate data.
Initial simulations for 5%, 2%, and 1% density changes from
various state points showed that the latter two give virtually
indistinguishable results. We concluded that a 1% density
change is small enough to be reliable.

Three isomorphs were traced out for systems of 1000
particles using 1% density changes to cover one decade of

density based on 230 simulations, each involving 107 time
steps (Fig. 4). One isomorph is located in the gas-liquid tran-
sition region, a second one is in the dilute liquid phase, and a
third one is in the liquid phase near the melting line. Note that in
the log-log phase diagram, the isomorphs are virtually parallel
to the melting line. This is because in a simplified version of
the isomorph theory,22 the melting line is an isomorph and
isomorphs are given by an expression of the form h(ρ)/T
= Const.37 Different isomorphs correspond to different con-
stants, implying that the isomorphs are parallel to one another
in the log-log density-temperature phase diagram. A more
accurate melting theory is now available,29 but the corrections
to the older understanding of Ref. 22 are small.

In the following, data are presented for each isomorph for
the starting state point and ten more state points evenly spaced
on the logarithmic density axis (for reference the coordinates of
the selected isomorph state points are given in the Appendix).
We first investigate the structure along an isomorph in order to
see whether it is invariant. Figure 5 shows the structure probed
by the reduced radial distribution function (RDF) at eleven
state points for each of the three isomorphs. The density change
along each isomorph spans one decade; the temperatures
span more than two decades. These variations are large com-
pared to the first isomorph-theory simulations covering density

FIG. 4. The three isomorphs studied marked by black crosses merging into
lines. The isomorphs were generated by the “small-step method” from 230
simulations, each increasing density by 1% using Eq. (5) in conjunction
with Eq. (6) to calculate the corresponding temperature change. The start-
ing temperature for each isomorph was T = 10−6; the starting densities were
the following: gas-liquid isomorph (left): 5 · 10−5, dilute-liquid isomorph
(middle): 1.25·10−4, and dense-liquid isomorph (right): 3.43·10−4.
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FIG. 5. Structure at selected state points along each of the three isomorphs shown in Fig. 4 probed via the reduced radial distribution function (RDF). (a)
Gas-liquid isomorph. This isomorph is located where the system has little structure. (b) Dilute-liquid isomorph. The structure here exhibits more structure and
is still approximately invariant. (c) Dense-liquid isomorph. The system here has a typical liquid-like structure that is well maintained along the isomorph.

variations of just a few percent.22 Nevertheless, deviations
from collapse are small; these are mainly observed around
the first peak.22,30

For each of the three isomorphs, Fig. 6 shows the
reduced mean-square displacement (MSD) as a function of

reduced time at the same eleven state points. Good collapse
is observed. Figure 7(a) demonstrates that the reduced diffu-
sion constant (derived from the long-time MSD) is invariant
along each of the three isomorphs. The more gas-like the
isomorph is, the faster the diffusion is (in reduced units).

FIG. 6. Reduced mean-square displacement (MSD) at selected state points along each of the three isomorphs plotted as a function of reduced time. At short
times, the MSD follows the ballistic prediction 3 t̃2 (Paper I1); at long times, it follows the diffusion equation prediction ∝ t̃. In all cases, there is a good collapse.
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FIG. 7. (a) Reduced diffusion constant D̃ plotted as a function of density
along each of the three isomorphs. The diffusion constant varies significantly
between the isomorphs, but is virtually constant along each of them. (b) Con-
tour color plot giving the reduced diffusion constant’s variation throughout
the phase diagram in which lines of constant D̃ are drawn for logarithmically
equally distributed values.

Figure 7(b) shows a contour plot of the reduced diffusion
constant that again illustrates its isomorph invariance.

Figure 8 gives the reduced excess isochoric specific heat
per particle c̃ex

V calculated from the fluctuations in poten-
tial energy in the NVT (canonical) ensemble via the Einstein
expression c̃ex

V = 〈(∆U)2〉/Nk2
BT2. The more gas-like the struc-

ture is, the lower is the excess specific heat because interactions
become infrequent. In the original (2009) version of isomorph
theory,22 the excess specific heat was predicted to be an iso-
morph invariant. Figure 8 shows that this is not the case; in
fact, c̃ex

V ∝ ρ1/3 in the gas phase. This confirms the need for
the 2014 revision of the isomorph theory16 in which it was
shown that the originally predicted isomorph invariance of c̃ex

V
results from a first-order approximation to a simpler and more
correct theory, which starts from the hidden-scale-invariance
condition Eq. (2).

Along the gas-phase isomorph, the density variation of CV

is determined as follows. At low temperatures, Eq. (15) implies
γ = −ln T /3. Substituting this into Eq. (5) leads to a simple

FIG. 8. Reduced excess isochoric specific heat per particle plotted as a func-
tion of density along each of the three isomorphs. Not surprisingly, the
isomorph with least interparticle interactions—the gas-liquid isomorph—has
the lowest excess specific heat. A systematic increase with density is observed
for all three isomorphs. This is at variance with the original (2009) version of
isomorph theory in which the specific heat is an isomorph invariant,22 but it
is consistent with the 2014 version.16 The dashed line has slope 1/3, which
is the prediction for the density variation along gas-phase isomorphs (see the
text).

FIG. 9. The density-scaling exponent γ (full circles, left) and the virial
potential-energy correlation coefficient R (open circles, right) plotted as a
function of density along each of the three isomorphs. Neitherγ nor R are pre-
dicted to be isomorph invariant. Note that strong correlations are maintained
even as γ decreases significantly with increasing density.

first-order differential equation for ln T as a function of ln ρ.
The solution is ln T = A(Sex)ρ−1/3 in which A(Sex) is an integra-
tion constant. This implies that (∂ ln T/∂Sex)ρ = A′(Sex)ρ−1/3,
which via the identity CV = (∂Sex/∂ ln T )ρ implies that CV ∝

ρ1/3 along the gas-phase isomorphs. The dashed line in Fig. 8
has slope 1/3; it fits well to the density variation of CV along
the gas-liquid isomorph.

Figure 9 shows that the density-scaling exponent γ
decreases significantly with increasing density along each iso-
morph. Note that the EXP system has R > 0.9, i.e., is strongly
correlating, even with γ values as low as 1.5.

V. DIRECT-ISOMORPH-CHECK
APPROXIMATE ISOMORPH

In this section, we use the same three starting state points
as above to trace out approximate isomorphs using two ver-
sions of the so-called direct isomorph check. This method,
which allows for much larger density jumps than 1%, is
justified as follows.
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FIG. 10. Relative differences in temperature along three approximate isomorphs generated by the direct isomorph check (DIC) and the single-state-point direct
isomorph check (SSDIC) methods, compared to the temperatures of the “exact” isomorphs of Sec. IV. (a) shows results for the DIC method based on ten
consecutive density increases, each of 25.9%, covering in all one density decade. (b) shows the results where each of the ten jumps was generated by the SSDIC
method, i.e., jumping from the same low-density starting point. Not surprisingly, the latter method is less accurate than the DIC method, in particular for the
largest density jumps, but in both cases deviations from the exact isomorph temperatures are small.

FIG. 11. Left: RDFs for selected state points along each of the three approximate isomorphs generated by ten consecutive applications of the DIC method.
(a) Gas-liquid isomorph, (b) dilute-liquid isomorph, (c) dense-liquid isomorph. Right: Structure for state points along each of the three approximate isomorphs
generated by the SSDIC method jumping in each case from the same starting state point (in all cases with starting temperature 10−6). (d) Gas-liquid isomorph,
(e) dilute-liquid isomorph, (f) dense-liquid isomorph. The two methods give similar results and compare well to the exact isomorph results of Fig. 5 based on
230 small-step jumps.
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Suppose simulations at the state point (ρ1, T1) generate a
series of configurations. For a different density ρ2, we wish
to determine the temperature T2 for which the state point
(ρ2, T2) is on the same isomorph as (ρ1, T1). Each of the
generated configurations R1 is scaled uniformly to density
ρ2 via R2 = (ρ1/ρ2)1/3R1. We denote the potential ener-
gies of R1 and R2 by U1 and U2, respectively. Because R1

and R2 have the same reduced coordinates and Sex(R) for any
R-simple system depends only on the configuration’s reduced
coordinate,16 one has Sex(ρ1, U1) = Sex(ρ2, U2). Consequently,
Eq. (3) implies

U2 = U(ρ2, Sex(ρ1, U1)) . (16)

Since (∂U/∂Sex)ρ =T and ρ1 and ρ2 are both fixed, this imp-
lies for ratio of the potential-energy variations among different
R1 configurations from the equilibrium simulation, denoted
by ∆U1, to the variation among the scaled configurations’
potential energy variation, denoted by ∆U2, that

∆U2

∆U1
=

(
∂U(ρ2, Sex(ρ1, U1))

∂Sex

)
ρ2

(
∂Sex(ρ1, U1)

∂U1

)
ρ1

=
T2

T1
.

(17)

In other words, the slope of a U2 versus U1 scatter plot is
T2/T1, which allows for an easy way to determine T2. This is
the direct isomorph check (DIC).16,22 For it to work properly,
it is important that the potential energies of the original and
the scaled configurations are well correlated;22 for the EXP
system, we find correlation coefficients above 99.8% when the
density is doubled. Even for the largest density jumps—one
decade—there is strong correlation between the scaled and the
unscaled potential energy, allowing for accurately determining
T2/T1.

We proceed to compare the approximate isomorphs gener-
ated from ten successive DIC jumps to what is termed “single
state point DIC” (SSDIC)-generated isomorphs that start from
the same density ρ1. The latter method ultimately increases

FIG. 12. Left: Reduced MSD for selected state points along each of the three approximate isomorphs generated by ten consecutive applications of the DIC
method (the same state points as in Fig. 11, left). (a) Gas-liquid isomorph, (b) dilute-liquid isomorph, (c) dense-liquid isomorph. Right: Reduced MSD for state
points along each of the three approximate isomorphs generated by the SSDIC method jumping in each case from the same starting state point (in all cases with
starting temperature 10−6). (d) Gas-liquid isomorph, (e) dilute-liquid isomorph, (f) dense-liquid isomorph. The two methods give similar results and compare
well to the exact isomorph results of Fig. 6 based on 230 small-step jumps.
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FIG. 13. DIC and SSDIC predicted data (circles) compared to the exact isomorph data (crosses). (a) and (c) (Left) show DIC and SSDIC results for the reduced
diffusion constant, which are hard to distinguish from each other and from the exact results of Fig. 7(a). (b) and (d) (Right) show DIC and SSDIC results for the
reduced specific heat, which compare well to the exact results of Fig. 8 (crosses).

density by one order of magnitude, whereas the DIC-generated
isomorphs cover one decade of densities via ten jumps that are
equally spaced on the logarithmic density axis, each increasing
density by 25.9%.

Figure 10 shows the relative temperature differences
between approximate and “exact” isomorphs as a function of
density with (a) giving the DIC method results and (b) the
SSDIC method results. As the step size increases, the SSDIC
method systematically overshoots the temperature. In this
light, it may seem surprising that good collapse is still main-
tained for the physics (Figs. 11 and 12). This is because the
deviations in temperature from the small-step method temper-
atures obtained in Sec. IV are below 7%, even for temperature
changes spanning two decades.

Figure 13 shows the reduced diffusion constant and the
reduced specific heats along the DIC- and SSDIC-generated
approximate isomorphs, respectively, in both cases showing
results close to the those of the exact isomorphs.

VI. DISCUSSION

As shown in Paper I,1 the EXP system has strong virial
potential-energy correlations in the low-temperature part of its
phase diagram. The present paper has demonstrated the exis-
tence of isomorphs in this part of the phase diagram. Three
isomorphs were studied, one in the gas-liquid border area, the
second one in the dilute-liquid phase, and the third one in the
condensed-liquid phase. Each isomorph covers one decade
of density; they were generated by 230 simulations using
Eq. (6) in a step-by-step numerical integration of Eq. (5). Two
approximate methods were studied for generating isomorphs

numerically, the direct-isomorph-check (DIC) method, and its
single-state-point version (SSDIC). Both methods work well.

The virial potential-energy correlation coefficient R
is very close to unity at the lowest temperature studied
T = 10−6, in fact above 99.8% at all densities simulated
(Paper I1). From this, one may be tempted to conclude that
R → 1 for T → 0 at fixed density. We do not think this is
the case, though. At any fixed density, the system eventu-
ally crystallizes upon cooling. Even though the crystal obeys
R � 1 at low temperatures, there is no reason to expect R→ 1
for T → 0 at a fixed density in the crystal. This is because
the unlimited range of the EXP pair potential means that in
a harmonic approximation there are not just nearest-neighbor
springs but also next-nearest neighbor springs, etc., and the
different spring constants are not proportional to one another
when the density is changed to investigate whether or not
Eq. (2) applies rigorously.

We conjecture, however, that R→ 1 for T → 0 along any
isomorph. Here the physics is invariant, and as the tempera-
ture is lowered toward zero, the density-scaling exponent γ
increases toward infinity because the density decreases (com-
pare Fig. 9). Effectively, the EXP system becomes more and
more hard-sphere (HS)-like, and Fig. 3(b) shows that as γ
diverges, R→ 1 because R is empirically found always to be
larger than its gas limit [for which one rigorously has R → 1
as ρ→ 0, compare the dashed curve of Fig. 3(b)].

For future work, it would be interesting to undertake a sys-
tematic investigation of the crystal phase. Preliminary results
indicate that the stable crystal structure is bcc at relatively high
temperatures, but is fcc at low temperature (the border is
roughly where γ is two).
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APPENDIX: STATE POINTS ON THE THREE
ISOMORPHS

For reference, we give below the coordinates of selected
state points along the three isomorphs determined by the
“small-step” method via density changes of 1%. For each
isomorph, every 23rd state point is listed (Tables I–III).

TABLE I. Selected state points along the gas-liquid isomorph.

ρ T

5× 10�5 1× 10�6

6.294 6× 10�5 2.693 0× 10�6

7.924 5× 10�5 6.738 3× 10�6

9.976 3× 10�5 1.575 2× 10�5

0.000 125 59 3.456 7× 10�5

0.000 158 11 7.155 4× 10�5

0.000 199 05 0.000 140 32
0.000 250 59 0.000 261 69
0.000 315 48 0.000 465 86
0.000 397 16 0.000 794 25

5× 10�4 0.001 300 9

TABLE II. Selected state points along the dilute-liquid isomorph.

ρ T

0.000 125 00 1× 10�6

0.000 157 37 2.652 1× 10�6

0.000 198 11 6.532 5× 10�6

0.000 249 41 1.502 4× 10�5

0.000 313 99 3.242 0× 10�5

0.000 395 28 6.595 4× 10�5

0.000 497 63 0.000 126 96
0.000 626 48 0.000 232 22
0.000 788 70 0.000 404 90
0.000 992 91 0.000 675 39
0.001 250 0 0.001 080 8

TABLE III. Selected state points along the dense-liquid isomorph.

ρ T

0.000 343 00 1× 10�6

0.000 431 81 2.474 5× 10�6

0.000 543 62 5.682 5× 10�6

0.000 684 37 1.217 4× 10�5

0.000 861 58 2.443 9× 10�5

0.001 084 7 4.617 0× 10�5

0.001 365 5 8.241 3× 10�5

0.001 719 1 0.000 139 50
0.002 164 2 0.000 224 69
0.002 724 5 0.000 345 53
0.003 430 0 0.000 508 85
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