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Abstract The present dielectric investigations of methyl-
terminated poly(propylene glycol) (PPG) oligomers reveal
that near the glass transition the normal modes and segmental
relaxation merge in a single-process susceptibility spectrum,
similar to previous observations on OH-terminated species.
Moreover, the present shear-mechanical measurements dem-
onstrate that the vanishing of chain modes can be monitored
without recourse to dielectric investigations, which are able to
access chain dynamics only for the relatively small fraction of
type A polymers. As the normal and segmental modes merge,
the viscosity displays a crossover from a polymer-like regime
governed by the chain dynamics, to a simple-liquid regime
governed by the structural relaxation.
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It is well established that sufficiently long polymer chains
exhibit entanglements, and these have been studied extensive-
ly both experimentally and theoretically [1, 2]. Below the
entanglement molecular weight, Rouse-like dynamics domi-
nate the behavior of polymers [3]. Upon further shortening the
chains, the sub-Rouse regime is entered [4] until eventually
the simple-molecule limit, i.e., the monomer melt state is

reached. This regime in which Rouse dynamics is not (fully)
developed has been a matter of stimulating discussion [5–7].
Beyond a chain length of a few monomers, precursors of
normal modes emerge which are barely slower than the seg-
mental motion [8]. For the so-called type A polymers, these
modes are easily accessible via dielectric spectroscopy. These
materials, which are however relatively few in number, feature
an electrical dipole moment formed along the backbone con-
tour, so that the chain’s end-to-end dynamics is probed via
dielectric spectroscopy [9, 10]. Their study revealed that the
separation of the (sub-) Rouse mode from the segmental mode
depends on temperature Twith a tendency for the two process-
es to approach each other when cooling towards Tg [11–15].
This behavior contradicts the predictions of standard polymer
models [2, 3] and was rationalized within theoretical concepts
such as the coupling model [16] and the dynamically disor-
dered Rouse model [17], or alternatively ascribed to dynamic
heterogeneities [11, 12, 14]. One important still unresolved
question is whether these deviations from the classical poly-
mer dynamics picture can be attributed to strong correlations
among the chains or among the segments.

Different temperature dependences for the segmental and
the normal modes are not only known from dielectric mea-
surements but from rheological studies as well [18, 19], where
they are often referred to as “thermorheological complexity”
[20, 21]. No mechanical spectroscopy data are available that
demonstrate the convergence of the segmental and normal
modes to a limit in which the overall response of the polymer
chains reduces to a monomodal decay otherwise characteristic
for simple (non-associating, non-polymeric) glass forming liq-
uids. The present work uncovers this feature for oligomeric
PPG employing shear mechanical experiments. Specifically, a
sample with a molecular weight of 770 g/mol corresponding
to N = 13 repeat units (PPG13−OH) was chosen for which
dielectric measurements demonstrated a merging of the two
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relaxations in a conveniently accessible frequency regime
[38]. In order to check the extent to which the merging of
the two modes is affected by the chemistry of the end groups,
we also investigated the dielectric response of N = 13 oligo-
mer terminated by methyl groups (PPG13−M). This replace-
ment precludes any inter-chain hydrogen bonding character-
istic for “usual” PPG materials.

PPG with different molecular weights (usually above
1000 g/mol) have been intensively studied via dielectric spec-
troscopy [22–26], Kerr measurements [22, 23], various light
scattering methods [24], neutron scattering [27], nuclear mag-
netic resonance [28], andmechanical spectroscopy [29, 30]. In
the present work, the shear-mechanical measurements were
performed by combining a modular compact rheometer
MCR 502 from Anton-Paar with the piezoelectric modulus
gauge described in Ref. [31]. This enabled us to cover fre-
quencies ν ranging from below 10 mHz up to more than
10 kHz. The dielectric spectra of PPG13−M were recorded
using the equipment described in Ref. [32].

The real and imaginary parts of the complex shear modulus
G × (v) =G′(v) + iG"(v) measured at temperatures 225 K ≥ T ≥
200 K are presented in Fig. 1a, b and demonstrate an excellent
agreement between the two data sets in their commonly inves-
tigated range. These spectra nicely reveal the failure of
frequency-temperature superposition, as the dynamical contrast
between the structural relaxation and the terminal chain-mode
(best recognized from the deviations of G′ ∝ ν2 behavior indi-
cated in Fig. 1a) progressively decreases upon cooling.

Fig. 1c presents the dielectric loss spectra of PPG13-M. Its
normal modes approach the structural relaxation upon cooling
and, as revealed by the spectrum recorded at 186 K, a simple
liquid regime is established in the accessible frequency range.
Both the shape and the T-evolution of these spectra strongly
resemble the ones exhibited by the OH-terminated material [33,
34]. Note that the different temperature ranges covered in the
investigations of these two oligomers reveal that the end groups,
although not influencing the merging, lead to major differences
in the overall dynamics in these materials.

To better visualize the difference in the temperature evolu-
tion of the segmental and normal mode dynamics, the current
dielectric and shear data are presented on reduced scales in
Fig. 2. For reference purposes the dielectric response of the
PPG13-OH sample [33, 34] is reproduced in Fig. 2a as per-
mittivity loss ε″ scaled with respect to its maximum values ε″

max as well as to the loss peak frequency νmax. The same
representation was chosen for the present dielectric PPG13-
M data in Fig. 2b. In Fig. 2c, the shear spectra for PPG13-OH
are scaled vertically by the instantaneous shear moduliG∞ =G
′(ω→∞) accounting for the static characteristics of the spectra,
as well as with respect to the mechanical loss peak frequency
νmax. The storage (real) part of the modulus turned out to be
more useful for the clarity of the T-evolution, as on the low-
frequency side of the segmental process excess contributions

show up most prominently in the stronger frequency-
dependent real part G′(ν) ∝ ν 2 with respect to the loss G
″(ν) ∝ ν1 (see Ref. [2]).

The G′(ν) scaling in Fig. 2 yields an evolution pattern
which is similar to that seen in Fig. 2a, b for the dielectric
data: Upon lowering the temperature, the time scales of the
“sub-Rouse” modes approach those of the segmental relaxa-
tion and consequently the slope of the low-frequency contri-
bution successively increases. Finally, near 202.5 K, the two
modes merge and the simple liquid (Maxwell) limit [35] is
reached for PPG13-OH.

In line with previous ideas [36], the merging of the dielectric
normal mode with the segmental or structural dynamics has been
interpreted in terms of the coupling model [16]. Following a
different line of thought [11, 12, 14], this merging was attributed
to an increase in the structural relaxation’s cooperativity length
which approaches the scale set by the chain’s end-to-end distance
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Fig. 1 Frequency dependence of a real part and b imaginary part of the
complex shear modulus for PPG13-OH and of c dielectric loss for
PPG13-M shown on double-logarithmic scales. In a and b, the data
refer to temperatures (from left to right) of 200, 202.5, 205, 207.5, 210,
212.5, 215, and 220 K. The open symbols and the lines are measurements
performed with the Anton-Paar rheometer and with the piezoelectric
modulus gauge technique, respectively. In c, the numbers indicate the
corresponding temperatures in Kelvin. In a, the dashed line marks the
terminal Maxwell ν-dependence and in c the solid lines correspond to the
terminal Debye modes
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[38]. Thus considering the chains as “molecular rulers”, PPG
oligomers of different chain length were exploited to map out
the temperature dependence of the cooperativity length scale [38]
which semi-quantitatively agreed with other estimates [38, 39].
The elucidation of this merging is an example which demon-
strates that its study is beneficial not only from the perspective
of polymer dynamics, but for the understanding of the glass
transition in general. Yet, most polymer systems lack an along-
the-chain dipolemoment, while our study demonstrates that elas-
tic normal modes can provide direct access to the same informa-
tion, but for a much broader range of materials.

The vanishing of the chain dynamics upon cooling is interest-
ing from a rheological perspective in its own right. This is rele-
vant not the least because the merging of the two processes
impacts also on the temperature dependence of the shear viscos-
ity η. At high temperatures, η should be governed by the normal
modes [40], while below the merging temperature the structural
relaxation is expected to prevail. In Fig. 3 for PPG13-OH, we

plot the relaxation times τdiel and τshear inferred from the main
peak of the dielectric susceptibility and of the shearmodulus loss,
respectively. Note that a single, temperature independent shift
factor leads to a good agreement between the two datasets (in
the commonly investigated T range), both characterizing the
structural relaxation. In the same figure, we included the time
scales obtained from viscosity τvisc which characterizes the
long-time, terminal flow. To enable this comparison, the shear
data were first transformed to viscosity via η (ω) =G / (ω) / (iω)
and the amplitude of the low-frequency plateau of the real part of
the complex viscosity η0 = η′(ω→0) was used to estimate the
corresponding time constants via the Maxwell relation
τvisc = K1η0 / G∞ [35]. The constant K1 was chosen so that the
time scales τdiel and τvisc agree best at the lowest investigated
temperatures where a single-peak susceptibility is observed. In
the deeply supercooled regime, this agreement is well preserved,
but for T > 210 K (1000 / T ≈ 4.8 K−1), the two characteristic
times follow slightly different temperature dependences. The ar-
ea highlighted in Fig. 3 framing this temperature marks the cross-
over between two regimes: at lower T than 210 K both the chain
(sub-Rouse) modes become absorbed (encroached [16]) by the
segmental mode, and this leads to good agreement between seg-
mental dynamics and viscosity. However, at higher T chain
modes separate and contribute more towards viscosity, leading
to a separation of the two timescales which at high T reaches
about a factor of 2, comparable to the shift of the chain mode
seen in Fig. 2a, c.

To summarize, the present shear mechanical results for PPG-
OH13 demonstrate that below a characteristic merging tempera-
ture the separation of the segmental and chain dynamics ceases,
corroborating the dielectric results [37]. Whatever is the mecha-
nism at the origin of this complexity, our results demonstrate that
the process of merging of segmental and chain dynamics can be
investigated irrespective of whether or not a chain carries a dipole
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Fig. 3 Arrhenius plot of the time constants from the dielectric
susceptibility relaxation peak corresponding to segmental dynamics τdiel
(black dots and line) and scaled characteristic time scales obtained from
shear modulus τshear (red open stars, raw data multiplied with 20) and from
viscosity τvisc (blue filled diamonds and line). All characteristic times follow
a common temperature dependence in the range 1000K / T > 4.8 K−1,
while τvisc separates from τdiel upon heating

Fig. 2 a Doubly-scaled dielectric loss ε″(ν) / ε″max for PPG13-OH, b
doubly scaled dielectric loss ε″(ν) / ε″max for PPG13-M, and c doubly
scaled shear modulusG′(ν) /G∞ for PPG13-OH, all plotted vs. ν / νmax. In
frame b, the open symbols and the lines represent data measured with the
Anton-Paar rheometer and the piezoelectric modulus gauge technique,
respectively. The numbers indicate temperatures in Kelvin. In frame c,
the dashed line marks G′ ∝ ν2. In a and c, the dielectric as well as the
mechanical data, measured at temperatures around 200 K, do no longer
exhibit bimodal spectra, signaling that the simple molecule limit is
reached
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moment along its backbone. A peculiar behavior of the transport
coefficients was revealed by the breakdown of frequency-
temperature superposition: The oligomer behaves polymer-like
at high temperatures and like a simple molecular liquid in its
highly viscous state. For PPG, the ability of the end groups to
sustain H-bonds does not influence this phenomenology, which
thus can be considered to be general for oligomeric chains.
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