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Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows
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Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its
repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the
distributions of energy drops, stress drops, and strain intervals between the flow events. We show that simulations
at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict
the plastic flow-event statistics at other densities. This is done by applying the recently established “hidden
scale invariance” of simple liquids to the glass phase. The resulting scaling of flow-event properties reveals
quasiuniversality, i.e., that the probability distributions of energy drops, stress drops, and strain intervals in
properly reduced units are virtually independent of the microscopic pair potentials.
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Solids do not flow according to the traditional definition
[1,2]. Actually a solid does flow at any finite stress, in principle,
even at low temperatures [3,4]. Finite-stress flow of a solid is
referred to as plastic flow [5–11]. Such flows are observed in
practice, e.g., when a piece of metal is deformed, but solids
are generally useful in real life, of course, precisely because
they do not plastically deform under normal circumstances.

In science, plastic flow is often monitored by subjecting
the solid in question to a shear deformation that increases
linearly in time—if the solid does not break, it eventually
yields and flows [12]. In the longer run a steady state is
reached in which the shear stress fluctuates around an average
[13]. This paper focuses on the steady-state plastic-flow
properties of amorphous materials, which are relevant, e.g.,
for applications of metallic glasses [14,15]. In this field
the shear-transformation-zone [16–19] and the soft-glassy-
rheology [20–22] theories have been successful in explaining
the rich phenomenology observed in elastoplastic flows and
the yielding transition. Supplementing these approaches,
mode-coupling theory has been applied with a focus on
constructing a first-principles theory of yielding [23–25]. We
here supplement these successful theories by showing that
the plastic-flow statistical properties at one density uniquely
determine those at other densities. This is done by extending
to glasses a recently established scaling property [26,27] of
the so-called “Roskilde-simple” liquids [27–36].

Plastic flows can take place even at zero temperature
[3,4]. For an amorphous solid like a metallic glass the zero-
temperature plastic flow properties provide important infor-
mation about the energy landscape of the atoms [3,4,37]. For
this reason athermal flows of amorphous solids have recently
been studied extensively by computer simulations [13,38–41].
Much of the focus has been on the interesting finite-size scaling
properties of the flow-event statistics [38,42–45], and by now
a good understanding has been achieved of the general nature
of the self-organized criticality observed in steady-state plastic
flows [46].
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Plastic flows take place as the result of large stresses.
In practice, these are rarely pure shear stresses, but involve
also locally high pressures or, occasionally, even negative
pressures. It is therefore important to understand the effect
of pressure on a plastic flow, and this subject has indeed
been investigated intensively over the years. Thus, it is well
known that the rate of plastic flow decreases dramatically with
increasing pressure [47,48], typically following an exponential
function, a fact that is often rationalized in terms of the
free-volume model [49].

In the past decade experiments on supercooled liquids
have shown that if a simple description is aimed at, the right
quantity to focus on is not the pressure but the density. Thus,
for a large number of glass-forming liquids in metastable
equilibrium it has been demonstrated that the viscosity—or,
equivalently, the average relaxation time—is a function
of ργ /T in which ρ = N/V is the number density, T the
temperature, and γ the so-called density-scaling exponent (not
to be confused with the shear displacement that is traditionally
also denoted by γ ). This so-called power-law density-scaling
relation was established by Alba-Simionesco and coworkers,
as well as by Roland, Paluch, and coworkers, for many van
der Waals bonded organic liquids and polymers [50–53].
For large density changes the density-scaling exponent is
not constant and a more general form of scaling takes over
[50,54,55], which is the one used below.

One purpose of the present paper is to show that the insight
gained from the study of supercooled liquid dynamics—that
density rather than pressure is the important variable—can
be used for understanding the scaling properties of athermal
plastic flows. We develop a theory of the density dependence
of the statistics of athermal plastic flow events at steady state,
which from the properties at one density makes it possible to
predict the steady-state behavior at any other density (thus, the
history dependence of the initial flow is not under study).
A first step in this direction was taken in Ref. [56] by
assuming a constant, empirically determined exponent for the
density scaling of the average properties of a stationary plastic
flow, a procedure that is analogous to the above-mentioned
power-law density scaling for liquids. A more general scaling
is established below based on the concept of “hidden scale
invariance” [27]. The second purpose of this paper is to show
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FIG. 1. (Color online) (a) Typical stress-strain signal for a glass that is shear deformed under athermal quasistatic conditions. The horizontal
dashed line indicates the steady-state average flow stress 〈σ 〉. (b), (c) Illustration of the key observables measured in this work: the (shear)
stress drops �σ , the strain intervals between drops �γ , and the energy drops �U . (d) The Lennard-Jones pair potential of the Kob-Andersen
binary Lennard-Jones (KABLJ) model and its repulsive counterpart with a plus in front of the r−6 term (RKABLJ) as functions of the distance
between particles i and j , rij .

that by using this novel scaling, which involves no more
parameters than the traditional power-law scaling, “quasi-
universality” [57] of the flow-event properties is revealed.
By this we mean that in properly scaled units the flow-event
statistical properties are (almost) independent of the micro-
scopic interactions.

Simulations of zero-temperature flows of simple model
systems were performed in order to investigate the effect of
density. Zero temperature (“athermal”) means that the system
is always at a local minimum in the energy landscape—thus
no atom exhibits any thermal vibration. In the simulations
each system was subjected to a quasistatic shear deformation,
corresponding to a very low strain rate. Every now and then the
system exhibits a sudden plastic flow event [38], an avalanche
that takes it from a mechanically marginally stable state, i.e.,
one with a zero eigenvalue of the potential-energy Hessian, to
a mechanically stable state.

A typical stress-strain signal following shear deformation
is displayed in Fig. 1(a). Starting from the as-quenched glass
the stress initially increases linearly and few flow events take
place. This is the standard linear, elastic response of a solid
to an imposed shear deformation. At long times a fluctuating
steady state is reached in which the stress saturates. Here, over
short time spans the stress increases linearly and continuously
with deformation, but drops discontinuously whenever a
flow event takes place. As mentioned, this happens when a
mechanically marginally stable state is reached, at which point
the system tumbles down the potential-energy landscape to a
new state of mechanical equilibrium. From here, the system
is gradually shear deformed, behaving like a continuously
strained elastic solid, and the shear stress increases until a

new flow event takes place at which point the stress decreases
abruptly, etc.

Following previous works in the field [38,40,42,44,58] we
probed the statistics of the plastic flow events by determining
the probability distributions of the flow events’ shear-stress
drops and energy changes, as well as the strain intervals
between consecutive flow events [Figs. 1(b) and 1(c)]. Specif-
ically, we simulated two model glass-forming systems in three
dimensions, each consisting of particles of two sizes. Single-
component systems were not studied because, even if prepared
into an amorphous state by rapid quenching from the liquid,
they crystallize when subjected to plastic deformations and no
steady state of a glass plastic flow can be reached [59]. The in-
teraction potentials simulated are the standard Kob-Andersen
binary Lennard-Jones (KABLJ) system consisting of 80%
large and 20% small particles [60] and its repulsive counterpart
(RKABLJ) [61]. The LJ pair potential between particles i

and j is the usual 4εij [(rij /λij )−12 − (rij /λij )−6], while the
RLJ pair potential is (εij /2)[(rij /λij )−12 + (rij /λij )−6] (the
KABLJ pair potential follows the standard LJ normalization
of having minimum energy −εij , whereas the RKABLJ
potential is normalized by requiring the energy to be εij

at rij = λij [61]). The particle masses do not enter into
the problem. The AQS scheme for athermal plastic-flow
simulations was used [38,42,44,62], which consists of repeated
applications of incremental shear-strain deformations followed
by a minimization of the potential energy using a standard
nonlinear conjugate-gradient algorithm.

Each system simulated consisted of N = 8 000 particles.
We first deformed the system under athermal shear as described
above to a strain of ∼1. This was done in order to assure that
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FIG. 2. (Color online) Distributions of potential-energy drops P (�U ) for (a) the KABLJ and (c) the RKABLJ systems at different densities,
and distributions of stress drops P (�σ ) for (b) the KABLJ and (d) the RKABLJ systems. At the reference densities, which are 1.5 for the
KABLJ system and 1.0 for the RKABLJ system, each distribution was fitted with a smooth function (green dashed curves). For each system the
scaling function h(ρ) = Aρ4 ± Bρ2 was found by simulations of the equilibrium liquid at the reference density (see the main text for details).
Based on these inputs and a dimensional analysis, the distributions at other densities are uniquely predicted (purple full curves).

steady state had been reached in which there is no memory
of the initial state [41] and the statistics of the plastic flow
events is strain independent. We then started probing the
statistics of the stress drops �σ , the strain intervals between
mechanical instabilities �γ , and the potential-energy drops
�U . The algorithm used allows one to single out the drops
to a high precision; thus, the instabilities are determined up
to a resolution of ∼10−6 in strain. For each system studied
statistics from about 20 000 plastic events were collected over
100 independent realizations in the steady state.

The probability distributions of potential-energy and stress
drops are shown in Fig. 2 for different densities. The lowest
density simulated for the KABLJ system is 1.2, corresponding
to a slightly negative pressure. For the RKABLJ system
we studied almost two decades of densities (pressure never
becomes negative in a purely repulsive system).

In order to understand the scaling properties of the proba-
bility distributions we refer to the fact that both systems have
strong virial potential-energy correlations [61,63]. As shown
recently, this implies that they have “hidden scale invariance”
[26,27] in the sense that the potential energy U as a function
of the collective position vector R ≡ (r1,...,rN ) obeys the
following approximate identity:

U (R) ∼= h(ρ)�̃(R̃) + g(ρ). (1)

Here, R̃ ≡ ρ1/3R is the dimensionless “reduced” collective
position vector, h(ρ) and g(ρ) are functions of density, both
of dimension energy, and �̃(R̃) is a state-point-independent
dimensionless function. Equation (1) defines a generalized,
approximate scale invariance because the function �̃(R̃),
which determines structure and dynamics of the equilibrium
as well as nonequilibrium system [27], is scale invariant in the
sense that it is unchanged for a uniform scaling of all particle
coordinates.

According to Eq. (1) a change of density to a good
approximation simply results in a linear, affine overall scaling
of the high-dimensional potential-energy surface. For a system
in thermal equilibrium this can be compensated by adjusting
the temperature. This fact is the basis of the existence of the
so-called isomorphs, which are curves in the thermodynamic
phase diagram given by h(ρ)/T = Const. along which struc-
ture and dynamics of equilibrium systems in properly reduced
units are invariant to a good approximation [26,64].

Whereas the function h(ρ) determines the energy scale for
the dynamics at a given density, g(ρ) just gives an additive con-
stant to the potential energy and plays no role for structure and
dynamics (this function contributes, of course, to the pressure
and its density dependence and thus to the equation of state).
Since �̃(R̃) is density independent, by dimensional analysis
[65] Eq. (1) implies that for different densities the distribution
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FIG. 3. (Color online) Mean steady-flow observables as functions of density for the KABLJ (top panels) and RKABLJ (bottom panels)
systems. The continuous curves are proportional to h(ρ) or ρh(ρ) for quantities having units of energy or stress, respectively. The purple dashed
lines in two of the subfigures give examples of the predictions of asymptotic power-law scaling functions h(ρ) ∝ ργ . Previous effective scaling
theories [44] predicted power laws corresponding to density-independent scaling exponents, which would imply the purple dashed lines to
coincide. The deviations from simple power-law scaling are most pronounced for the RKABLJ system.

of flow-event potential-energy drops, p(�U ), must be of the
form p(�U ) = FU [�U/h(ρ)]/h(ρ) in which the function FU

is density independent. Likewise, since stress has dimension
energy per volume, the distribution of shear-stress drops must
be of the form p(�σ ) = Fσ {�σ/[ρh(ρ)]}/[ρh(ρ)]. In order
to test these predictions we proceeded as follows.

First, the functions h(ρ) for the KABLJ and RKABLJ
systems were determined by making use of the fact that for a
system with pair potentials of the form v(r) = ∑

n εn(r/σ )−n,
one has h(ρ) = ∑

n αnεn(ρσ 3)n/3 for suitable constants αn

[61,66]. The present case involves two inverse power-law
terms, so the two h(ρ) functions each have two parameters.
Since in both cases the inverse-power-law exponents involved
are n = 12 and n = 6, it follows that h(ρ) = Aρ4 ± Bρ2.
The overall scaling of h(ρ) is irrelevant for the physics,
however, so only a single parameter needs to be fixed for
each system, e.g., B/A. This was done by simulations of
the equilibrium liquid at a reference density by equating the
expression for the density-scaling exponent, γ = d ln h/d ln ρ

[26,61,66], to its canonical-ensemble fluctuation expression
γ = 〈�W�U 〉/〈(�U )2〉 calculated from an NV T simulation
[64]. As reference densities we chose ρ = 1.5 for the KABLJ
system and ρ = 1.0 for the RKABLJ system. The density-
scaling exponent was determined at these densities at T = 2.0
for the KABLJ system (resulting in γ = 4.65 and B/A =
0.55) and at T = 1.0 for the RKABLJ system (resulting
in γ = 3.29 and also B/A = 0.55). Once h(ρ) has been
determined for each system, as mentioned above the plastic
flow-event statistics at the reference density—marked by the

green dashed curves in Fig. 2—- uniquely predict those at the
other densities (purple full curves).

As a further investigation of the scaling properties implied
by hidden scale invariance, Fig. 3 shows the average stress 〈σ 〉,
the average stress drop 〈�σ 〉, and the average potential-energy
drop 〈�U 〉, as functions of density for the two systems. The
full curves are the predictions from dimensional analysis:
〈σ 〉 ∝ ρh(ρ), 〈�σ 〉 ∝ ρh(ρ), and 〈U 〉 ∝ h(ρ). For each quan-
tity the proportionality constant was found from a reference-
density simulation. The expression γ = d ln h/d ln ρ for the
approximate exponent defined by h(ρ) ∝ ργ allows one to
predict γ ’s density dependence. The purple dashed lines in
two of the subfigures of Fig. 3 give the low- and high-density
power-law limits, respectively, which correspond to ordinary
power-law scaling laws.

The scaling properties identified above allow one to com-
pare different systems’ flow-event statistics. Figure 4 shows the
data for the KABLJ and RKABLJ systems, supplemented with
data for the average shear displacement between flow events.
The figure also includes data for a binary inverse-power-law
(IPL) system with pair potentials v(r) ∝ r−10, for which the
above-discussed scaling is exact and trivial with h(ρ) ∝ ρ10/3.
These three quite different systems have very similar flow-
event properties. We interpret this as reflecting a manifestation
of the so-called quasiuniversality that was previously only
discussed for equilibrium liquids (see, e.g., Refs. [57,67] and
references therein). Thus, it has been known for some time
that for simple liquids like inverse-power law systems, LJ
systems, etc., the radial distribution functions are virtually
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FIG. 4. (Color online) Distributions of dimensionless energy drops �U/h(ρ), stress drops �σ/[ρh(ρ)], and strain intervals �γ for the
KABLJ, RKABLJ, and n = 10 inverse power law (IPL) systems. This figure demonstrates quasiuniversality of the plastic flow-event properties.
Note that this is not an empirical collapse; no adjustable parameters were involved.

indistinguishable [68,69]. More recently, quasiuniversality
was extended to include simple liquids’ dynamic properties
[70,71], and very recently a theory based on the exponentially
repulsive pair potential EXP has been devised explaining
quasiuniversality for simple liquids [57].

In the hidden-scale-invariance language, quasiuniversality
at thermal equilibrium implies that the function �̃(R̃) in Eq. (1)
is quasiuniversal. In turn, this implies quasiuniversality of the
flow-event statistics. Interestingly, in the related context of
the jamming transition, Arevalo and Ciamarra very recently
also reported quasiuniversality of flow-event properties close
to jamming [72].

Which systems in the real world may have quasiuniversal
behavior? Previous studies focused on liquid systems, for
which it has been found that most or all van der Waals bonded
systems and metals are in the “Roskilde-simple” class of
systems with strong virial potential-energy correlations [27–
36], i.e., obeying hidden scale invariance. In contrast, systems
dominated by directional bonds like covalently bonded and
hydrogen-bonded systems are generally not Roskilde-simple
[27,73]. The microscopic basis is that systems with pair
potentials that can be approximated by an inverse power-law
term (∝ r−n) plus a constant plus a linear term (∝ r) obey
hidden scale invariance [27,73,74]. There is evidence that
Roskilde-simple atomic systems, i.e., pair-potential systems
with hidden scale invariance, also obey quasiuniversality
[26,27,57]. Based on this we conjecture that most or all

metallic glasses exhibit quasiuniversality for their flow event
properties. It is difficult to probe the statistics of individual
flow events in experiments, of course, but for instance the
ratio between the yield stress and the steady-state stress—a
readily observable quantity—is also predicted to be quasi-
universal for glasses prepared according to the same thermal
history.

The hard-sphere (HS) system has served well over the
years as a generic simple model system, also for the glass
phase via the (fairly well-defined) random close packing
of spheres. However, the sort of scale invariance discussed
above does not apply for the HS system, for which there
is no analog of the scaling function h(ρ). Rather, one may
think of the HS system as the limit of inverse-power-law
systems with exponents n → ∞. Reference [57] argues that
one can replace the HS system as the generic liquid system by
the exponentially repulsive EXP pair-potential system, which
has the advantage of being analytic and, moreover, gives a
precise characterization of which (single-component) systems
are quasiuniversal and which are not.

The implication of the above is that one may not only
speak of Roskilde-simple liquids (systems with hidden scale
invariance [73]), but also of Roskilde-simple glasses formed
from such liquids. More work is needed to clarify the detailed
consequences of this, however, since a glass is not uniquely
determined by density and temperature but by the entire
thermal history prior to glass formation.

052304-5



EDAN LERNER, NICHOLAS P. BAILEY, AND JEPPE C. DYRE PHYSICAL REVIEW E 90, 052304 (2014)

In summary, we have shown that properties at a single
density provide enough information to predict the plastic
flow-event properties at arbitrary densities for the model
systems studied. This consequence of hidden scale invariance
was confirmed by simulations of the KABLJ and the RKABLJ
systems. The resulting scaling of flow event properties reveal
quasiuniversality of flow event properties, indicating that for

a large class of systems plastic flows may be simpler than
previously thought.
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