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Abstract
According to standard liquid-state theory repulsive and attractive pair forces play distinct roles
for the physics of liquids. This paradigm is put into perspective here by demonstrating a
continuous series of pair potentials that have virtually the same structure and dynamics,
although only some of them have attractive forces of significance. Our findings reflect the fact
that the motion of a given particle is determined by the total force on it, whereas the quantity
usually discussed in liquid-state theory is the individual pair force.

(Some figures may appear in colour only in the online journal)

A liquid is held together by attractions between its molecules.
At the same time, it is very difficult to compress a liquid
because the molecules strongly resist closely approaching
each other. These facts have been known for a long time,
and today it is conventional wisdom that the repulsive and
the attractive forces play distinct roles for the physics of
liquids. The repulsive forces, which ultimately derive from
the Fermi statistics of electrons, are harsh and short ranged.
According to standard theory these forces are responsible for
the structure and, in particular, for reducing considerably the
liquid’s entropy compared to that of an ideal gas at the same
density and temperature. The attractive forces, on the other
hand, are long ranged and weaker. These forces, which derive
from induced dipolar interactions, reduce the pressure and
energy compared to that of an ideal gas at the same density
and temperature. We argue below that this physical picture,
though quite appealing, overemphasizes the individual pair
forces and does not provide a full understanding because it
does not relate directly to the total force on a given particle.

The traditional understanding of the liquid state is
based on pioneering works by Frenkel, Longuet-Higgins and

Widom, Barker and Henderson, and Weeks, Chandler, and
Andersen (WCA), and many others [1, 2]. The basic idea
is that the attractions may be regarded as a perturbation of
a Hamiltonian based on the repulsive forces, the physics of
which is usually well represented by a hard-sphere reference
system [3]. Perturbation theories based on this picture [1–4]
are standard for calculating simple liquids’ thermodynamics
and structure as quantified, e.g., by the radial distribution
function. We do not question the usefulness of perturbation
theories, but will argue from theory and simulations that the
repulsive and the attractive pair forces do not always play
clearly distinguishable roles for the structure and dynamics
of simple liquids.

This point is illustrated in the simplest possible way by
studying systems of Lennard-Jones (LJ) particles. The LJ pair
potential is given by vLJ(r) = 4ε[(r/σ)−12

− (r/σ)−6
]. This

function is plotted in figure 1 for a number of different choices
of the parameters ε and σ . In the following we adopt the
unit system in which ε0 = σ0 = 1 and kB = 1. We use the
same unit system for all the potentials. Consider a simulation
of the potential with (ε, σ ) = (1.25, 0.947) at the state point
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Figure 1. Lennard-Jones pair potentials vLJ(r) = 4ε [(r/σ)−12

− (r/σ)−6
] predicted to give virtually the same physics at the state

point (ρ,T) = (1, 1) using the unit system defined by ε0 = σ0 = 1
and kB = 1. Visually, these potentials have little in common; in
particular, they have very different contributions from attractive
forces. These pair potentials were constructed analytically using the
isomorph theory, as detailed in the text after figure 2.

(ρ ≡ N/V,T) = (1, 1). Clearly, it would lead to exactly the
same structure and dynamics (after appropriate rescaling)
doing a simulation of the potential with (ε, σ ) = (8.73 ×
10−5, 2.0) at the temperature T = 8.73 × 10−5/1.25 and
the density ρ = (0.947/2.00)3—this simply reflects the fact
that the physics is determined by the two dimensionless
parameters T/ε and σ 3ρ. We show below however that, in
addition to this trivial fact, the two potentials also give (to a
good approximation) the same structure and dynamics when
both potentials are investigated at the state point (ρ,T) =
(1, 1). In fact, all the potentials in figure 1 were chosen to
give virtually the same structure and dynamics at the state
point (ρ,T) = (1, 1). The paper mainly focuses on this state
point, but results for a few other state points are also given,
confirming the findings at (ρ,T) = (1, 1).

The potentials of figure 1 all have attractive forces, but
for some of the potentials the attractive forces are entirely
insignificant. To show that these potentials nevertheless have
virtually the same structure and dynamics, NVT computer
simulations of systems of 1000 particles were performed
using the RUMD software that runs on graphics processing
units [5].

Figure 2(a) shows the radial distribution function g(r)
for the seven LJ pair potentials of figure 1 at the state point
(ρ,T) = (1, 1). For comparison, simulations at the same
state point are shown in figure 2(b) for seven potentials
with the same ε variation, but fixed σ = 0.947. Figure 2(c)
shows the radial distribution functions at the state point (1, 1)
for the pair potentials of figure 1 cut off according to the
Weeks–Chandler–Andersen (WCA) recipe, i.e., by cutting the
potentials at their minima and shifting them to zero there.

Figure 3 shows results for the dynamics, with (a) giving
the mean-square displacement for the seven potentials of
figure 1. Figure 3(b) compares the results for the diffusion
constants with those of WCA simulations.

By the Henderson uniqueness theorem [6] the pair
potentials of figure 1 cannot have exactly the same pair

Figure 2. Radial distribution functions at the state point
(ρ,T) = (1, 1) for different sets of potentials: (a) the LJ pair
potentials of figure 1; (b) a series of LJ pair potentials with fixed σ
parameter and the ε-values listed in figure 1; (c) results for the
series of Weeks–Chandler–Andersen (WCA) potentials
corresponding to the LJ potentials of figure 1.

distribution functions. Based on figures 2 and 3 we see that,
nevertheless, the potentials lead to very similar structure and
very similar dynamics. In fact, both structure and dynamics
among the potentials of figure 1 are closer to each other than
to the WCA versions of the same potentials.

How were the pair potentials of figure 1 determined and
why do they have almost the same structure and dynamics?
The starting point is the existence of isomorphs in the phase
diagram of liquids with strong correlations between NVT
virial and potential-energy equilibrium fluctuations [7, 8]
(which we recently argued provides a useful definition of a
simple liquid [9]). Two state points with density and tempera-
ture (ρ1,T1) and (ρ2,T2) are termed isomorphic [7] if all pairs
of physically relevant microconfigurations of the two state
points, which trivially scale into one another, i.e., ρ1/3

1 r(1)i =

ρ
1/3
2 r(2)i for all particles i, have proportional configura-

tional Boltzmann factors: exp[−U(r(1)1 , . . . , r(1)N )/kBT1] =

C12 exp[−U(r(2)1 , . . . , r(2)N )/kBT2] in which the constant of
proportionality is independent of the microconfiguration.
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Figure 3. (a) The mean-square displacement for the LJ pair
potentials of figure 1 at the state point (ρ,T) = (1, 1). (b) Diffusion
constants as functions of σ for the full potentials of figure 1 (red)
and for the WCA versions of the potentials (black). At high σ the
WCA results are accurate because these potentials are almost purely
repulsive.

LJ systems are strongly correlating and thus have isomorphs
to a good approximation [8]. The invariance of the canonical
probabilities of scaled configurations along an isomorph
has several implications [7]. Excess entropy and isochoric
specific heat are both isomorph invariant, the dynamics in
reduced units are invariant for both Newtonian and Brownian
equations of motion, reduced-unit static density correlation
functions are invariant, a jump between two isomorphic state
points takes the system instantaneously to equilibrium, etc.
For Newtonian dynamics, using reduced units corresponds
to measuring length in units of ρ−1/3, time in units of
ρ−1/3√m/kBT where m is the particle mass, and energy in
units of kBT . Thus the reduced particle coordinates are defined
by r̃i = ρ

1/3ri.
An isomorph was generated using the recently derived

result [10] that liquids with good isomorphs have simple
thermodynamics in the sense that the temperature is a product
of a function of excess entropy per particle s and a function of
density,

T = f (s)h(ρ). (1)

The function h(ρ) inherits the analytical structure of the
pair potential in the sense that, if the latter is given by
the expression v(r) =

∑
nvnr−n, then h(ρ) =

∑
nCnρ

n/3,
in which each term corresponds to a term in the pair
potential [10]. Since h(ρ) is only defined within an overall

Figure 4. (a) The AA particle radial distribution function of the
Kob–Andersen binary Lennard-Jones (KABLJ) mixture for a family
of isomorphic pair potentials similar to those of figure 1. (b) The
AA particle radial distribution function of the KABLJ mixture with
the corresponding WCA potentials. (c) The A particle incoherent
intermediate scattering function for the same family of potentials as
a function of time at the wavevector defined from the maximum of
g(r) (full curves). The full dotted curves show the WCA
predictions [12]. (d) The function χ4(t) for the A particles for the
same pair potentials (full curves) and the WCA predictions (dashed
curves).

multiplicative constant, one can write for the LJ pair potential

h(ρ) = αρ4
+ (1− α)ρ2. (2)

The constant α was determined from simulations at the state
point (ρ,T) = (1, 1) for ε = 1.25 and σ = 0.947, which is
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a typical liquid state point of the LJ system. This was done
by proceeding as follows [11]. We have previously [7, 10]
derived the identities

γ ≡

(
∂ ln T

∂ ln ρ

)
Sex

=
d ln h

d ln ρ
=
〈1W1U〉

〈(1U)2〉
, (3)

in which W is the virial, U the potential energy, and the
angular brackets denote NVT equilibrium ensemble averages.
Combining equations (2) and (3) with the simulation results
for the fluctuations of W and U leads to α = γ /2− 1 = 1.85.

An isomorph is a set of state points with almost
the same structure and dynamics in reduced units [7].
Via appropriate rescaling, however, an isomorph can be
interpreted differently: as defining a set of different LJ
pair potentials that give invariant properties at the same
state point. These are simply two different ways of
looking at an invariant Boltzmann factor: equation (1)
implies that exp

(
−U(ρ−1/3r̃1, . . . , ρ

−1/3r̃N)/[f (s)h(ρ)]
)
=

exp(−[1/f (s)]
∑

i<jvLJ(ρ
−1/3r̃ij)/h(ρ)), where rij is the

distance between particles i and j. Along an isomorph f (s)
is a constant; if we consider the isomorph which includes
the state point ρ = T = 1, then given the normalization of
equation (2) we have f (s) = 1. The shift in interpretation
now comes by noticing that the same Boltzmann factor is
obtained by considering a configuration at unit density and
unit temperature and a family of isomorphic pair potentials
vd

LJ(r) ≡ vLJ
(
d−1/3r

)
/h(d), where we have dropped the tilde

from positions and replaced ρ with d to emphasize the shift
in perspective. These pair potentials are still LJ potentials,
but with different energy and length parameters; the potentials
plotted in figure 1 were arrived at in this way.

The single-component LJ system does not have a broad
dynamic range because it cannot be deeply supercooled. To
test the robustness of the predicted invariance of the physics
for families of ‘isomorphic’ pair potentials, we simulated also
the Kob–Andersen binary LJ (KABLJ) mixture [13], which
is easily supercooled into a highly viscous state. For this
system the constant α = 1.29 was identified from simulations
of 1000 particles at the state point (ρ,T) = (1.60, 2.00),
using again equation (3). From the function h(ρ) a family of
isomorphic equivalent pair potentials was generated that looks
much like those of figure 1; in particular, some of them have
a vanishingly small attraction.

Figure 4(a) shows the AA particle radial distribution
functions for these different pair potentials and figure 4(b)
shows the same quantity for the WCA version of the
potentials. Figure 4(c) shows the A particle incoherent
intermediate scattering function and, with dashed lines,
simulations of the corresponding WCA systems. Even though
the WCA approximation has the correct repulsive forces,
its physics differs considerably from the isomorphic pair
potentials, as noted already by Berthier and Tarjus [12]. We
also calculated χ4(t), a measure of dynamic heterogeneities.
The results shown in figure 4(d) are more noisy, but confirm
the predicted invariance of the dynamics for the different pair
potentials. The corresponding WCA results are shown with
dashed lines.

Figure 5. (a) Probability distribution of x-components of the total
forces on individual particles, p(Fx), for the different
single-component LJ potentials of figure 1 at the state point
(ρ,T) = (1, 1). (b) Snapshot of the x-component of the force Fx on
one particle as a function of time. The system simulated is defined
by ε = 1.25 and σ = 0.947, and Fx was subsequently evaluated for
the same series of configurations for the six other potentials. These
figures show that, even though the pair potentials are quite different,
the forces are virtually identical except at the extrema.

It would require extraordinary abilities to know from in-
spection of figure 1 that these pair potentials have virtually the
same structure and dynamics. The potentials have neither the
repulsive nor the attractive terms in common, so why is it that
they have such similar behavior? The answer is that they result
in virtually the same forces (figure 5). The force on a given
particle is the sum of contributions from (primarily) its nearest
neighbors, and plotting merely the pair potential can be mis-
leading. We conclude that, by reference to the pair potential
alone, one cannot identify separate roles for the repulsive and
the attractive forces in a many-particle system. There simply
are no ‘repulsive’ and ‘attractive’ forces as such.

The above reported simulations focused for each system
on one particular state point. If the potentials in figure 1 are
to be regarded as equivalent with respect to structure and
dynamics, however, one should also test other state points. We
have done this briefly, and the results are shown in figure 6.
Clearly, the degree of similarity observed at the state point
(ρ,T) = (1, 1) is also maintained for the other state points
(for comparison, figure 6(c) reproduces the (ρ,T) = (1, 1)
results from figure 2(a)).
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Figure 6. Radial distribution functions for the potentials of figure 1
at other state points than the state point (ρ,T) = (1, 1) studied
above. For reference we give in each subfigure the value of γ
defined in equation (3). (a) (ρ,T) = (1, 2); (b) (ρ,T) = (1, 4);
(c) (ρ,T) = (1, 8)—the γ -values reported in this subfigure are
those of the state point (ρ,T) = (1, 1).

What are the implications of the above results? For
liquid-state perturbation theory the WCA theory is rightfully
renowned for its ability to make semi-analytic predictions
for thermodynamic properties of simple liquids. The focus of
liquid-state theory has moved on, however, in part because

modern computers make it straightforward to simulate the
kinds of liquid for which WCA theory can make accurate
predictions. We do not claim to have a better way to do
perturbation theory in the sense of WCA. While WCA
theory is based upon an assumed equivalence between two
potentials differing by the removal of attractions, the present
work describes a predicted and observed equivalence between
apparently quite different potentials. This observation will
not facilitate perturbation theory, but it could potentially be
useful as a check on perturbation theories and other theories
of the liquid state, for example density functional theory; such
theories should be consistent with the observed invariance as
the parameters of the potential are changed.

The center for viscous liquid dynamics ‘Glass and Time’
is sponsored by the Danish National Research Foundation
(DNRF).
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