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ABSTRACT: In this paper we compare the Wolf method to the shifted forces
(SF) method for efficient computer simulation of bulk systems with Coulomb
forces, taking results from the Ewald summation and particle mesh Ewald
methods as representing the true behavior. We find that for the Hansen−
McDonald molten salt model the SF approximation overall reproduces the
structural and dynamical properties as accurately as does the Wolf method. It is
shown that the optimal Wolf damping parameter depends on the property in
focus and that neither the potential energy nor the radial distribution function are
useful measures for the convergence of the Wolf method to the Ewald
summation method. The SF approximation is also tested for the SPC/Fw model
of liquid water at room temperature, showing good agreement with both the
Wolf and the particle mesh Ewald methods; this confirms previous findings
[Fennell, C. J.; Gezelter, J. D. J. Chem. Phys. 2006, 124, 234104]. Besides its conceptual simplicity, the SF approximation implies
a speed-up of a factor of 2−3 compared to the Wolf method. We conclude that for the systems studied, whenever the Wolf
method gives accurate results, it may be replaced by the simpler and faster SF method.

■ INTRODUCTION
Coulomb forces are ubiquitous in nature and must be taken
into account in molecular dynamics simulations of polar
molecules, ionic liquids, and other charged systems. Because of
the long-range nature of the Coulomb interaction this presents
a formidable numerical and conceptual challenge which was
addressed by Ewald1 in the early 1920s. While the Ewald
summation method enables a numerical solution to the
problem, it requires very long computational time. Since then
modified and optimized Ewald-type algorithms have been
successfully developed;2 these schemes have significantly
reduced the computational time for larger systems allowing
more complicated phenomena to be studied. In 1999 Wolf et
al.3 presented an alternative method that allows for even faster
simulations of systems with Coulomb forces. This represented a
great leap forward; their original paper has been cited more
than 250 times and the method is currently applied to, for
instance, hydrogen bond switching studies,4 in the study of
membrane embedded protein systems,5 evaluation of transport
coefficients in liquid water,6 molecular dynamics potentials for
dissociative water,7 and electrolyte solutions.8 In this paper we
discuss the further simplification based on a simple shifted-
forces cutoff, which is 2−3 times faster than the Wolf method.
We find that whenever the Wolf method adequately
approximates the Ewald method, the shifted force method
produces comparable results.
In molecular dynamics simulations the force evaluation

consumes by far the most computational time. For short-ranged
potentials such as the Lennard‑Jones function,9 it is common to
truncate the interaction at a cutoff rc, leading to optimization
methods such as inclusion of cell and neighbor lists.10−12

Traditionally, the pair potential is simply truncated and some
times also shifted such that it is zero at rc.

10−12 This does not
affect the force acting between particles at distances smaller
than rc, and if rc is sufficiently large, the fluid properties are
virtually unaffected by this approximation. In fact, it has been
shown9,13 that keeping merely the short-ranged and purely
repulsive part of the van der Waals interaction can account for
the fluid structure even near the critical point where
correlations are long ranged. The truncated and shifted
potential approximation ensures continuity of the potential
energy, but can introduce a discontinuity in the force at rc,
leading to energy drift for long simulation times.14 To
overcome this one can instead apply a truncated and shifted
force (SF) approximation,10 which has superior numerical
stability.14 Beside the numerical stability, it was recently shown
by Toxvaerd and Dyre14 that for highly dense fluids the SF
method allows for quite small cutoff radius rc = 1.5σ (where σ is
the atomic diameter) that corresponds to the first local
minimum in the radial distribution function. Applying such a
low cutoff to the truncated and shifted potential leads to wrong
physics and large energy drift.14 The SF method decreases the
number of interactions significantly and thus the simulation
time. The potential corresponding to the SF interaction does,
however, not match the original potential for r < rc from which
the SF interaction was derived. Therefore, thermodynamical
properties cannot be compared directly, but derived, for
example, from perturbation theory.10,15
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For long-ranged interactions, like the Coulomb interaction,
one cannot simply introduce a standard cut and shifted
potential. For example, simply truncating and shifting the
Coulomb potential produces unnatural fluid structure and
spurious dynamics.16 Numerous attempts have been made to
overcome this problem. For example it has been suggested to
use smoothing functions, but this leads in general to poor
results.17,18 Wolf et al.3 cleverly showed that using a simple
truncated and shifted Coulomb potential corresponds in
practice to summing over interactions in a non-neutral sphere.
To compensate for this the authors introduced a neutralizing
term into the Coulomb potential, they further showed that
faster convergence to the true energy is achieved by applying a
damping factor α. The Wolf method is computationally much
faster than the classical Ewald summation technique and it is
today applied to various systems as mentioned above. The
choice of the damping factor, α, is, like the Ewald damping
parameter,1,10 somewhat arbitrary, and the optimal value must
be found by comparison with either experimental data or
results from, e.g., the Ewald method.8,18 If the Wolf damping
parameter α is zero, the Wolf method reduces to the SF
approximation;19 see also Denesyuk and Weeks20 for a
discussion. We note that an SF method for the Coulomb
interactions was used in the biochemical simulation commun-
ity21,22 before the work by Wolf et al.
In this paper we apply the Wolf method in molecular

dynamics simulations of a simple model of a molten salt and
liquid water. In order to find the optimal value of the Wolf
damping parameter, α, we compare the simulated thermody-
namical, dynamical, and structural properties with previously
published results23 based on the Ewald method. We show that
the optimal value of α depends on the property one wishes to
calculate and the cutoff distance used. This sets the stage for
documenting the main results of this paper: for the systems
studied here the SF approximation works as well as the Wolf
method, confirming similar findings of Fennell and Gezelter.19

Besides being conceptual simpler than the Wolf method, the SF
method allows for more than a doubling of the computational
speed.

■ WOLF APPROXIMATION TO THE COULOMB
POTENTIAL

If r is the distance between two particles, the force acting on
one particle due to the interaction with the other is F(r) = f(r)
r/r, where f is from this point on denoted the “force” for
simplicity and is minus the derivative of the corresponding

potential function with respect to r and r is the vector of
separation. For the Wolf method3 the force is given by
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for r < rc and where erfc(x) = 1 − erf(x) is the complementary
error function. Here zi and zj are the charges of the two
particles in question, rc is the cutoff (i.e., fW = 0 for r ≥ rc), and
α is the Wolf damping parameter. In the paper by Wolf et al. it
is implicitly understood that αrc > 1 such that the cutoff only
takes effect beyond the range of damping. The damping
parameter was introduced in order to ensure faster convergence
to the limiting Madelung energy.3 Unfortunately, there is no
theoretical prediction for the optimal value of α, which must be
found by comparison with other well-established methods like
the Ewald summation method.3,8,18 Wolf et al.3 and Demontis
et al.8 have shown via molecular dynamics simulations that the
Wolf method reproduces the results obtained by the Ewald
summation method for rc ≥ 5dij, where dij is the distance
between oppositely charged particles in the first coordinate
shell. Demontis et al.8 also suggested that the optimal damping
parameter is given by α = 2/rc for sufficiently large systems.
From eq 1 it follows that for α → ∞ one has fW → 0, and

that for α → 0 the force reduces to

= − <f r r z z r r r r( ; ) (1/ 1/ ) fori jSF c
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c
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This is the truncated and shifted force (SF) function.10,14

In Figure 1a we plot the difference between the Wolf force,
fW, and the corresponding Coulomb force, f C = zizj/r

2, for
different damping parameters. Clearly the damping parameter
has a nontrivial effect on the force. For α = 0 the difference is
small compared to large values of α, suggesting that the SF
method, eq 2, gives a good approximation to the Coulomb
interaction. From Figure 1a it is seen that an optimal value of α
exists that minimizes the difference. One way to identify this
optimal value is by minimizing the function
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which measures the total relative difference between fW(r) and
f C(r) such that Ef ≥ 0 (since fW ≤ f C for all r). In Figure 1b Ef

Figure 1. (a) Difference between the Wolf force, fW, and the Coulomb force, f C, for α = 0.0, 0.25, 0.5, 0.75, and 1.0. In all graphs the cutoff is given
by rc = 4.18. (b) The measure of the difference between the true Coulomb force and the Wolf force, Ef , defined in eq 3 plotted as a function of α for
three different cutoffs. The inset shows the optimal value of α plotted as a function of rc.
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is plotted for three different cutoff distances. The optimal Wolf
damping parameter converges to zero as rc increases, which
reflects the simple fact that fW → f C for rc → ∞ and α → 0.
More interestingly, the quantity Ef exhibits very little difference
between the optimal value of α and α = 0. The inset in Figure
1b shows that the optimal Wolf parameter determined by the
minimum of eq 3 is given roughly by α ≈ 3/(4rc). This simple
analysis is consistent with the rc dependence suggested by
Demontis et al.8 based on molecular dynamics simulations (but
they predict a smaller estimate of α by a factor of 3/8).
Figure 2 shows an example of the average difference in total

force experienced by the ions in a molten salt system;23 see

more details below for this model. In this example the particle
positions, i.e., the phase space trajectory, evolve under the
influence of the Wolf and van der Waal forces, and at different
time intervals the average total force difference, fW − f C, is
computed as a function of distance. It is seen that both the SF
and Wolf approximations are in excellent agreement with the
true Coloumb force, especially for low values of the damping
parameter.
The conclusion from Figures 1 and 2 is that setting α = 0, i.e.,

adopting the SF approximation, gives results that are close to
those obtained by carefully optimizing α. This and the recent
work by Toxvaerd and Dyre14 motivate the below reported
molecular dynamics simulations, which compare the Wolf
method to the SF method for other quantities and actual
simulations of realistic systems.

■ RESULTS FOR THE HANSEN−MCDONALD
MOLTEN SALT MODEL

A series of molecular dynamics simulations was performed of a
model molten salt proposed by Hansen and McDonald.23

Briefly, in this two-component model, the ions are simple
spherical particles that interact via a Coulomb potential and a
van der Waals type potential, which is given by the inverse
power law ϕ(r) = (ε2/nσ)(σ/r)n, where n = 9, ε defines the
energy scale, and σ is the usual Lennard‑Jones length scale
parameter.9 We refer the reader to the reference for the full
details. In the simulations we applied the Wolf method and
varied the cutoff between 2.5 and 8.0σ. The simulation box
used was twice the size of the cutoff whenever rc > 4.18σ; for
smaller cutoffs the box length was fixed to 8.36σ. The number
density for all systems was ρ = 0.368σ−3, thus the number of
ions varied from 216 to 1508. The results presented below were
independent of system size. The temperature T is controlled
using a Nose-́Hoover thermostat24,25 with T = 0.0177ε/kB. The
results are compared to previously published data where the
Ewald summation method was used,23 which represent the
“true” Coulomb interaction.
First, in Figure 3a we compare the total potential energy

obtained from the Wolf method UW for three different cutoff
radii and varying damping parameters with the potential energy
UE from the Ewald summation method. We note that UW is
obtained directly from the Wolf potential function3,18

corresponding to the force given in eq 1. It is observed that
UW is within the statistical uncertainty equal to UE for
sufficiently small damping parameters, even for quite small
cutoffs. This could lead to the conclusion that the Wolf method
accounts correctly for electrostatic interactions for very small
cutoff distances. However, if one plots the radial distribution
function g, Figure 3b, we see that for rc = 2.5σ the structure
differs from the result obtained using the Ewald summation
method. This is true for all values of the damping parameter.
From Figure 3b we also notice that the SF approximation
captures the structural properties correctly for rc = 6σ, which is
the smallest cutoff distance meeting the Wolf et al.3 and
Demontis et al.8 criterion, rc ≥ 5dij.
We study the radial distribution function dependence of rc

and α by defining the error parameter Eg via
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Figure 2. Difference between the Wolf force, fW, and the Coulomb
force, f C, for a model molten salt system.23 Here rc = 4.18σ and α =
0.0, 0.25, 0.5, 0.75, and 1.0 σ−1. Note, not all error bars are shown for
clarity. The length scale σ is approximately one ion diameter.

Figure 3. (a) Comparison of the potential energy of the Hansen−McDonald molten salt model for varying damping parameter. Error bars represent
the standard error of ten independent runs. UE is found in Hansen and McDonald.23 (b) Radial distribution functions for unlike charged particles
(lines) for α = 0 (the SF approximation) and rc = 6σ and for α = 0.4σ−1 and rc = 2.5σ. The filled black squares are data points of Hansen and
McDonald.23
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where gW is the radial distribution function for unlike charged
particles of the Wolf method and gE is the radial distribution
function produced by the Ewald summation method. Similarly,
the following error parameter ED quantifies the difference in
diffusion constant:

= −E
D
D

1D
W

E (5)

where DW and DE are the diffusion constants obtained from the
Wolf and Ewald methods, respectively. Note that Eg ≥ 0,
whereas ED can be negative. The “correct” radial distribution
function, gE, and diffusion constant, DE, were taken from
Hansen and McDonald.23 Figure 4 shows the two error

parameters for different cutoff radii and damping. The damping
parameter α = 0.7σ−1 was chosen because Eg exhibits a
minimum for this value for a large range of cutoffs. This is not
the case for ED, however, which features a minimum for lower
values of the damping parameter, depending on the cutoff (as
expected from Figure 1b). This inconsistency is illustrated in
the inset in which the error parameters are shown for rc = 8σ as
functions of α. Obviously, any α < 0.6σ−1 may be chosen to
minimize ED, whereas Eg features a minimum for α = 0.7σ−1.
We note that rc = 8σ > 5dij so the cutoff radius fulfills the
criterion defined by Wolf et al. and Demontis et al.
From Figure 4 it is seen that Eg is relatively large for small

cutoffs (as expected), but that it for nonzero damping
parameters quickly decreases and reaches almost zero for rc >
4.0σ−1. For the SF approximation one needs rc > 6.0σ in order
to obtain the same accuracy in the radial distribution function.
For large cutoffs the SF approximation results in better
diffusion constants than the Wolf method with α = 0.7σ−1. We
could, of course, have optimized α with respect to the diffusion
constant (giving α ≅ 0.3σ−1 for a large range of cutoffs). This,
however, would decrease the agreement for the radial
distribution function. This fact is highlighted in Table 1,
where the error parameters are listed for values of α optimized,
respectively, with respect to the diffusion constant and the
radial distribution function (rc = 8.0σ). For comparison we also
give the error parameters for the SF approximation. Within the
statistical uncertainty there is no difference between the Wolf
method using α = 0.3σ−1 and the SF approximation.
Up to this point we have only discussed the structural and

diffusive properties in the long time limit. To compare the
short-time dynamics of the two methods we plot the velocity
autocorrelation function Cvv(t) and the intermediate scattering
function in Figure 5. From Figures 3 and 4 it was concluded

that for small rc (rc ≈ 4.0σ) and large α (α ≈ 0.7σ−1) both the
potential energy and the radial distribution function are in
excellent agreement with the Ewald summation method, but in
Figure 5 we clearly observe that the short-time dynamics is not
correct for this set of parameter values. This shows that the
cutoff must be sufficiently large for the Wolf method to
correctly account for all the fluid properties, but at such large
cutoff the SF approximation may be applied instead since it
results in the same accuracy.

■ RESULTS FOR THE SPC/FW WATER MODEL
We also tested the SF approximation for liquid water at the
state point (T, ρ) = (300 K, 998 kg m−3) using the flexible
single point charge (SPC/Fw) water model.26 In this model the
chemical bond and the bending angle are allowed to vibrate
around their zero-force values. The model is easy to implement
and has been shown to predict many bulk properties better
than for example the SPC, SPC/E, and TIP3P models.26,27 As it
is the case for the molten salt, the Wolf method leads to a
potential energy which is in acceptable agreement with the
PME method26 over a large range of damping parameters.
However, as we have discussed above, this measure will not
guarantee that the electrostatic interaction are correctly
accounted for and yields correct structural and dynamical
properties. In Figure 6a we plot the oxygen−oxygen radial
distribution function gOO for the Wolf and SF methods. For
comparison, data from Wu et al.26 are shown (filled squares),
where the Coulomb interactions were evaluated using the
particle-mesh Ewald (PME) method.2 The radial distribution
function is reproduced reasonably well by both methods. The
SF approximation captures the liquid structure at least as well as
the Wolf method, except at the first peak which is slightly
underestimated and at the cutoff where the SF method induces
a small antisymmetric bump in the structure, see figure inset.
This bump has also recently been observed by Kale and
Herzfeld28 for what the authors term “unusual” ionic liquids.
Except for the discrepancy around the cutoff, the radial
distribution functions for both the SF and the Wolf methods
are independent of the cutoff for radii larger than 9 Å, the value
used by Zahn et al.;18 this corresponds to rc ≈ 5dij since the
oxygen−hydrogen distance is around 1.8 Å. In Figure 6b the
center-of-mass velocity autocorrelation function is plotted for
two different cutoffs for both methods. This dynamic property
is largely independent of method and cutoff, as is the case for
the liquid structure. The same conclusion was reached by
Fennell and Gezelter.19 For the SF approximation we obtain a
diffusion constant of 2.4 × 10−9 m2 s−1, a shear viscosity of 0.78
× 10−3 Pa s and a dielectric constant of εr = 76 ± 2. This can be
compared with the data where the PME scheme was applied:26

2.32 × 10−9 m2 s−1 (at 298.15 K), 0.75 × 10−3 Pa s (at 300.2 K)
and εr = 79.6 (at 298.15 K) . It is also worth mentioning that
Zahn et al.18 used α = 0.06σ−1 in their simulations of (rigid)

Figure 4. Error parameters as a function of cutoff for different
damping parameter for the Hansen and McDonald molten salt system.
The inset shows the error parameters for rc = 8σ as functions of α.

Table 1. Error Parameters, ED and Eg, for Different Values of
the Damping Parametera

α [σ−1] ED Eg

0.0 (SF) 0.04 ± 0.02 0.017 ± 0.002
0.3 0.03 ± 0.01 0.019 ± 0.002
0.7 0.12 ± 0.02 0.010 ± 0.001

aα = 0.3σ−1 and α = 0.7σ−1 correspond to the optimized values with
respect to diffusion and radial distribution function, respectively. α =
0.0σ−1 corresponds to the SF approximation.
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SPC/E water, but found that the potential energy was in better
agreement with the Ewald method for even lower damping
parameters. Again, we find that for sufficiently large cutoff
length the SF approximation and Wolf method perform equally
well. Finally, we note that the resulting transport properties of
SPC/Fw water using the SF and Wolf methods are in better
agreement with the long ranged PME scheme than is the case
for the simple molten salt system. This could be due the fact
that the charges are better correlated in the former case.

■ CONCLUDING REMARKS

Fennell and Gezelter19 carefully analyzed an impressive number
of different systems including simple crystals, showing a good
agreement between the SF method and the Ewald technique. In
their conclusion the authors suggested that the SF approx-
imation can also be used for confined geometries, thereby
overcoming the enforced periodicity in the unmodified Ewald
method. We agree that the Ewald method can be problematic
(even for sufficiently small periodic systems29−32), but the SF
approach (as well as the Wolf method) is an approximation that
suppresses the intrinsic long-ranged nature of the Coulomb
interactions, leading to an artificially molecular orientation16,33

in confinements. For confined fluids alternative methods have
recently been advised.20,34,35

The Wolf method has one more parameter than the SF
approximation and may consequently be optimized to give
slightly better agreement with the Ewald summation method.
Such an optimization, however, must be carried out separately
for each property under study and for each different system.
Beside its simplicity (and thus easy-to-code feature), we found
that the SF approximation leads to a simulation speed-up of 2−

3 compared to the Wolf method. This estimate is based on two
different force evaluation algorithms: (i) a brute force algorithm
where all distances between the particles are calculated (an
order N2 algorithm, where N is the number of particles) and
(ii) a nearest-neighbor and cell-list algorithm that scales with
the number of particles, i.e., of order N. Of course, the actual
speed-up depends on the specific problem and the use of
optimization techniques, but the calculation of the four terms in
eq 1 involves complicated mathematical functions and is bound
to consume considerably more computational resources than
the simple SF approximation. We wish to stress here that the
paper of Wolf et al. was the first to correctly analyze why the SF
approximation for Coulomb forces is superior to the standard
truncated and shifted potential interaction model.
In conclusion, we find that for bulk molten salt and liquid

water systems using the cutoff lengths where the Wolf method
correctly accounts for the fluid properties, one may equally well
use the simpler and computational more efficient SF
approximation.
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Figure 5. (a) Normalized velocity autocorrelation function for the Wolf and the SF methods. Only the short time data are shown. The error bars are
comparable to the size of symbols. (b) Coherent intermediate scattering function for wavelength k = 7.18σ−1 and rc = 7.0σ. The horizontal line is the
interpolated value of the static structure factor S(k) = F(k,0) taken from Hansen and McDonald.23 The time t is given in standard reduced molecular
dynamics units.

Figure 6. (a) Oxygen−oxygen radial distribution function for the SPC/Fw water model using SF and Wolf methods. The squares represent data
taken from Wu et al.26 (b) Normalized center-of-mass velocity autocorrelation functions. The inset shows a zoom of the time interval 0.065 to 0.32
ps. In both panels a and b, σ = 3.16 Å.
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