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This is the final paper in a series that introduces geodesic molecular dynamics at constant potential
energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newto-
nian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B.
Schrøder, and J. C. Dyre, J. Chem. Phys. 135, 104101 (2011); T. S. Ingebrigtsen, S. Toxvaerd, T. B.
Schrøder, and J. C. Dyre, ibid. 135, 104102 (2011)], a numerical algorithm for simulating geodesic
motion of atomic systems was developed and tested against standard algorithms. The conclusion
was that the NVU algorithm has the same desirable properties as the Verlet algorithm for Newtonian
NVE dynamics, i.e., it is time-reversible and symplectic. Additionally, it was concluded that NVU
dynamics becomes equivalent to NVE dynamics in the thermodynamic limit. In this paper, the NVU
algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at
constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm
on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o-terphenyl (OTP)
and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant po-
tential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond
lengths, and step length for indefinitely long runs. The quantities probed in simulations give results
identical to those of Nosé-Hoover NVT dynamics. Since Nosé-Hoover NVT dynamics is known to
give results equivalent to those of NVE dynamics, the latter results show that NVU dynamics be-
comes equivalent to NVE dynamics in the thermodynamic limit also for molecular systems. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4768957]

I. INTRODUCTION

In two recent papers1, 2 (henceforth, Papers I and II),
molecular dynamics at constant potential energy was intro-
duced, tested, and compared to well-known molecular dy-
namics algorithms. This new molecular dynamics is enti-
tled NVU dynamics in analogy to standard energy-conserving
Newtonian NVE dynamics. The conclusion was that NVU dy-
namics is a fully valid molecular dynamics, which for suffi-
ciently large systems can be used interchangeably with NVE
dynamics for calculating most quantities of interest. NVU dy-
namics is not faster than standard NVE or NVT dynamics, but
introduces a new way of thinking about molecular dynam-
ics. Molecular dynamics at constant potential energy was pre-
viously considered by Cotterill and co-workers,3–6 by Scala
et al.,7 and most recently by Stratt and co-workers,8–11 who,
however, allowed also lower potential energy values. Our
motivation for studying NVU dynamics derive from recent
work on strongly correlating liquids and their isomorphs12–19

(see the Introduction of Paper I).
NVU dynamics is defined by geodesic motion on the

constant-potential-energy hypersurface � defined by

� = {R ∈ R3N | U (R) = U0}. (1)

Here, R ≡ {r(1), . . ., r(N)} in which r(k) is the position vector
of the k’te particle (we follow the notation of the Appendix
of Paper II), and U is the potential-energy function of an N-

a)trond@ruc.dk.

particle classical system. A geodesic on � is a curve that sat-
isfies the condition of stationary length for fixed endpoints RA

and RB , i.e.,

δ

∫ RB

RA

dl

∣∣∣∣
�

= 0, (2)

where dl is the line element of the metric. The shortest path
between any two points is a geodesic. On a sphere, geodesics
are great circles, the “straightest lines” of the surface. Travers-
ing a geodesic at constant velocity thus corresponds to a gen-
eralization of Newton’s first law to a curved space (the surface
itself).

In Paper I, the NVU algorithm was developed via
a discretization of Eq. (2), subsequently carrying out the
variation. This technique, which is known as variational
integration,20–23 resulted in a “basic” NVU algorithm that
is similar to the well-known Verlet algorithm Ri+1 = 2Ri

− Ri − 1 + (�t)2Fi/m for Newtonian (NVE) dynamics (m is
the particle mass, which is here the same for all particles, and
Fi ≡ −∇Ri

U is the 3N-dimensional force vector); the index i
refers to step i of the integration sequence. In the Verlet algo-
rithm, �t is a fixed time step length. In comparison, the basic
NVU algorithm is given by (Paper I)

Ri+1 = 2Ri − Ri−1 − 2Fi · (Ri − Ri−1)

F2
i

Fi . (3)

If the number of particles N increases, the relative variation
of the term −2Fi · (Ri − Ri−1)/F2

i decreases, and this is why
equivalence with Newtonian NVE dynamics is established in
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the thermodynamic limit. This equivalence should be under-
stood in the sense that the relative deviations between, for in-
stance, NVE and NVU time auto-correlation functions go to
zero as N → ∞.

Paper I additionally developed a “stabilized” version of
the basic NVU algorithm to prevent the accumulation of nu-
merical errors. This version of the algorithm is given by
(defining the position changes �i+1/2 ≡ Ri+1 − Ri)

�i+1/2 = l0
Ai+1/2

‖Ai+1/2‖ , (4)

Ri+1 = Ri + �i+1/2, (5)

where l0 is the step length and

Ai+1/2 = �i−1/2 + (−2Fi · �i−1/2 + Ui−1 − U0)

F2
i

Fi . (6)

All simulations in Papers I and II were performed with the
stabilized algorithm. The basic algorithm was used, however,
for theoretical considerations. Note that the basic NVU algo-
rithm has the same excellent stability as the Verlet algorithm,
and the accumulation of numerical errors is no more serious.

In this article, we extend the stabilized NVU algorithm to
deal with simulations of molecular systems. Molecular sys-
tems are simulated by introducing rigid and/or flexible bonds
between the atoms in the modelling. Flexible bonds introduce
merely an additional contribution to U, for instance, harmonic
spring potentials. The NVU algorithm conserves the total po-
tential energy and can readily simulate flexible bonds. The
focus in this paper is thus on implementing rigid bonds in the
framework of NVU dynamics.

Section II considers NVU dynamics with rigid bonds. In-
troducing rigid bonds in the simulations lead to Lagrangian
multipliers in addition to those introduced in order to keep
the potential energy constant (Paper I). Section II is fairly
technical and easiest to read after reading Paper I. Section
III gives simulation and model details. Section IV tests the
rigid-bond NVU algorithm, and Sec. V investigates the NVU
sampling properties by comparing the NVU results to Nosé-
Hoover NVT results24, 25 on three different systems: the asym-
metric dumbbell model,26 Lewis-Wahnström OTP,27 and rigid
SPC/E water.28 Nosé-Hoover NVT dynamics is known to give
results equivalent to NVE dynamics in the thermodynamic
limit,29 and we refer to these dynamics interchangeably in the
forthcoming sections. Finally, Sec. VI concludes.

II. RIGID-BOND NVU ALGORITHM

The rigid bonds30, 31 introduce constraints among the par-
ticle coordinates of the system. Each constraint α = 1, . . ., G
is of the form

σα(R) ≡ (r(kα) − r(lα ))2 ≡ (rα)2 = C2
α; (7)

it expresses that the distance between particles kα and lα is a
constant, Cα . In Papers I and II, the integral of Eq. (2) was
merely restricted to the constant-potential-energy hypersur-
face �. Each rigid bond constraint introduces a function σα

to be kept constant, and thus the integral of Eq. (2) is now
further restricted to the sub-manifold ω of � where the bond

constraints are satisfied,

ω = {R ∈ � | σα(R) = C2
α, α = 1, . . .,G}. (8)

If the bond constraints are independent, as assumed through-
out the paper, ω is a (3N - G - 1)-dimensional compact Rie-
mannian manifold. The variational principle defining NVU
dynamics with rigid bonds is given by

δ

∫ RB

RA

dl = 0

∣∣∣∣
ω

. (9)

Most of Papers I and II dealt with the case of identical parti-
cle masses, but we wish here to develop a completely general
molecular NVU algorithm. The line element dl is defined by

dl2 ≡
∑

k

m̃k(dr(k))2, (10)

where m̃k = mk/〈m〉 is the “reduced” mass of particle k. Equa-
tion (10) is not the standard Euclidean line element, but a
mass-weighted line element that goes back to Hertz.32, 33 We
shall refer to this metric as the “Hertzian” metric. This met-
ric ensures equivalence between NVU and NVE dynamics for
systems of atoms and molecules of varying mass. In the Ap-
pendix, we derive the variable-mass atomic NVU algorithm
applying the Hertzian metric (correcting also a typo of the
Appendix of Paper II).

Applying the variational integration technique to Eq. (9)
gives

δ

⎛
⎝∑

i

√∑
k

m̃k

(
r(k)
i − r(k)

i−1

)2 −
∑

i

λiU (Ri)

+
∑
i,α

	αiσα(Ri)

)
= 0 . (11)

In Eq. (11), the path is divided into a number of discrete points
and one Lagrangian multiplier 	αi is introduced for each con-
straint α at every point i. Following standard notation for con-
straint molecular dynamics,30, 31 the Lagrangian multipliers of
the bond constraints are chosen with a positive sign. As in
Papers I and II, we now make the Ansatz of constant step
length l0, i.e., ∑

k

m̃k

(
r(k)
i − r(k)

i−1

)2 ≡ l2
0 . (12)

Carrying out the variation of Eq. (11) using Eq. (12) leads to
(compare the derivation in Paper I)

r(k)
i+1 = 2r(k)

i − r(k)
i−1 + l0

m̃k

λif
(k)
i + l0

m̃k

∇r(k)
i

∑
α

	αiσα, (13)

where f(k)
i = −∇r(k)

i
U is the force on particle k at step i. This

equation constitutes the NVU algorithm with rigid bonds.
It has a close resemblance to the Lagrangian equations of
motion with holonomic constraints,31 i.e., rigid-bond NVE
dynamics.30 Equation (13) contains G + 1 Lagrangian mul-
tipliers for each integration step, which must be determined
to complete the algorithm.
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TABLE I. Definitions and nomenclature of the text.

Symbol Definition

σα(R) The α’th bond constraint between particles kα and lα with α = 1, . . ., G. (σα = (rα)2 = C2
α).

m̃k The mass of particle k divided by the average mass of the system. (m̃k = mk/〈m〉).
3-dimensional vectors

r(k)
i Position of particle k at step i.

δ
(k)
i+1/2 Displacement of the position of particle k between step i and i + 1. (δ(k)

i+1/2 = r(k)
i+1 − r(k)

i ).

f(k)
i Force on particle k at step i. (f(k)

i = −∇
r(k)
i

U ).

g(k)
i Constraint force on particle k at step i. (g(k)

i = ∇
r(k)
i

∑
α 	αiσα).

rα
i Displacement of the positions of particles kα and lα at step i. (rα

i = r(kα )
i − r(lα )

i ).

δα
i−1/2 Displacement of the velocities of particles kα and lα at step i − 1/2. (δα

i−1/2 = δ
(kα )
i−1/2 − δ

(lα )
i−1/2).

sα
i Sum of displacements of positions and velocities of particles kα and lα at, respectively, step i and i − 1/2. (sα

i = rα
i + δα

i−1/2).

f̃
α

i Displacement of the forces on particles kα and lα at step i divided by their reduced particle mass. (f̃
α

i = f(kα )
i /m̃kα − f(lα )

i /m̃lα ).

g̃α
i Displacement of the constraint forces on particles kα and lα at step i divided by their reduced particle mass. ( g̃α

i = g(kα )
i /m̃kα − g(lα )

i /m̃lα ).

3N-dimensional vectors
Ri Position of all particles at step i. (Ri = {r(1)

i , . . ., r(N)
i }).

�i+1/2 Displacement of the positions between step i and i + 1. (�i+1/2 = Ri+1 − Ri ).
Fi Force on all particles at step i. (Fi = −∇Ri

U ).

F̃i Force on all particles at step i divided by the reduced particle mass. (F̃i = {f(1)
i /m̃1, . . ., f(N)

i /m̃N }).
G̃i Constraint force on all particles at step i divided by the reduced particle mass. (G̃i = {g(1)

i /m̃1, . . ., g(N)
i /m̃N }).

A. Determining the NVU Lagrangian multipliers

This section shows how to calculate the Lagrangian
multipliers. Since the algorithm is to be implemented on a
computer (with finite-precision), we shall proceed directly
to a “stabilized” algorithm conserving for indefinitely long
runs potential energy, bond lengths, and step length (in 3N-
dimensions). The resulting algorithm reduces to the stabilized
atomic NVU algorithm of Eqs. (4)–(6) in the case of no bonds
constraints.

Some notation used in the following derivation is now in-
troduced (the nomenclature of text is summarized in Table I).
Defining δ

(k)
i+1/2 ≡ r(k)

i+1 − r(k)
i and g(k)

i ≡ ∇r(k)
i

∑
α 	αiσα the

“Leap-frog”34 version of the rigid-bond NVU algorithm
Eq. (13) reads

δ
(k)
i+1/2 = δ

(k)
i−1/2 + l0

m̃k

λif
(k)
i + l0

m̃k

g(k)
i , (14)

r(k)
i+1 = r(k)

i + δ
(k)
i+1/2. (15)

In analogy to rigid-bond NVE dynamics we call g(k)
i

the “constraint force” on particle k at step i. Intro-
ducing the notation F̃i ≡ {f(1)

i /m̃1, . . ., f(N)
i /m̃N } and G̃i

≡ {g(1)
i /m̃1, . . ., g(N)

i /m̃N }, the NVU algorithm in the full 3N-
dimensional coordinate space reads

�i+1/2 = �i−1/2 + l0λiF̃i + l0G̃i , (16)

Ri+1 = Ri + �i+1/2, (17)

The Lagrangian multipliers are calculated by combining a
result derived in Paper I with the method applied in the
SHAKE algorithm30 for rigid bonds in NVE dynamics.30, 35, 36

The SHAKE algorithm calculates the Lagrangian multipliers
from the equations (rα

i+1)2 = C2
α . In doing so, the target value

of the constraints Cα appears explicitly in the algorithm, mak-
ing the bond lengths insensitive to numerical error. The ex-

pression for rα
i+1 is supplied by the integration algorithm con-

taining herein the Lagrangian multipliers. In our case, this
gives G equations with G + 1 unknowns. The missing equa-
tion is supplied by an expression derived in Paper I, namely
that Ui+1 = Ui−1 − Fi · (Ri+1 − Ri−1) to third order in the
step length. In the discrete sequence of points, Ui+1 is set
equal to U0 (the constant defining �), making the constraint of
constant potential energy also insensitive to numerical errors.
We thus have the following G + 1 equations for calculating
the Lagrangian multipliers

Ui−1 − Fi · (Ri+1 − Ri−1) − U0 = 0, (18)(
rα
i+1

)2 − C2
α = 0, (α = 1, . . . ,G). (19)

By Eqs. (16) and (17); Ri+1 − Ri−1 = �i+1/2 + �i−1/2 =
2�i−1/2 + l0λiF̃i + l0G̃i . Defining δα

i−1/2 ≡ δ
(kα)
i−1/2 − δ

(lα )
i−1/2,

f̃
α

i ≡ f(kα)
i /m̃kα

− f(lα )
i /m̃lα , and g̃α

i ≡ g(kα)
i /m̃kα

− g(lα )
i /m̃lα ,

since by Eqs. (14) and (15); rα
i+1 = r(kα)

i+1 − r(lα )
i+1 = r(kα)

i −
r(lα )
i + δ

(kα)
i+1/2 − δ

(lα )
i+1/2 = rα

i + δα
i−1/2 + l0λi f̃

α

i + l0g̃α
i , it fol-

lows that

Ui−1 − Fi · [2�i−1/2 + l0λiF̃i + l0G̃i] − U0 = 0, (20)[
rα
i + δα

i−1/2 + l0λi f̃
α

i + l0g̃α
i

]2 − C2
α = 0, (α = 1, . . .,G).

(21)

The above coupled quadratic equations for the Lagrangian
multipliers are now solved following the produce of the
MILC-SHAKE algorithm,37 which starts by neglecting the
second order terms in the Lagrangian multipliers and solving
the resulting linear equations. Afterwards, the second order
terms are taken into account in an iterative manner—the de-
tails of which are described below.

For each integration step i, the linearized equations are
given as

Aiλi = bi , (22)
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where Ai is a (G + 1) × (G + 1) matrix, λi

≡ {λi,	1i , . . ., 	Gi}, and bi a G + 1 column vector. We start
by calculating explicitly the first few elements of the matrix
Ai . A11 consists merely of the factor in front of λi in Eq. (20),
i.e., A11 = −l0F̃i · Fi . The second element A12 appears af-
ter expansion of the dot product Fi · G̃i . Noting that ∇r(kα )

i
σα

= 2rα
i , we have Fi · G̃i = f(1)

i · g(1)
i /m̃1 + . . . + f(N)

i · g(N)
i /m̃N

= 2	1i(f̃
1
i · r1

i ) + . . . + 2	Gi(f̃
G

i · rG
i ). The last equation fol-

lows as the Lagrangian multipliers appear in pairs, differing
only by the sign from ∇r(kα )

i
σα and the term f(kα)

i /m̃kα
. We thus

find A12 = −2l0 f̃
1
i · r1

i , A13 = −2l0 f̃
2
i · r2

i , etc. In the second
row of Ai , the short-hand notation sα

i ≡ rα
i + δα

i−1/2 is in-

troduced, making A21 = 2l0(s1
i · f̃

1
i ), i.e., the factor in front

of λi after squaring of the parentheses. The next element
A22 appears after expanding s1

i · g̃1
i = s1

i · ∑
β 	βi( 1

m̃k1
∇r

(k1)
i

σβ

− 1
m̃l1

∇r
(l1)
i

σβ). In this sum, we identify the factor in front of

	1i, giving A22 = 2l0s1
i · ( 1

m̃k1
∇r

(k1)
i

σ1 − 1
m̃l1

∇r
(l1)
i

σ1), and simi-
larly for the remaining elements of the second row.

Altogether, the elements of Ai are thus given by

Ai = 2l0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F̃i · Fi/2 −f̃
1
i · r1

i · · · −f̃
G

i · rG
i

s1
i · f̃

1
i s1

i ·
(

1

m̃k1

∇r
(k1)
i

σ1 − 1

m̃l1

∇r
(l1)
i

σ1

)
· · · s1

i ·
(

1

m̃k1

∇r
(k1)
i

σG − 1

m̃l1

∇r
(l1)
i

σG

)
...

...
. . .

...

sG
i · f̃

G

i sG
i ·

(
1

m̃kG

∇r
(kG)
i

σ1 − 1

m̃lG

∇r
(lG )
i

σ1

)
· · · sG

i ·
(

1

m̃kG

∇r
(kG )
i

σG − 1

m̃lG

∇r
(lG)
i

σG

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

The column vector bi consists of all zeroth-order terms in
Eqs. (20) and (21)

bi =

⎛
⎜⎜⎜⎝

U0 − Ui−1 + 2Fi · �i−1/2

C2
1 − (

s1
i

)2

...

C2
G − (

sG
i

)2

⎞
⎟⎟⎟⎠. (24)

Turning now to the iteration procedure, the second-order
terms in the Lagrangian multipliers (Eq. (21)) are taken into
account by iterating the right-hand side of Eq. (22) via the
scheme (α = 1, . . ., G)

bj+1
α = bj

α + [
C2

α − ((
rα
i+1

)2)j ]
. (25)

The superscript j refers here to iteration j, and ((rα
i+1)2)j are

the positions associated with iteration j. The element b0 is not
updated as it derives from the constraint of constant potential
energy. For each iteration j, the term C2

α − ((rα
i+1)2)j is ex-

pected to become smaller as the bonds are satisfied better and
better, and indeed, convergence was achieved within a few
iterations.37

For each integration step i, the algorithm for determining
the NVU Lagrangian multipliers thus proceeds as follows:

1. The Lagrangian multipliers of iteration j, (λi)j , are cal-
culated from Eq. (22).

2. ((rα
i+1)2)j is calculated via Eqs. (14) and (15) using (λi)j .

3. bi is updated via Eq. (25) from ((rα
i+1)2)j .

4. The above steps are repeated until convergence is estab-
lished (we used a preset number of iterations, typically
3–5).

How is constant step length l0 ensured numerically after de-
termining the Lagrangian multipliers? Generalizing the ap-

proach of Paper I, we introduce a normalizing factor such that

δ
(k)
i+1/2 = l0

χ
(k)
i+1/2√∑

k m̃k

(
χ

(k)
i+1/2

)2
, (26)

r(k)
i+1 = r(k)

i + δ
(k)
i+1/2, (27)

where

χ
(k)
i+1/2 ≡ δ

(k)
i−1/2 + l0

m̃k

λif
(k)
i + l0

m̃k

g(k)
i . (28)

The normalizing factor is close to unity1 and ensures trivially∑
k m̃k(δ(k)

i+1/2)2 = l2
0 , i.e., that the step length is conserved.

The algorithm is now absolutely stable, conserving potential
energy, bond lengths, and step length for indefinitely long
runs. The stability of the NVU algorithm is tested numerically
in Sec. IV.

B. Alternative determination of the NVU
Lagrangian multipliers

Section II A followed the traditional way of calculating
the Lagrangian multipliers. The NVU Lagrangian multipliers
may also be calculated by Taylor expanding the constraints
σα in analogy to the method sketched above for the potential
energy. In this way, the constraints of constant potential en-
ergy and constant bond lengths are treated on equal footing.
The set of equations to be solved is the following (recall that
Ri+1 − Ri−1 = 2�i−1/2 + l0λiF̃i + l0G̃i),

Ui−1 − Fi · (Ri+1 − Ri−1) − U0 = 0, (29)

σα(i−1) + ∇Ri
σαi · (Ri+1 − Ri−1) − C2

α = 0, (α = 1, . . .,G).
(30)
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The equations for the Lagrangian multipliers are now linear
and thus no iterations are needed. The bond constraints σα are
obeyed to the same order O(l3

0) as the constraint of constant
potential energy. The sampling properties of this alternative
determination method is tested briefly in Sec. V. It appears to
be a promising new way of determining the Lagrangian mul-
tipliers in connection with rigid bonds, which might also be
useful for standard bond-constraint NVE or NVT simulations.

III. SIMULATION DETAILS AND MODEL SYSTEMS

We investigated three systems: the asymmetric dumbbell
model, the Lewis-Wahnström OTP model, and rigid SPC/E
water. For all simulated pair potentials, the shifted-force trun-
cation scheme was applied at a cut-off radius rc. If the pair po-
tential is v(r) and the pair force is f (r) = −v′(r), the shifted
force is given by34, 38

fSF(r) =
{

f (r) − f (rc) if r < rc ,

0 if r > rc .
(31)

This corresponds to using the following pair potential be-
low rc: vSF(r) = v(r) − v′(rc)(r − rc) − v(rc). All simula-
tions were performed with the NVT and NVU algorithms. Re-
call that NVE and NVT dynamics give equivalent results;29

for this reason, no simulations are presented for NVE dynam-
ics. The Roskilde University Molecular Dynamics (RUMD)
code39 was used for molecular dynamics simulations (an
optimized open-source GPU code). The NVT ensemble is
generated via the Nosé-Hoover algorithm,24, 25, 40 and the
bonds held fixed using the time-reversible constraint algo-
rithm of Refs. 35 and 36. The NVU algorithm is described in
Sec. II. The starting files for NVU dynamics were taken from
an equilibrated NVT simulation. The positions and veloci-
ties of the NVT configuration do not correspond perfectly to
motion on ω, since the potential energy and step length are
not those of U0 = 〈U〉 and l0, respectively. As all the con-
straints are to be satisfied simultaneously, this results in nu-
merical problems when starting the simulation from the par-
ticular NVT configuration. A more gentle procedure is thus
applied, where the atomic NVU algorithm is used for a couple
of integration steps to ensure the correct values of U0 and l0.
Afterwards, the rigid-bond NVU algorithm is used.

A. NVU iteration procedure

The quadratic equations (Eq. (25)) were iterated with
a fixed number of iterations (between 3 and 5). The lin-
ear systems were solved utilizing Cusp,41 a library for solv-
ing systems of linear equations on the GPU. More specif-
ically, the stabilized biconjugate gradient algorithm with
a Jacobi preconditioner42 was used with the initial value
λi = λi−1 (λ0 = 0 for the start of the simulation). The rela-
tive tolerance τ of the solver for the asymmetric dumbbell
and Lewis-Wahnström OTP models was chosen as τ = 10−7

and for rigid SPC/E water as τ = 3 × 10−7. A larger toler-
ance was chosen for rigid SPC/E water due to convergence
issues in connection with the shifted-force Coulomb interac-
tions (see below).

The maximum number of allowed iterations was 50. A
restart scheme was applied when the solver did not con-
verge within the chosen tolerance. In this case, the solver
(and quadratic iteration) was restarted from the partially es-
timated “solution” adding 2 × 10−7 to the tolerance. It should
be noted that the stabilized biconjugate gradient algorithm
may get trapped, resulting in a break-down of the Cusp lin-
ear solver. If this happens, it is detected by our program, and
the solver and quadratic iteration are restarted with a smaller
number (10) of maximum allowed iterations for the solver.

B. The asymmetric dumbbell

The asymmetric dumbbell model26 consists of a large (A)
and a small (B) Lennard-Jones (LJ) particle, rigidly bonded
with bond distance of rAB = 0.29/0.4963 (here and hence-
forth units are given in LJ units referring to the A particle such
that σ AA = 1, εAA = 1, and mA = 1). The asymmetric dumb-
bell model has σ BB = 0.3910/0.4963, εBB = 0.66944/5.726,
and mB = 15.035/77.106. The AB interaction between differ-
ent molecules is determined by the Lorentz-Berthelot mixing
rule.34 n = 500 molecules (here and henceforth n denotes the
number of molecules and N the number of atoms) were used
in the simulations with a pair-potential cut-off of rc = 2.5. The
step length l0 was fixed in the range 0.125–0.138 depending
on the state point.

Simulations were also performed where the rigid bonds
were replaced by stiff harmonic springs. The spring constant
was k = 3000, while all other model parameters remained
unchanged.

C. Lewis-Wahnström OTP

The Lewis-Wahnström OTP model27 consists of three
identical LJ particles rigidly bonded in an isosceles triangle
with sides of rAA = 1 and top angle of 75◦. All parameters
(including the masses) are unity for the OTP model. n = 320
molecules were simulated and a pair-potential cut-off of rc

= 2.5 was used. The step length was 0.100.

D. SPC/E water

The SPC/E water model28 is an isosceles triangle with
sides rOH = 1/3.166 and top angle 109.47◦. The OO in-
termolecular interactions are given by the LJ pair potential
(εOO = 1, σOO = 1, and mO = 15.9994/1.00794). The three

TABLE II. Potential energy, deviation of bond lengths and step length
as functions of integration step number in the NVU algorithm for Lewis-
Wahnström OTP (ρ = 0.329, T = 0.700). Single-precision floating-point
arithmetic was used for the simulations.

Integration steps U/N (1/G
∑

α(rα − Cα)2)1/2 ∑
k m̃k(δ(k)

i+1/2)2

101 −4.42550 2.81207 × 10−7 0.0999999
102 −4.42552 3.03535 × 10−7 0.1000000
103 −4.42552 2.81128 × 10−7 0.1000000
104 −4.42552 2.95078 × 10−7 0.1000000
105 −4.42550 3.08793 × 10−7 0.1000000
106 −4.42551 2.90477 × 10−7 0.1000000
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FIG. 1. The probability density of the “time step” length (�ti,NV U )2

≡ l0λi〈m〉 of the rigid-bond NVU algorithm for Lewis-Wahnström OTP at
ρ = 0.329 and T = 0.700. n = 320 molecules were simulated.

particles are charged with qO = −22.0 and qH = |qO |/2.
n = 2000 molecules were simulated and a pair-potential cut-
off of rc = 6.28 for both LJ and Coulomb interactions was
applied.43, 44 The step length was fixed in the range 0.06–0.07
depending on the state point. For this system, the numeri-
cal stability is sensitive to the cut-off used in the Coulomb
interactions, but a larger shifted-force cut-off improves this
behavior.44

IV. TESTING THE STABILITY OF THE RIGID-BOND
NVU ALGORITHM

This section tests the conservation properties of the rigid-
bond NVU algorithm. Table II shows the potential energy, the
deviation of bond lengths, and step length as functions of inte-
gration step number for Lewis-Wahnström OTP at ρ = 0.329
and T = 0.700. It is clear that these quantities are conserved
by the algorithm and that no drift occurs. The step length is
conserved to the highest accuracy since it is not prone to nu-
merical error in determining the Lagrangian multipliers.

Figure 1 shows the distribution of the term l0λi〈m〉 in
Eq. (13) (m̃k = mk/〈m〉). In NVU dynamics there is, as
such, no notation of time; a geodesic on the manifold can
be traversed with any velocity. Comparing the NVU algo-
rithm of Eq. (13) to the rigid-bond Verlet algorithm30 r(k)

i+1

= 2r(k)
i − r(k)

i−1 + ((�t)2/mk)[f(k)
i + g(k)

i ], we can define the
term l0λi〈m〉 as a varying “time step” length of the NVU algo-
rithm (see also Paper II), i.e.,

(�ti,NV U )2 ≡ l0λi〈m〉. (32)

The integration steps of the NVU algorithm are thus hence-
forth referred to as “time steps.” The average of Eq. (32) is
used in Sec. V when comparing to NVT dynamics. As was
the case for the atomic NVU algorithm (Paper I), l0λi〈m〉 is
Gaussian distributed for large systems and its relative vari-
ation decreases as the number of particles increases. It thus
becomes a better and better approximation to treat this term
as constant, implying equivalent sampling properties of NVU
and NVE dynamics also when rigid bonds are included in the
simulations.

V. SAMPLING PROPERTIES OF THE RIGID-BOND
NVU ALGORITHM

The NVU algorithm is now compared to NVT dynamics
for the three different models. First, we consider the asymmet-
ric dumbbell model,26 both rigid and flexible. Afterwards, the
Lewis-Wahnström OTP model,27 and finally the rigid SPC/E
water model.28

A. The asymmetric dumbbell model

In Figs. 2(a) and 2(b) are shown, respectively, the molec-
ular center-of-mass (CM) radial distribution functions and the
CM incoherent intermediate scattering functions for the rigid
asymmetric dumbbell model26 for different temperatures at
ρ = 0.932. The black circles and curves give NVT simulation
results while the red crosses give the NVU simulation results.
The two radial distribution functions in Fig. 2(a) agree very
well, and this is also the case for the dynamics in Fig. 2(b).
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FIG. 2. Comparison of structure and dynamics in NVU and NVT simulations of the rigid asymmetric dumbbell model. The black circles and curves give NVT,
the red crosses NVU simulation results. (a) The molecular CM radial distribution functions at ρ = 0.932 and T = 0.500. (b) The molecular CM incoherent
intermediate scattering functions at ρ = 0.932 and T = 0.500, 0.600, 0.700, 0.800, 0.900.
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FIG. 3. Comparison of structure and dynamics in NVU and NVT simulations of the flexible-bond asymmetric dumbbell model. The black circles and curves
give NVT, the red crosses NVU simulation results. The same state points as in Fig. 2 were simulated. (a) The molecular CM radial distribution functions at
ρ = 0.932 and T = 0.500. (b) The molecular CM incoherent intermediate scattering functions at ρ = 0.932 and T = 0.500, 0.600, 0.700, 0.800, 0.900.
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give NVT, the red crosses NVU simulation results. (a) The molecular CM radial distribution functions at ρ = 0.329 and T = 0.700. (b) The molecular CM
incoherent intermediate scattering functions at ρ = 0.329 and T = 0.700, 0.800, 0.900, 1.000.
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FIG. 5. Comparison of particle structure and dynamics in NVU and NVT simulations for the Lewis-Wahnström OTP model. The black circles and curves give
NVT, the red crosses NVU simulation results. (a) The particle radial distribution functions at ρ = 0.329 and T = 0.700. (b) The particle incoherent intermediate
scattering functions at ρ = 0.329 and T = 0.700, 0.800, 0.900, 1.000.
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FIG. 6. Comparison of structure and dynamics in NVU and NVT simulations of rigid SPC/E water. The black circles and curves give NVT, the red crosses NVU
simulation results. (a) The molecular CM radial distribution functions at ρ = 1.000 and T = 3.800. (b) The molecular CM incoherent intermediate scattering
functions at ρ = 1.000 and T = 3.800, 4.200, 5.000.

For reference, we also simulated (Fig. 3) the correspond-
ing quantities for the flexible-bond asymmetric dumbbell
model at the state points of Fig. 2. Again, there is a very good
agreement between NVU and NVT dynamics.

B. Lewis-Wahnström OTP

We show in Figs. 4(a) and 4(b), respectively, the molecu-
lar CM radial distribution functions and CM incoherent inter-
mediate scattering functions for the Lewis-Wahnström OTP
model.27 The same symbols and meanings as in the preceding
section are used. Again, the NVU and NVT simulations agree
very well for both structure and dynamics.

For comparison, we also show in Fig. 5 the corresponding
particle quantities for the OTP model.

C. SPC/E water

Finally, we consider in Fig. 6 the same quantities as above
for the (not strongly correlating) rigid SPC/E water model.28
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FIG. 7. Comparison of structure in NVU and NVT simulations of rigid SPC/E
water at ρ = 1.000 and T = 3.800 applying the linear method to determine
the Lagrangian multipliers (Eqs. (29) and (30)). The bond lengths are here
conserved to order 10−6 in the standard deviation of the bonds (using single-
precision).

Again, full equivalence between NVU and NVT dynamics is
found.

The linear algorithm for determining the Lagrangian
multipliers presented in Sec. II B (Eqs. (29) and (30)) is tested
in Fig. 7 by probing the molecular CM radial distribution
functions. NVU and NVT dynamics also here give identical
results.

We conclude from the presented results that for suffi-
ciently large molecular systems with flexible and/or rigid
bonds, NVU dynamics is equivalent to Nosé-Hoover NVT dy-
namics (and, by implication, to Newtonian NVE dynamics).

VI. SUMMARY

NVU dynamics is molecular dynamics at constant poten-
tial energy realized by tracing out a geodesic on the constant-
potential-energy hypersurface � (Eq. (1)). In Papers I and
II,1, 2 a “basic” and a “stabilized” atomic NVU algorithm for
simulating geodesics on � were developed. The basic NVU
algorithm has excellent stability and it is time-reversible and
symplectic; the stabilized algorithm was developed only to
prevent accumulation of numerical error as also happens for
NVE dynamics. It was found that atomic NVU dynamics be-
comes equivalent to atomic NVE dynamics in the thermody-
namic limit.

In this paper, the stabilized NVU algorithm has been ex-
tended to simulate molecules at constant potential energy.
Molecules are generally simulated by introducing rigid and/or
flexible bonds in the models. The atomic NVU algorithm
keeps the potential energy constant and can thus right away
simulate flexible bonds. The focus here was on incorporating
rigid bonds in the framework of NVU dynamics, which leads
to the introduction of additional Lagrangian multipliers be-
yond those of the constraint of constant potential energy. This
is completely analogous to the approach for simulating rigid
bonds in standard Newtonian NVE dynamics.30, 35, 36 In the
NVU algorithm, a set of coupled quadratic equations was con-
structed for calculating the Lagrangian multipliers and solved
in an iterative manner as a linear system, a procedure de-
veloped for rigid-bond NVE dynamics in the MILC-SHAKE
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algorithm.37 In addition, a set of linear equations was pre-
sented for calculating the Lagrangian multipliers, which ap-
pears to be a promising new way of simulating rigid bonds.

The rigid-bond NVU algorithm reduces to the atomic
NVU algorithm when there are no rigid bonds. The algorithm
was tested on three different model systems: the asymmet-
ric dumbbell model, Lewis-Wahnström OTP, and rigid SPC/E
water. The probed quantities in the simulation gave identi-
cal results to those of Nosé-Hoover NVT dynamics. We con-
clude that also for molecular systems, NVU dynamics be-
comes equivalent to NVE dynamics in the thermodynamic
limit (since NVE and NVT dynamics are known to give equiv-
alent results29).
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APPENDIX: DERIVATION OF THE ATOMIC NVU
ALGORITHM FOR THE HERTZIAN METRIC

According to Newtonian dynamics, heavy particles move
slower than light particles in thermal equilibrium. The stan-
dard Euclidean metric does not involve the particle masses,
and thus applying this metric to geodesic motion for systems
of varying masses will not produce dynamics equivalent to
Newtonian dynamics in a thermal system. The mass-weighted
metric of Hertz,32 however, ensures that NVU dynamics be-
comes equivalent to NVE dynamics in the thermodynamic
limit, as is clear from the derivation below. The Hertzian met-
ric is given by (where m̃k = mk/〈m〉)

dl2 ≡
∑

k

m̃k(dr(k))2. (A1)

We here derive the discrete NVU algorithm applying this met-
ric (this appendix also corrects a typo in Eq. (A5) of Paper II).
The discretized variational condition for geodesic motion on
� is

δ

⎛
⎝∑

i

√∑
k

m̃k

(
r(k)
i − r(k)

i−1

)2 −
∑

i

λiU (Ri)

⎞
⎠ = 0 . (A2)

Assuming a constant step length l0, i.e.,∑
k

m̃k

(
r(k)
i − r(k)

i−1

)2 ≡ l2
0 , (A3)

it follows by differentiation with respect to r(k)
i from Eq. (A2)

that

m̃k

(
r(k)
i − r(k)

i−1

) + m̃k

(
r(k)
i − r(k)

i+1

) + l0λif
(k)
i = 0. (A4)

Defining a(k)
i ≡ (r(k)

i − r(k)
i−1) and b(k)

i ≡ (r(k)
i − r(k)

i+1),

Eq. (A3) expresses that
∑

k m̃k((a(k)
i )2 − (b(k)

i )2)
= ∑

k m̃k(a(k)
i + b(k)

i ) · (a(k)
i − b(k)

i ) = 0, and thus via

Eq. (A4)∑
k

m̃k

(− l0/m̃kλif
(k)
i

) · (
r(k)
i+1 − r(k)

i−1

) = 0. (A5)

Equivalently, ∑
k

f(k)
i · r(k)

i+1 =
∑

k

f(k)
i · r(k)

i−1. (A6)

Combining Eq. (A6) with the discrete NVU algorithm
(Eq. (A4)) gives the following result

l0λi = −2
∑

k f(k)
i · (r(k)

i − r(k)
i−1)∑

k

(f(k)
i )2

m̃k

. (A7)

The atomic NVU algorithm with varying masses is thus given
by

r(k)
i+1 = 2r(k)

i − r(k)
i−1 + l0

m̃k

λif
(k)
i , (A8)

l0λi = −2
∑

k f(k)
i · (r(k)

i − r(k)
i−1)∑

k

(f(k)
i )2

m̃k

. (A9)

Equation (A9) fluctuates relatively less and less as the number
of particles increases, and equivalence with NVE dynamics is
established in the thermodynamic limit.
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