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Nanoflow hydrodynamics
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We show by nonequilibrium molecular dynamics simulations that the Navier-Stokes equation does not correctly
describe water flow in a nanoscale geometry. It is argued that this failure reflects the fact that the coupling between
the intrinsic rotational and translational degrees of freedom becomes important for nanoflows. The coupling is
correctly accounted for by the extended Navier-Stokes equations that include the intrinsic angular momentum as
an independent hydrodynamic degree of freedom.
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I. INTRODUCTION

Flow of gases and liquids is described by the Navier-
Stokes equation dating back almost 200 years [1,2]. For
an incompressible fluid and in the absence of a pressure
gradient the Navier-Stokes equation is ρDu/Dt = ρFe +
η0∇2u, where ρ is the density, u = u(r,t) the velocity field,
D/Dt = ∂/∂t + u · ∇ is the local material time derivative, Fe

the external force per unit mass, and η0 the shear viscosity. The
Navier-Stokes equation describes very well the fluid dynamics
of a wide range of situations, and it is routinely used for
investigating phenomena as diverse as the air flow around a
wing, a tsunami, water flow in pipes and channels, etc. [3,4].
Even the intriguing turbulence phenomenon is captured by
the Navier-Stokes equation, which has solutions that become
unstable and chaotic at large flow velocities just as real flows
do [5–7].

The Navier-Stokes equation is derived by combining
momentum conservation with linear constitutive equations
expressing proportionality between thermodynamical forces
and corresponding fluxes [8]. For example, the shear stress
(transverse momentum flux) is linearly dependent on the
traceless symmetric part of the velocity gradient tensor. The
flux of intrinsic angular momentum (or spin), as well as its
coupling to the translational momentum, is usually ignored in
the hydrodynamical description. Exactly what role does this
play for the fluid dynamics? Of course, for flows of pointlike
particles it does not introduce any new physics, because in this
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case the spin angular momentum is zero. For molecular fluids
the spin angular velocity �, however, deviates from (∇ × u)/2,
giving rise to a thermodynamic force. This possibility leads to
an extra channel for energy dissipation, thereby increasing
the viscous dissipation [8,9]. Consider a steady shear flow
along a wall where the molecules have nonzero spin in the
bulk. As shown from molecular dynamics simulations [10] the
spin angular velocity follows a no-slip boundary condition,
which requires that the angular velocity is zero at the wall.
Consequently, spin angular momentum is transported to the
wall where it is absorbed, leading to increase of the energy
dissipation.

Little attention has been given to the hydrodynamic angular
velocity degree of freedom for the simple reason that it plays
no role for flows on macroscopic length scales [8,11]. This
paper shows, however, that a fluid-mechanical description of
nanoflows of molecular liquids must include the spin angular
velocity in order to be quantitatively accurate. We show this by
considering results from nonequilibrium molecular dynamics
simulations of a system of argon atoms, where the standard
Navier-Stokes equation works well, and simulations of water,
where this is not the case because the molecular spin is included
in the description.

The extension of the Navier-Stokes equation to deal with the
coupling between the hydrodynamic flow degree of freedom
u(r,t) and the microscopic molecular spin angular velocity
degree of freedom �(r,t) was developed long ago [12–14]. If
I is 1/3 of the trace of the inertia tensor per unit mass, in the
absence of torque and pressure gradients the extended Navier-
Stokes equations [14,15] read for a divergence-free flow

ρ
Du
Dt

= ρFe + (η0 + ηr )∇2u + 2ηr∇ × �, (1a)

ρI
D�

Dt
= 2ηr (∇ × u − 2�) + ζ∇2�. (1b)
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The transport coefficients ηr and ζ are referred to as the
rotational and spin viscosities. For a flow of pointlike particles
� = (∇ × u)/2; in this case, via the incompressible fluid
identity ∇ × (∇ × u) = −∇2u, the first equation reduces to
the standard Navier-Stokes equation.

The coupling occurs because the pressure tensor for a
molecular fluid may in general be a nonsymmetric quantity
because the force vector acting between a pair of molecules
is not parallel to the vector between their molecular centers
of mass. If, on average, the vorticity is not equal to twice the
molecular angular velocity, a thermodynamical force arises
[14]. In the absence of spin diffusion, this thermodynamic
force changes the angular velocity until the molecules rotate
at a rate consistent with the local vorticity. This condition
is denoted the local rigidity condition and the corresponding
thermodynamic force is referred to as the sprain rate [14]. For
the fluid to be locally rigid the vorticity (or local rotation) must
be equal to 2�, i.e., the sprain rate is expressed as ∇ × u − 2�.
In Eq. (1b) we see this thermodynamic force entering as the
first term on the right-hand side. The rotational viscosity thus
describes the decay of the antisymmetric stress which is a
local process and originates from molecular intrinsic angular
momentum relaxation [11]. The diffusion of angular velocity is
governed by a relation analogous to Newton’s law of viscosity,
i.e., the spin viscosity ζ relates the flux of angular momentum
to the gradient in angular velocity (the thermodynamical
force).

The first term on the right-hand side of Eq. (1b) can be re-
garded as a production term, i.e., this describes a nonconserved
quantity. We note here that it is the total angular momentum
which is conserved; Eq. (1b) only describes the intrinsic part.
Finally, we note that in the presence of temperature gradients
cross-coupling terms appear in the constitutive relations and
an additional equation is needed to describe the dynamics of
the energy [14].

To estimate the effect of the coupling one needs to know
the values of the three transport coefficients, η0, ηr , and ζ .
While data for the shear and rotational viscosities for water
is available [16–18], data for the spin viscosity is very sparse.
Bonthuis et al. [19] suggested an estimate of the spin viscosity
through the rotational viscosity via ζ ≈ a2ηr , leading to a spin
viscosity of the order of 10−23 kg m s−1. Recently Hansen et al.
[11] used equilibrium molecular dynamics (EMD) simulations
to calculate η0, ηr , and ζ for liquid water in the temperature
range T = 284–319 K. They found the spin viscosity to be in
the order of 10−21 kg m s−1, i.e., two orders of magnitude larger
than the estimate of Bonthuis et al. From the spin viscosity and
the rotational viscosity one can define a characteristic length
lc = √

ζ/ηr below which the angular momentum diffusion
becomes important compared to the coupling to the fluid linear
momentum. Using the value for the spin viscosity found in
Ref. [11] means that lc ≈ 3.4 nm. Today nanochannels with a
width down to 7 nm can be fabricated [20–22]; thus if the spin
viscosity is in the order of 10−21 kg m s−1, we now approach the
characteristic length scale lc and it is relevant to ask whether the
effect of the coupling should be included in order to correctly
account for the fluid dynamics. Using ζ ≈ 10−23 kg m s−1, on
the other hand, the characteristic length is approximately the
size of a water molecule, predicting a negligible effect from
the coupling.

For flow with low Reynolds number and where angular
momentum diffusion is ignored, ζ = 0, one can see from
Eq. (1b) that � = (∇ × u)/2. Substituting this into Eq. (1a),
one arrives at the classical Navier-Stokes formulation, i.e.,
the coupling has no effect on the flow profile. This is in
agreement with the definition of the characteristic length
lc and the discussion above: Simply ignoring the angular
momentum diffusion, the critical length is lc = 0, meaning
that there exists no effect from the coupling. By comparing the
solution to Eqs. (1) with the classical solution for a Poiseuille
flow, it can easily be shown that the flow rate reduction
increases for decreasing channel width [11], indicating that
the viscous dissipation due to the angular momentum diffusion
becomes important on the nanoscale, but can be ignored on
the macroscopic scale.

It has been shown that for simple atomic fluids confined to
length scales of ∼3 nm the classical Navier-Stokes equation
can be applied to predict the correct velocity profile [23,24].
However, it remains to be investigated whether the extended
Navier-Stokes equations are valid on such small length scales,
i.e., whether the continuum description is able to describe
correctly the dynamics of highly confined fluids composed of
nonspherical molecules.

In this paper we present results from extensive nonequilib-
rium molecular dynamics (NEMD) simulations of a planar
Poiseuille flow of water confined in nanoslit pores with
width of 3.6–6.2 nm. We compare the streaming velocity
profile from the NEMD simulations with predictions from
the extended Navier-Stokes equations using the transport
coefficients found in Ref. [11], i.e., calculated from indepen-
dent simulations using the EMD technique. The comparison
thereby investigates (i) whether the extended Navier-Stokes
equations apply on very small length scales, (ii) whether the
value for the spin viscosity obtained in Ref. [11] is correct,
and finally (iii) the effect from the coupling between the spin
angular momentum of the molecules and the fluid translational
momentum.

II. MOLECULAR DYNAMICS

In Ref. [11] we used the flexible simple point-charge water
model (SPC/Fw) [16], where the electrostatic interactions
between the atoms in different molecules are evaluated via
the modified short-ranged Wolf method [25,26]. To enable a
direct comparison we must therefore adopt this model and we
will denote it as the SPC/Fw (Wolf) model. For more details
about this particular water model and its parametrization
we refer the reader to Refs. [16] and [11]. The software is
written in-house and has been tested and extended for many
years.

The two confining walls are composed of simple Lennard-
Jones particles [27]. The wall particles interact with other
wall particles and the oxygen atoms in the water using
the truncated and shifted 12-6 Lennard-Jones potential with
parameters corresponding to oxygen-oxygen interactions, i.e.,
m = 16 g mol−1, σ = 3.19 Å, and ε/kB = 78.197 K, such
that wall-wall and fluid-wall Lennard-Jones interactions are
the same. The cutoff is set to 2.5σ . The particles are arranged
on a body-centered-cubic (bcc) lattice with a number density
of 0.9σ−3 and cannot be penetrated by the water. Each
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FIG. 1. (Color online) Snapshot from the simulation just after the
wall particles (online: green/print: outer spheres) have been added.
The wall particle diameter is the same as the oxygen (online: red/print:
inner spheres) atomic diameter, but has been displayed differently for
clarity. L denotes the width of the pore and h = L/2 the half width.

wall consists of three layers (see Fig. 1), giving a total of
between 480 and 726 wall particles dependent on of the
equilibration procedure (see below). The wall is designed
to be weakly hydrophilic by letting the wall particles have
alternately charges ±e/4, where e is the elementary charge.
The electrostatic force between the wall particles and water
atoms are also evaluated using the modified Wolf method
[25,26]. We note that the net charge is zero in each layer
of the wall and that there will not be any layering effect due to
the electrostatic interactions between the wall and fluid. Beside
the Lennard-Jones and the electrostatic interactions with the
water, the wall particles are held fixed around their lattice
sites using a restoring spring force with a spring constant
ks = 1.6 kg s−2 [24] and were coupled to a Nosé-Hoover
thermostat [28,29] to keep the wall temperature fixed at
approximately T = 312 K.

Initially, the water molecules are equilibrated without the
presence of the walls using a standard EMD simulation.
This equilibration involves an isotropic compression of a
rectangular simulation box with the z direction being the
longest direction and the x and y directions the shortest.
This compression is done until a desired density is obtained,
which means that the length in all directions will vary
and therefore also the number of wall atoms. After equili-
bration the walls are placed on each side of the system, such
that the direction of confinement is in the z direction and the
overall density is ρ ≈ 998 kg m−3. We then allow for further
equilibration of the intramolecular degrees of freedom. After
this second equilibration the external force field is applied to
each atom in the x direction ρFe = ρ(Fe,0,0). Thus, the result
is similar to a pressure-driven Poiseuille flow with a constant
pressure gradient. Periodic boundary conditions are applied in
all directions.
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FIG. 2. (Color online) Kinetic energy as a function of time for
two different channel widths L = 3.63 nm (upper curve, online: blue)
and 6.31 nm (lower curve, online: red). The dashed lines indicate the
overall mean kinetic energy.

The equations of motion for all particles are integrated using
a leapfrog algorithm [30]. Each NEMD simulation cover a time
span of ∼16 ns using a time step of 0.77 fs. For each channel
width the molecular dynamics data are ensemble averaged over
ten independent runs enabling an estimate the statistical error.
After every 20 time steps the velocity, kinetic temperature, and
density profiles are sampled using standard binning methods
giving a total of ∼10 × 106 samples per system. To check
the convergence, the simulation time is doubled for one
of the simulations for each channel width and the velocity
profile compared with the other shorter simulations. Further-
more, during the simulation runs the total kinetic energy is also
monitored showing that the system has reached a steady state
(see Fig. 2).We note that applying an external force field results
in frictional heating which is conducted away at the wall-fluid
boundary; however, the resulting temperature may vary. In
Table I we list the kinetic temperature for each system as
well as the corresponding values of the extrapolated transport
coefficients.

It is worth noticing that the weak Coulomb interactions
between the wall and fluid affect the bulk properties of the
water. In Fig. 3(a) we have plotted the density profile in the
situation where the wall particles are charged (hydrophilic)
and where the wall is uncharged (hydrophobic) and where the
field is turned off. It is seen that the bulk density is larger in the
hydrophobic situation, which is, of course, directly linked to

TABLE I. Simulation system details and corresponding parameter values for the SPC/Fw (Wolf) model used for the comparison. The
transport coefficients are extrapolated from Ref. [11].

L Fe T η0 ηr ζ

Nwater (nm) (m s−2) (K) (10−4 Pa s) (10−4 Pa s) (10−21 kg m/s)

750 3.57 30.2 328.4 3.2 ± 0.1 1.678 1.01 ± 0.04
825 3.63 30.2 335.0 2.5 ± 0.9 1.678 0.8 ± 0.03
1050 3.92 10.0 331.7 2.9 ± 0.2 1.678 0.93 ± 0.03
1125 4.18 5.0 321.4 4.1 ± 0.7 1.678 1.31 ± 0.05
1200 4.59 4.0 327.6 3.3 ± 0.6 1.678 1.07 ± 0.02
1275 5.03 4.0 312.8 5.2 ± 0.1 1.678 1.65 ± 0.04
1500 6.21 2.0 316.4 4.8 ± 0.1 1.678 1.52 ± 0.07
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FIG. 3. (Color online) (a) Center-of-mass density profile in the cases of hydrophobic and hydrophilic walls. Channel width is 3.57 nm.
(b) The corresponding orientational parameter profile. In both (a) and (b) the results are from one simulation with the field turned off.

the large contact angle between the water and the uncharged
wall. This also explains why flow of water confined between
two hydrophobic walls lead to a plug flow characterized by a
flat velocity profile and very different dynamics. It is important
to note, however, that the hydrophilic walls do not introduce
any long-ranged layering of the water molecules inside the
channel and one can therefore expect the fluid to exhibit bulk
behavior just a few molecular diameters from the wall. This
is consistent with previous molecular dynamics results by
Priezjev [31] of atomic fluids where the wall-fluid interaction
strength was varied which affected the slip length, but not the
bulk fluid properties.

In Fig. 3(b) we have plotted the orientation parameter profile
θz, defined as θz = arccos(pz/|p|) − π/2, where pz is the z

component of the total dipole moment p of the water molecules
in a slab. Thus, for a perfect uniform distribution of angles
the orientation parameter is zero, i.e., this corresponds to the
situation where no alignment of the water molecules takes
place. Of course, the dipole moment can also be perfectly
aligned with the plane parallel to the wall given θz = 0:
Using the x and y components of the dipole moment vector
produces the same result as Fig. 3(b). From this we see that
the hydrophilic wall-fluid interactions introduce an additional
orientation that corresponds to a deviation in the order of ∼5%
away from a perfectly uniform orientation. The relatively small
increased orientation for a zero field system is likely linked to
the Wolf method applied [32,33] and is removed when the
field is switched on. It is important to point out that we have
applied the Wolf method in order to enable a direct comparison
between the NEMD simulations and the continuum prediction
based on the transport coefficients in Ref. [11] where this
method was applied.

To illustrate the effect of the coupling further we also per-
form a NEMD simulation series of a Poiseuille flow of argon
where the coupling is absent. These simulations where carried
out at the state point (ρ,T ) = (1247.4 kg m−3, 239.6 K),
which corresponds to a supercritical fluid.

III. RESULTS

For the geometry shown in Fig. 1 the extended Navier-
Stokes equations can be solved analytically with Dirichlet slip
boundary conditions where ux(±h) = uslip and 
y(±h) = 0,

giving [34]

ux(z) = uc

[
1 − z2 + 2ηr coth(Kh)

(ηr + η0)Kh

(
cosh(Khz)

cosh(Kh)
− 1

)]

+uslip. (2)

Here ux is the x component of the velocity field, uc =
h2ρFe/(2η0), K = {4ηrη0/[ζ (ηr + η0)]} 1

2 , and −1 � z � 1
such that ux(1) = ux(−1) = uslip. Ignoring the internal de-
grees of freedom this reduces to the solution of the classical
planar Poiseuille flow

ux(z) = uc(1 − z2) + uslip. (3)

If we know the values of all relevant transport coefficients
[11], it is possible to make a direct comparison between
the continuum Navier-Stokes predictions and data from the
NEMD simulations once the slip velocity uslip is found.

It is well known that in the wall-fluid boundary region, the
fluid is characterized by large density variations [35,36] and
anisotropy [15]. In this region the tensorial nonlocal transport
coefficients should be included in a correct hydrodynamical
description [8,37,38]. Thus, we cannot expect Eqs. (2) and
(3) to hold very close to the wall-fluid boundary, but only in
the interior of the channel where the fluid has bulk transport
properties. This implies that when the analytical solutions of
the Navier-Stokes and the extended Navier-Stokes equations
are compared to data, only interior points should be considered.
To find the slip velocity we use two different procedures.
(i) A second-order polynomial was fitted to the interior NEMD
data points and the slip velocity was found by extrapolating
this polynomial to ±h. (ii) The solutions to the classical
and extended Navier-Stokes equations were fitted using the
least-squares method to the interior NEMD data using only
uslip as a fitting parameter. We let interior points be points that
are more than 0.5 nm away from the walls. We further note that
when the slip velocity is found by extrapolation it corresponds
to the apparent slip velocity and that the slip velocity is the
only fitting parameter used when we compare the velocity
profiles.

Figure 4(a) shows the predicted velocity profile together
with NEMD data for fluid argon confined in a slit pore of width
4.05 nm corresponding to approximately 11 atomic diameters.
Here uslip is found from method (i) described above. The inte-
rior part of the channel is indicated by the two vertical dashed
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FIG. 4. (Color online) (a) Streaming velocity profile for argon
fluid in a nanoslit pore of width 4.05 nm (11 atomic diameters).
Line connected with filled squares represents the predicted profile,
Eq. (3), using η0 = 1.5 ± 0.2 × 10−4 Pa s [40], and black filled circles
represent the NEMD data. Standard deviations on the predicted profile
are due to statistical uncertainties in the viscosity estimates. (b)
Velocity profile for water in a nanoslit pore of width 3.63 nm (11
molecular diameters). Line connected with filled squares represents
the predicted profile using the classical Navier-Stokes theory, Eq. (3),
line connected with triangles the extended Navier-Stokes theory,
Eq. (2), and filled circles the NEMD data. uslip is found from fitting
a second-order polynomial (dashed line) to data and extrapolating to
z = 0 nm. (c) As in (b), but where Eqs. (2) and (3) are fitted directly
to interior NEMD data points. For all figures the two vertical dashed
lines limit the interior part of the channel.

lines. The classical theory is clearly capable of predicting
the result from the simulation. The result is interesting on
its own, since it indicates that the classical continuum fluid
dynamical description is applicable on extremely small length
scales for atomic structureless fluids. This has also been
shown previously—see, for example, Refs. [23,24]. It is worth
mentioning that this surprising observation is also supported by
the fact that the wave-vector-dependent viscosity is constant
with a value of the macroscopic viscosity for wavelengths
up to 0.25 Å−1 for liquid argon—see also Ref. [39]. In
Fig. 4(b) we plot the corresponding system for water, where
the channel is again 11 molecular diameters wide. It is clearly
seen that the classical Navier-Stokes theory, which excludes
the coupling phenomenon, fails to predict the correct velocity
profile, whereas the extended theory agrees well with the
NEMD data in the interior part of the pore. The values of
the transport coefficients used in Figs. 4(b) and 4(c) are listed
in Table I. One could argue that the classical Navier-Stokes
theory fails due an incorrect slip velocity estimate. Figure 4(c)
shows least-squares fit of the solutions to the classical and
extended Navier-Stokes equations to the interior NEMD data
points. We stress that only the slip velocity is used as a fitting
parameter according to method (ii) above. Again, the extended
theory agrees with the NEMD data in the interior part of the
channel, whereas the classical theory fails.

If one evaluates the profile curvature in the channel
midpoint, it is possible to compare the molecular dynamics
description with the continuum predictions directly without
having to perform any fitting. To this end we note that the
predicted curvatures of the continuum theory can be found via
the second-order derivative of Eqs. (2) and (3). The relative
difference between the classical and extended predictions is
then given by

Crel = 1 − ηr coth(Kh)Kh

(ηr + η0) cosh(Kh)
, (4)

such that, if Crel = 1, there is no effect from the coupling
on the velocity profile curvature. In Fig. 5 we compare Crel

for the different pore widths as predicted by Eq. (4) with
the NEMD data. It is seen that within statistical uncertainty
there is good agreement between the NEMD data (circles) and
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FIG. 5. (Color online) Relative difference in velocity profile
curvature as a function of pore width. Filled circles represent NEMD
data and squares the prediction from Eq. (4). The dashed line indicates
Crel = 1 corresponding to the classical Navier-Stokes theory.
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the extended theory (squares). Moreover, as the pore width
increases, the effect of the coupling vanishes (statistically),
which is as expected.

IV. CONCLUSION

The excellent agreement between the NEMD data and the
extended Navier-Stokes equations leads us to conclude that
the coupling between the spin angular momentum and the
linear momentum is correctly accounted for by the extended
continuum description. Furthermore, the comparison confirms
the transport coefficients reported in Ref. [11]. These findings
show that there is a significant coupling between the spin
angular momentum and the linear momentum at very small
confining geometries. From an application point of view

this an important result, since the flow rate is significantly
affected. Thus, in future development of nanofluidic devices
where water flows in carbon nanotubes, for example, one must
include the coupling effect in order to make the correct fluid
dynamics predictions. Finally, we note that our simulations
support the recent suggestion that one may drive a nanoflow
of a dipolar fluid by a rotating electrical field [11,19].
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