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This series of papers is devoted to identifying and explaining the properties of strongly correlating
liquids, i.e., liquids with more than 90% correlation between their virial W and potential energy U
fluctuations in the N V T ensemble. Paper IV [N. Gnan et al., J. Chem. Phys. 131, 234504 (2009)]
showed that strongly correlating liquids have “isomorphs,” which are curves in the phase diagram
along which structure, dynamics, and some thermodynamic properties are invariant in reduced units.
In the present paper, using the fact that reduced-unit radial distribution functions are isomorph invari-
ant, we derive an expression for the shapes of isomorphs in the WU phase diagram of generalized
Lennard-Jones systems of one or more types of particles. The isomorph shape depends only on the
Lennard-Jones exponents; thus all isomorphs of standard Lennard-Jones systems (with exponents 12
and 6) can be scaled onto a single curve. Two applications are given. One tests the prediction that the
solid-liquid coexistence curve follows an isomorph by comparing to recent simulations by Ahmed
and Sadus [J. Chem. Phys. 131, 174504 (2009)]. Excellent agreement is found on the liquid side of
the coexistence curve, whereas the agreement is less convincing on the solid side. A second appli-
cation is the derivation of an approximate equation of state for generalized Lennard-Jones systems
by combining the isomorph theory with the Rosenfeld-Tarazona expression for the temperature de-
pendence of the potential energy on isochores. It is shown that the new equation of state agrees well
with simulations. © 2011 American Institute of Physics. [doi:10.1063/1.3582900]

I. INTRODUCTION

This is the final paper in a series1–4 investigating the
properties of strongly correlating liquids,5 i.e., liquids that
have strong correlations between their constant-volume equi-
librium fluctuations of potential energy, U (t), and virial6, 7

W (t) ≡ −1/3
∑

i ri · ∇ri U (r1, ..., rN ) where ri is the posi-
tion of particle i at time t . As is well known, the average virial
W gives the configurational contribution to the pressure:

pV = NkB T + W . (1)

Letting � denote instantaneous deviations from equilibrium
mean values, the WU correlation is quantified by the corre-
lation coefficient R (with 〈...〉 denoting equilibrium average):

R = 〈�W�U 〉√
〈(�W )2〉〈(�U )2〉

. (2)

Perfect correlation gives R = 1. As a pragmatic definition we
have chosen “strongly correlating liquids” to designate liquids
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that have R ≥ 0.9 in the N V T ensemble (constant volume, V ,
and temperature, T ).

Strongly correlating liquids have simpler physics than
liquids in general, an observation that has particular signifi-
cance for the highly viscous phase.8–18 Thus it has been shown
that strongly correlating viscous liquids to a good approxi-
mation have all eight frequency-dependent thermoviscoelas-
tic response functions19–21 given in terms of just one22 (i.e.,
are single-parameter liquids in the sense of having dynamic
Prigogine-Defay ratio19 close to unity2, 20, 22). Strongly cor-
relating viscous liquids moreover obey density scaling23–27

to a good approximation, i.e., their dimensionless relax-
ation time τ̃ ≡ τρ1/3√kB T/m (where m is the average par-
ticle mass) depends on density ρ = N/V and temperature as
τ̃ = F(ργ /T ).28–30

Paper I1 presented computer simulations of 13 different
systems, showing that van der Waals type liquids are strongly
correlating, whereas hydrogen-bonding liquids like methanol
or water are not. Strongly correlating liquids include,1, 2, 5, 22, 29

for instance, the standard Lennard-Jones (LJ) liquid, the
Kob-Andersen binary LJ (KABLJ) mixture, an asymmetric
rigid-bond dumbbell model, a seven-site united-atom toluene
model, and the Lewis-Wahnström OTP model.

Paper II2 analyzed the cause of WU correlations with a
focus on the LJ potential. The strong correlations were re-
lated to the well-known fact that an inverse power-law (IPL)
pair potential, v(r ) ∝ r−n where r is the distance between two
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particles,31–42 implies perfect WU correlation,2, 5

�W (t) = γ�U (t) (3)

with γ = n/3. Around the potential energy minimum, the LJ
potential is well described by an “extended” inverse power-
law potential (eIPL),2 vLJ(r ) ∼= Ar−n + B + Cr . At constant
volume the linear term contributes little to the virial and
potential-energy fluctuations: when one nearest-neighbor dis-
tance increases, others decrease in such a way that the sum
is almost constant. Thus systems interacting via the LJ poten-
tial inherit strong WU correlations from an underlying inverse
power-law—they have a “hidden scale invariance.”3, 28

Paper III3 gave further numerical evidence for the expla-
nation for strong WU correlations presented in Paper II, and
theoretical results were given on the statistical mechanics and
thermodynamics of the hidden scale invariance that character-
izes strongly correlating liquids. It was also shown that strong
virial potential-energy correlations are present even in out-of-
equilibrium situations—the hidden scale invariance is a prop-
erty of the potential energy surface, not just of the equilibrium
states.

Paper IV4 introduced the concept of “isomorphs” in the
phase diagram of a strongly correlating liquid. Starting from
a single assumption a number of isomorph invariants were
derived. In particular, structure and dynamics were shown to
be invariant on isomorphs when reduced units are used.

In the present paper further simulation results sup-
porting the isomorph predictions are presented for systems
interacting via a multicomponent generalized LJ potential:

vi j (ri j ) = v (m)
i j (ri j ) + v (n)

i j (ri j ), (4)

where v (k)
i j (ri j ) is an IPL potential involving the two particles

i and j :

v (k)
i j (ri j ) ≡ ε

(k)
i j

(
σ

(k)
i j /ri j

)k
. (5)

Section II briefly reviews the isomorph concept. For systems
interacting via a generalized LJ potential, a prediction for
the shape of the isomorphs in the WU phase diagram is
derived in Sec. III and demonstrated to fit well to simulation
results.43 Interestingly, the isomorph shape depends only
on the exponents m and n. Thus, e.g., all 12-6 LJ systems
have the same isomorphs in the WU phase diagram. In
Sec. IV we present two applications of the theory. One tests
the Paper IV prediction that solid-liquid coexistence curves
are isomorphs. The second application gives an approximate
equation of state for systems interacting via generalized LJ
potentials; this is arrived at by combining the present theory
with Rosenfeld and Tarazona’s expression for the isochoric
temperature dependence of the potential energy.

II. ISOMORPHS

A. Definition

We term a microscopic configuration “physically rele-
vant” if its influence on the thermodynamics and dynamics
of the system is not a priori negligible (Paper IV). For in-
stance, any configuration with very strong particle overlap is

physically irrelevant. Note, however, that some unlikely con-
figurations like transition states are physically relevant.

Two state points (1) and (2) with temperatures T1 and
T2 and densities ρ1 and ρ2, respectively, are defined to be
isomorphic (Paper IV) if they obey the following: any two
physically relevant configurations of state points (1) and (2),(
r(1)

1 , . . . , r(1)
N

)
and

(
r(2)

1 , . . . , r(2)
N

)
, which trivially scale into

one another,

ρ
1/3
1 r(1)

i = ρ
1/3
2 r(2)

i (i = 1, ..., N ) , (6)

have proportional configurational Boltzmann statistical
weights:

e−U (r(1)
1 ,...,r(1)

N )/kB T1 = C12e−U (r(2)
1 ,...,r(2)

N )/kB T2 . (7)

Here U (r1, . . . , rN ) is the potential energy function and it is
understood that the constant C12 depends only on the state
points (1) and (2).

The property of being isomorphic defines a mathemati-
cal equivalence relation on the set of state points. The corre-
sponding equivalence classes are smooth curves in the phase
diagram termed isomorphs or isomorphic curves.

B. The approximate nature of isomorphs

Equation (7) implies identity of the normalized
Boltzmann probabilities for scaled physically relevant config-
urations of isomorphic state points. As detailed in Paper IV
this identity implies that several quantities are invariant along
an isomorph. Examples include the configurational entropy,
the isochoric specific heat, all multiparticle distribution func-
tions in reduced units (in particular, the radial distribution
function(s)), reduced-unit dynamics (both for Newtonian and
stochastic dynamics), normalized reduced-time autocorrela-
tion functions, reduced-unit transport coefficients, etc. It was
further shown in Paper IV that a jump from equilibrium at
one state point to an isomorphic state point brings the system
instantaneously to equilibrium (see also Ref. 44).

IPL potentials are Euler homogeneous functions, i.e.,
obey U (λr1, . . . , λrN ) = λ−nU (r1, . . . , rN ). Such purely re-
pulsive potentials – which do not describe real intermolec-
ular interactions – are the only potentials that have 100%
correlation between virial and potential-energy fluctuations;
this reflects the well-known IPL virial-theorem identity
W = (n/3)U . Likewise, only IPL liquids have exact iso-
morphs; they satisfy Eq. (7) with C12 = 1 for all configu-
rations of two state points obeying ρ

γ

1 /T1 = ρ
γ

2 /T2 where
γ = n/3.

Appendix A of Paper IV showed that strongly correlating
liquids generally have isomorphs to a good approximation.
Consequently, to a good approximation these liquids inherit
a number of the exact invariants that IPL liquids have along
their curves given by ργ /T = Const., namely, all IPL invari-
ants that do not rely on the IPL identity C12 = 1. Examples
include the above mentioned thermodynamic, static, and dy-
namic isomorph invariants. IPL invariants that are not inher-
ited by strongly correlating liquids in general include, e.g., the
Helmholtz free energy over temperature, the potential energy
over temperature, and the reduced-unit compressibility.
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FIG. 1. (a) Radial distribution function (AA particles) for three isomorphic state points of the Kob-Andersen binary LJ mixture45 (KABLJ). (b) Radial distri-
bution function along an isotherm of the KABLJ mixture. A similar picture applies to the AB and BB radial distribution functions, though they are slightly less
isomorph invariant (Fig. 2 in Paper IV).

The fact that strongly correlating liquids have isomorphs
to a good approximation should be understood as follows.
Any liquid has curves in its phase diagram of constant excess
entropy, curves of constant isochoric specific heat, curves of
constant reduced relaxation time, curves of constant reduced-
unit transport coefficients, etc. For a strongly correlating liq-
uid these curves are almost identical, and they define its
(approximate) isomorphs. Points on these isomorphs have
approximately identical structure and approximately identi-
cal dynamics as probed, e.g., by normalized reduced-time-
autocorrelation functions.

For clarity of presentation below we shall not repeatedly
mention that the existence of isomorphs is not exact for gener-
alized LJ systems. Accordingly, we shall speak of isomorphs
as a unique, well-defined concept. In other words: all prop-
erties of isomorphs derived below in generalized LJ systems
would be exact if these systems did have exact isomorphs,
e.g., fulfilled Eq. (7); since this is not the case, the properties
are in principle – as well as practice – approximate.

C. Generating isomorphs in simulations

The structure in reduced units (r̃ ≡ ρ1/3r ) is predicted to
be invariant along an isomorph (Paper IV). The excess en-

tropy, Sex = S − Sideal, depends only on structure and was
shown in Paper IV also to be invariant along an isomorph
(“excess” refers to the quantity in question in excess to that of
an ideal gas with same density and temperature). In the below
simulations we generate an isomorph as a set of state points
in the phase diagram with constant Sex. To change density
and temperature keeping Sex constant, the following identity
is used (Paper IV):

γ ≡ −
(

∂ ln T

∂ ln V

)
Sex

= V
(

∂Sex
∂V

)
T

T
(

∂Sex
∂T

)
V

= Vβex
v

Cex
v

, (8)

where βex
v ≡ (∂pex/∂T

)
V = 1

V (∂W/∂T )V and a Maxwell re-
lation was applied. Utilizing the standard fluctuation formulae
this leads (Paper IV) to:

γ =
(

∂ ln T

∂ ln ρ

)
Sex

= 〈�U�W 〉〈
(�U )2

〉 . (9)

The procedure applied to generate isomorphs can be
summarized as: (1) an equilibrium N V T simulation was
performed at a given state point; (2) γ was calculated from
the fluctuations using Eq. (9); (3) the density ρ was changed
slightly (of order 1%), and γ was used to calculate the
corresponding change in temperature in order to keep Sex
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FIG. 2. (a) Incoherent intermediate scattering function of the large (A) particles for isomorphic state points (density variation 11.6%) of the KABLJ mixture;
time is given in reduced units: t̃ ≡ tρ1/3√kB T/m and the q-vector is kept constant in reduced units. (b) Same as in (a), but along an isotherm (density variation
9.5%).
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FIG. 3. γ calculated from equilibrium fluctuations via Eq. (9) for the KABLJ
system. Red squares: state points belonging to the isomorph presented in
Figs. 1(a) and 2(a). Black circles: isochoric state points. Straight lines are
linear regression fits. The standard errors on the slopes are 0.06 (isomorph)
and 0.04 (isochore).

constant (Eq. (9)); 4) a simulation at the new state point was
performed, and the procedure was repeated.

Figure 1(a) demonstrates the isomorph invariance of the
radial distribution function for the large (A) particles of the
KABLJ mixture.45 For comparison, Fig. 1(b) shows the same
on an isotherm with a similar (but smaller) density change.
Clearly, structure is to a good approximation invariant on the
isomorph, whereas this is not the case on the isotherm.

Taking the logarithm of Eq. (7) shows that the potential
energy surface in reduced units (Ũ ≡ U/kB T ) is the same for
two isomorphic state points, except for an additive constant
and scaling of the coordinates. This constant does not influ-
ence the dynamics, and consequently the dynamics in reduced
units is the same for two isomorphic state points. Figure 2(a)
demonstrates the isomorph invariance of the incoherent inter-
mediate scattering function of the A particles of the KABLJ
mixture. For comparison, Fig. 2(b) shows the same property
on the T = 0.55 isotherm. Like the structure, the dynamics is
also invariant to a good approximation on the isomorph—both
regarding average relaxation time and the shape of the relax-
ation function; this is far from the case on the corresponding
isotherm.

The exponent γ calculated from Eq. (9) generally de-
pends on the state point. Figure 3 shows (as red squares)
γ along the isomorph of Figs. 1(a) and 2(a). Temperature
changes by almost a factor of two, but γ changes less than
5%. Paper IV argued that for a system with good isomorphs γ

depends to a good approximation only on density. This is sup-
ported by Fig. 3 in which γ on an isochore is shown to vary
only ∼ 1% when temperature is changed by a factor of two
(black circles). Note, however, that γ eventually approaches
m/3 = 4, but slowly so: at T = 10 we find γ = 4.6.

It follows from Eq. (8) that the slope of isochores in the
WU phase diagram is given by γ :

γ =
(

∂W

∂U

)
V

. (10)

The insignificant change of γ along isochores (black circles in
Fig. 3) means that these to a good approximation are straight
lines in the WU phase diagram. This is illustrated in Fig. 4
for four different binary generalized LJ mixtures.
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FIG. 4. Isochores for four different binary generalized LJ mixtures.
12-6 KABLJ is the Kob-Andersen binary 80:20 mixture45 using the standard
12-6 LJ potential. 18-6 KABLJ is the same system with the generalized LJ
potential (m = 18, n = 6, Eq. (4)) and parameters chosen to place the min-
imum of the potential at the same distance and depth as in the 12-6 KABLJ
system. Likewise, 18-9 KABLJ is defined by using the exponents m = 18
and n = 9. Finally 12-6 WBLJ is the Wahnström 50:50 mixture46 using the
standard 12-6 LJ potential. Straight lines are linear regression fits. The inset
shows a zoom on the data for the two 12-6 LJ systems. For each system the
simulated temperatures range from where non-exponential relaxation sets in
(τα ≈ 100) to a viscous state with two-step relaxation (τα ≈ 103 − 105).

III. SHAPE OF ISOMORPHS IN THE W U PHASE
DIAGRAM

What is the shape of an isomorph in the WU phase dia-
gram? This section answers this question in generality for the
multi-component generalized LJ potential. Recall that this po-
tential (Eq. (4)) is the sum of two IPL’s. Correspondingly, the
potential energy and virial can be expressed as sums of two
IPL terms:

U = Um + Un, Uk ≡
〈∑

i> j

v (k)
i j (ri j )

〉
. (11)

For pair interactions the virial is given by6

W ≡ −1

3

〈∑
i> j

ri j v
′
i j (ri j )

〉
, (12)

where the prime denotes the derivative with respect to ri j .
From this we get

W = m

3
Um + n

3
Un. (13)

For any point in the WU phase diagram we can solve
Eqs. (11) and (13) for (Um, Un):

Um = 3W − nU

m − n
, (14)

Un = −3W + mU

m − n
. (15)

These equations allow one to determine which regions of the
WU phase diagram are accessible to the system. Adopting
the convention m > n, we restrict ourselves to the case
ε

(m)
i j > 0 in order to have a repulsive core for all interactions.
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FIG. 5. Schematic drawing of the WU phase diagram for systems interact-
ing via the standard 12-6 LJ potential. Included in this figure are also two
isomorphs, plotted using Eq. (28). The accessible points are those above both
dashed lines (see text). The part of the isomorphs between the dashed lines in
the W, U > 0 quadrant are thus not accessible to standard 12-6 LJ systems
(they are accessible to the purely repulsive 12-6 LJ potential with ε

(6)
i j > 0).

This implies Um > 0 for all configurations, and therefore
also for all thermodynamic averages. Combining this with
Eq. (14) implies W > n

3 U . If all interactions have an attrac-

tive part (ε(n)
i j < 0) we have Un < 0, which in combination

with Eq. (15) implies W > m
3 U . As an example, the region

of the WU phase diagram accessible to the standard 12-6
LJ potential is given by W > 4U and W > 2U (the later
inequality being relevant when U ≤ 0). See Fig. 5 for an
illustration.

A. Parametric description of isomorphs

Along an isomorph the structure is invariant in reduced
units (Fig. 1). From this it follows that Uk/ρ

k/3 is invariant
along an isomorph (r̃ ≡ ρ1/3r ):

Uk

ρk/3
=

〈∑
i> j

ε
(k)
i j

(
σ

(k)
i j

r̃i j

)k〉
(16)

=
∑
i> j

ε
(k)
i j

(
σ

(k)
i j

)k 〈
r̃−k

i j

〉
. (17)

If we let “*” denote a reference point, (W∗, U∗), we can use
Eqs. (14) and (15) to get (U ∗

m, U ∗
n ) and find for other state

points on the same isomorph (where ρ̃ ≡ ρ/ρ∗):

Uk =
(

ρ

ρ∗

)k/3

U ∗
k = ρ̃k/3U ∗

k . (18)

Combining Eq. (18) with Eqs. (11) and (13) we obtain a para-
metric description of an isomorph in the WU phase diagram:

U = ρ̃m/3U ∗
m + ρ̃n/3U ∗

n , (19)
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FIG. 6. Test of a 12-6 KABLJ isomorph (same as in Figs. 1 and 2). Top
panel: U fitted to Eq. (21) using ρ∗ = 1 (i.e., ρ̃ = ρ). Bottom panel: W com-
pared to Eq. (22), using the parameters U∗

m and U∗
n found in the top panel.

W = m

3
ρ̃m/3U ∗

m + n

3
ρ̃n/3U ∗

n . (20)

Once the numbers U ∗
m and U ∗

n have been determined at the
reference state point using Eqs. (14) and (15), the entire iso-
morph to which this state point belongs is thus traced out
in the WU phase diagram using Eqs. (19) and (20). Alterna-
tively, given a collection of isomorphic state point generated,
e.g., as described in Sec. II C, the predicted relation between
U , W , and ρ̃ can be tested by linear regression:

U

ρ̃n/3
= ρ̃(m−n)/3U ∗

m + U ∗
n , (21)

W

ρ̃n/3
= m

3
ρ̃(m−n)/3U ∗

m + n

3
U ∗

n . (22)

This is done in Fig. 6 for the 12-6 KABLJ isomorph presented
in Figs. 1 and 2. The potential energies were fitted by linear re-
gression by means of Eq. (21). Subsequently, the virials were
compared to Eq. (22) using the parameters estimated from the
potential energies (Eq. (21)), i.e., without performing a new
fit.

We note here two important consequences of the
above. (1) If the reference state point (U∗, W∗) generates
the isomorph (U (ρ̃), W (ρ̃)), then the reference state point
(aU∗, aW∗) generates the isomorph (aU (ρ̃), aW (ρ̃)). This
means that all isomorphs for a given system have the same
shape in the U W diagram and can be scaled onto one an-
other. (2) The shape of the isomorphs depends only on the
exponents, m and n. This means that all 12-6 LJ systems have
the same isomorphs in the WU phase diagram – they may
be scaled onto a single “master isomorph” (see also Eq. (27)
below).
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FIG. 7. Four different 12-6 LJ isomorphs in the WU phase diagram. The
points give simulation results, the full curves the predictions of Eqs. (19) and
(20). Two isomorphs belong to the KABLJ system, the third results from sim-
ulations of the Wahnström binary LJ liquid46 (WBLJ), and the fourth (SCLJ)
is the single component LJ liquid.

Figure 7 shows four isomorphs in the WU phase diagram
for three different 12-6 LJ systems.47 Figure 8 shows the same
isomorphs scaled onto the 12-6 master isomorph, Figure 9
shows an isomorph for the 18-6 KABLJ system and compares
it to a 12-6 LJ isomorph. The agreement between simulation
results and predicted shapes is quite good.

B. Eliminating the density parameter: The “master
isomorph” equation

Combining Eq. (18) with Eqs. (14) and (15) we get

ρ̃m/3 = Um

U ∗
m

= 3W − nU

3W∗ − nU∗
, (23)

ρ̃n/3 = Un

U ∗
n

= 3W − mU

3W∗ − mU∗
. (24)

Eliminating density and rearranging, we find an invariant for
the isomorph:(

W − m
3 U

)m(
W − n

3 U
)n =

(
W∗ − m

3 U∗
)m(

W∗ − n
3 U∗

)n . (25)
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FIG. 8. The “master isomorph”: collapsing the four isomorphs of Fig. 7 by
scaling with W ∗

0 defined as the virial on each isomorph when U = 0. The
points give simulation results, the dashed curve the prediction of Eq. (28).
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FIG. 9. Isomorph of the 18-6 KABLJ liquid compared to the theoretical pre-
diction (Eqs. (19) and (20)). For reference, the isomorph prediction for 12-6
LJ systems is included.

Choosing the reference point with zero potential energy
(U∗, W∗) = (0, W ∗

0 ) (this reference point is guaranteed to ex-
ist if all interactions have attraction), we get:(

W − m
3 U

)m(
W − n

3 U
)n = (

W ∗
0

)m−n
. (26)

W ∗
0 is a unique number identifying the isomorph.

Equation (26) implies that the isomorph is the solution
to (

W

W ∗
0

− m

3

U

W ∗
0

)m/n

=
(

W

W ∗
0

− n

3

U

W ∗
0

)
. (27)

Here it can be seen directly that – as argued above – for a
given set of exponents (m, n) all isomorphs have the same
shape, suggesting the name “master isomorph”; W ∗

0 is the
parameter that determines the scale of each isomorph. For
m = 2n (e.g., the standard 12-6 LJ potential) the solution to
this (quadratic) equation is:

2
W

W ∗
0

= 1 + 4
n

3

U

W ∗
0

±
√

1 + 4
n

3

U

W ∗
0

. (28)

This has real solution(s) whenever U/W ∗
0 ≥ − 3

4n , where
equality corresponds to W = 0. Figure 5 plots Eq. (28) with
n = 6 for two values of W ∗

0 .

IV. APPLICATIONS

A. Solid-liquid coexistence

In Paper IV it was argued briefly that Eq. (7) predicts that
solid-liquid coexistence curves are isomorphs. In more detail
the argument goes as follows. First one notes that an isomorph
cannot cross a solid-liquid coexistence curve: recall that the
isomorph concept relates to equilibrium ensemble probabili-
ties. For two isomorphic state points all pairs of microscopic
configurations related by Eq. (6) have identical Boltzmann
probabilities according to Eq. (7). Consequently, the two iso-
morphic state points must also have the same macroscopic
phase behavior. In other words, if an isomorph were to cross
the coexistence curve, part of the isomorph would have liquid
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panel: Eq. (21), middle panel: Eq. (22); data points are simulation results from Ahmed and Sadus,49 straight lines are linear regression fits. The right panel plots
the fit parameters from Eqs. (21) and (22) against each other, demonstrating that the fits to energies and virials, respectively, are consistent.

microstates as the most likely and part of it would have mixed
crystalline-liquid microstates as the most likely (having in
mind a density-temperature phase diagram). This would vi-
olate the proportionality of Boltzmann statistical weights for
scaled states, the property that defines an isomorph.

Given that an isomorph cannot cross the solid-liquid co-
existence curve, the next point is to note that—because all
state points belong to some isomorph—a curve infinitesimally
close to the coexistence curve must be an isomorph. This ar-
gument applies in the W, U phase diagram, as well as in the
density-temperature or the pressure-temperature phase dia-
grams. In the first two cases there is a multitude of isomorphs
in the coexistence region; for instance, one particular iso-
morph will be characterized by 53% liquid and 47% crystal,
etc. In the pressure-temperature phase diagram these “coexis-
tence” isomorphs collapse into one, of course.

The prediction that the melting curve, both slightly to
the liquid side and slightly to the solid side, are isomorphs
has a number of consequences, and it sheds new light on
some well-known phenomenological melting rules (as well
as exceptions to these rules for non-strongly correlating
liquids, see Paper IV). Thus, for instance, the observation
that the Lindemann melting criterion is pressure independent
for a given liquid follows from the isomorph property of the
melting line (whereas the existence of a universal Lindemann
criterion does not follow). Indeed, as is easy to show from
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FIG. 11. Same data as in Fig. 10, plotting potential energy versus density
(left panel) and virial versus density (right panel). Dashed curves: isomorph
predictions (Eqs. (19) and (20)), using the parameters determined in Fig. 10.

paper IV the isomorph theory implies Ross’ “generalized
Lindemann melting law” from 1969,48 according to which the
reduced configurational partition function of the crystalline
phase Q∗ = ∫

dR̃ exp[−β(U (R̃) − U (0))] is invariant along
the melting curve (here, U (0) is the potential energy of the
crystal with all atoms located at their lattice sites, and the tilde
denotes reduced coordinates). Further well-known melting
rules, which the isomorph theory explains, include (Paper
IV): the reduced viscosity, the reduced surface tension, the
reduced diffusion constant, and the reduced heat conductivity
are all invariant in the liquid phase along the melting curve.
Likewise, the reduced-unit static structure factor is invariant
along the melting curve. These rules have been confirmed
for several liquids in both experiment and simulation (see the
references of Paper IV).
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FIG. 12. Solid-liquid phase behavior for the single-component 12-6 LJ sys-
tem. Main figure: filled symbols mark the coexistence region in the WU
diagram. Blue circles are from Ref. 49 and red squares are from Ref. 50.
Full curves are the isomorph prediction (Eq. (28)) with W ∗

0 /N = 49.8 and
56.8, respectively. Open circles indicate results from simulations in the solid
and liquid phase, respectively. Both phases are strongly correlating with R
≥ 0.99. The inset shows the solid-liquid phase behavior in a ρ, T -diagram
with logarithmic axes. Dashed red curves are the isomorph prediction ργ /T
= const using γ found using Eq. (9) from the simulations of the two phases
(open circles) giving γ = 5.24 and 5.18, respectively. Full black curves are
free fits giving γ = 5.13 and 6.49, respectively.
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Like other isomorph predictions following from Eq. (7),
the prediction that solid-liquid coexistence curves are iso-
morphs is only exactly obeyed for systems that obey Eq. (7)
exactly, i.e., perfectly correlating systems. Indeed, it is
straightforward to show that in IPL systems the phase behav-
ior depends only on ρn/3/T , and thus the co-existence curve is
an exact isomorph. The interesting question now is: how well
do strongly correlating systems, e.g., generalized LJ systems,
follow the prediction? Note that we do not expect the liquid-
gas co-existence curves to be isomorphs (and indeed they are
not); the gas-phase is not strongly correlating and thus Eq. (7)
cannot be fulfilled in the relevant part of configuration space.
In contrast, at solid-liquid coexistence both phases involved
are strongly correlating for LJ systems (Paper I). Below we
briefly test to which degree the isomorph prediction is ful-
filled.

Ahmed and Sadus used in a recent paper49 a novel
numerical method for determining solid-liquid coexistence.
They reported results for the generalized LJ potential with the
repulsive exponent m varying from 12 to 7 and fixed attractive
exponent n = 6 (Ahmed and Sadus termed the repulsive
exponent n, not m; we keep, however, the above notation).
Figure 10 shows the state points reported by Ahmed and
Sadus for the liquid side of the solid-liquid coexistence curve
compared to the isomorphic predictions as expressed in
Eqs. (21) and (22). The right panel shows that the parameters
found by fitting to Eqs. (21) and (22), respectively, are
consistent. Figure 11 shows the same data plotting potential
energy (left panel) and virial (right panel) versus density.
Figure 12 shows the 12-6 LJ solid-liquid phase behavior in
the WU-diagram and in the ρT -diagram (inset), including
here also data from Mastny and de Pablo.50

The prediction that solid-liquid coexistence curves are
isomorphs agrees well on the liquid side with the simulation
results of Ahmed and Sadus49 as well as with the results for
12-6 LJ from Mastny and de Pablo.50 On the solid side the
agreement is less convincing (see Fig. 12); in particular the
logarithmic derivative in the ρT diagram (slope in the inset)
differs by 25%. At present we do not have an explanation for
this. It might be related to inter-particle distances longer than

the first peak of the radial distribution function playing a more
important role for the phase behavior on the solid side51 than
on the liquid side.

B. An approximate equation of state for generalized
LJ systems

Equations (19) and (20) give the potential energy and the
virial as functions of density along an isomorph. The tempera-
ture variation along the isomorph can be found by integrating
Eq. (9). Since γ generally changes only little (Fig. 3), in many
situations it is a good approximation to assume it constant,
leading to the relation T = ρ̃γ T∗ along an isomorph, where
T∗ is the temperature at the reference point. Taken together,
Eqs. (19), (20), and (9) thus imply that from a single reference
point (ρ∗, T∗, U∗, W∗) we have a prediction for (ρ, T, U, W )
on the isomorph to which the reference point belongs.

Figure 4 demonstrated that in the WU phase dia-
gram, isochores to a good approximation are straight lines
with slope γ , i.e., that one can write W (ρ, T ) = W0(ρ)
+ γ (ρ)U (ρ, T ). The only ingredient missing to generate a
full equation of state expressed as U = U (ρ, T ) and W
= W (ρ, T ) is a relation between temperature and potential
energy or virial on an isochore.

Rosenfeld and Tarazona52 derived from density func-
tional theory an expression for the potential energy on an iso-
chore:

U (ρ, T ) = U0(ρ) + α(ρ)T 3/5. (29)

Rosenfeld and Tarazona noted that the expression “. . . pro-
vides a good estimate of the thermal energy (...) near freezing
densities only for predominant repulsive interactions,” and
confirmed their expression by simulations of IPL potentials
with different exponents. Equation (29) has since been shown,
however, to be an excellent approximation also for several
models with attraction, including the KABLJ mixture.53–55

This was regarded as a bit of a mystery, but can now be un-
derstood as a consequence of the fact that dynamics and heat
capacity of strongly correlating liquids are well reproduced
by a corresponding IPL system54 – a consequence of the hid-
den scale invariance of strongly correlating liquids discussed
briefly in the introduction (see Papers I–III).

Figure 13 tests the Rosenfeld-Tarazona prediction for the
systems investigated in Fig. 4. The prediction works very
well, but less so for the supercooled Wahnström BLJ system,
for which the formation of extended “Frank-Kasper” clusters
at low temperatures affects the temperature dependence of the
potential energy.56

Combining Eq. (29) with our results on isomorphs and
isochores we can construct an approximate equation of state
for generalized LJ systems. The idea is to map any state point
(ρ, T, U, W ) to the corresponding isomorphic state point
(ρ∗, T∗, U∗, W∗) on a reference isochore where it is implicitly
understood that the parameters (W0, γ, U0, α) are evaluated at
the reference isochore ρ∗:

T∗(ρ, T ) = T ρ̃−γ , ρ̃ ≡ ρ/ρ∗, (30)
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FIG. 14. Left panel: test of the equation of state in the WU phase diagram using ρ = 1.200 as reference density. Curves and lines: theoretical predictions
(Eqs. (33) to (36)) for three isochores, an isomorph, and an isotherm. Data points: simulations of the 12-6 KABLJ mixture. The parameters of the equation of
state were found from the two state points indicated by circles, giving (W0/N , γ, U0/N , α/N ) = (38.4, 5.17,−8.63, 2.61). By comparison, the corresponding
parameters found by fitting to the ρ = 1.200 isochore in Figs. 4 and 13 are (38.3, 5.16,−8.63, 2.61), illustrating the robustness of the fitted equation of state.
Applying the fitting procedure to the simulated state points on the T = 0.550 isotherm gives the parameters (38.5, 5.19, −8.63, 2.61). Right panel: same data
as above in a pT diagram.

U∗(ρ, T ) = U0 + α(T ρ̃−γ )3/5, (31)

W∗(ρ, T ) = W0 + γU∗(ρ, T ). (32)

From (U∗, W∗) we can calculate the contribution to the poten-
tial energy from the two IPL terms of the potential (compare
Eqs. (14) and (15)):

U ∗
m(ρ, T ) = 3W0 − (n − 3γ )

(
U0 + α(T ρ̃−γ )3/5

)
m − n

,

(33)

U ∗
n (ρ, T ) = −3W0 + (m − 3γ )

(
U0 + α(T ρ̃−γ )3/5

)
m − n

.

(34)

Finally, we use isomorphic scaling (Eqs. (19) and (20)) to go
back to the (ρ, T, U, W ) state point:

U (ρ, T ) = ρ̃m/3U ∗
m(ρ, T ) + ρ̃n/3U ∗

n (ρ, T ), (35)

W (ρ, T ) = m

3
ρ̃m/3U ∗

m(ρ, T ) + n

3
ρ̃n/3U ∗

n (ρ, T ). (36)

The equation of state given by Eqs. (33) to (36) contains four
parameters (W0, γ, U0, α) evaluated at a reference density ρ∗.
The parameters can be calculated from U, W, Cex

V , and βex
V

at a single state point. A more convenient way of estimat-
ing the parameters might be: for a collection of (ρ, T, U, W )
state points, at least two of which are non-isomorphic, use iso-
morphic scaling (Eqs. (19) and (20)) to get the correspond-
ing (U∗, W∗) at the chosen reference density and fit them to
Eq. (32) to determine W0 and γ . Next, using the fitted value
for γ , fit to Eq. (31) in order to find U0 and α.

To put the new equation of state to a test, the procedure
described above was used to determine the four parameters

(W0, γ, U0, α) for the 12-6 KABLJ system using merely two
state points. The resulting equation of state is shown as full
curves in Fig. 14, where it is compared to simulation results
shown as data points. The agreement is good. The largest
deviations are seen when changing density away from the
reference density, most evident for the isotherm in the WU
diagram and the isomorph in the pT diagram. Better agree-
ment is expected if the density dependence of γ is taken into
account, but such a correction will not be attempted here. To
summarize, combining the isomorph theory with two further
approximations, a state-point independent exponent γ and the
Rosenfeld-Tarazona expression, a realistic equation of state
with four parameters is arrived at for generalized LJ systems.

V. CONCLUSIONS

Paper IV demonstrated that strongly correlating liquids
have isomorphs, i.e., curves in the phase diagram along which
structure and dynamics to a good approximation are invariant
in reduced units. The main new results in this paper are pre-
dictions specific to generalized Lennard-Jones systems and
supporting numerical evidence.

Starting from the invariance of structure along iso-
morphs, a prediction for the shape of these in the WU phase
diagram was presented and shown to agree well with simu-
lation results. It was shown that for a given system, the iso-
morphs all have the same shape in the WU phase diagram;
they are simply scaled versions of each other. Furthermore,
the isomorph shape depends only on the exponents m and n,
i.e., all systems with, say, 12-6 LJ interactions have the same
isomorphs in the WU phase diagram. What differs from sys-
tem to system is the values of the density and temperature
along an isomorph.

Throughout Papers I-V the WU phase diagram was re-
ferred to extensively. This particular phase diagram has not
been used much before, but it is evident that for strongly
correlating liquids several features stand out when presented
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in the WU phase diagram. Prominent examples are that iso-
chores are straight lines (with slope γ ) and the existence of
the “master” isomorph discussed above for generalized LJ
systems.

The class of strongly correlating liquids includes, we
believe, all van der Waals liquids and metallic liquids (but
excludes hydrogen-bonding, covalent, as well as strongly
ionic liquids). More simulations, as well as experiments, are
needed to substantiate that the class of strongly correlating
liquids is this large, but preliminary simulations of simple
molecular models like28 the asymmetric dumbbell and the
Lewis-Wahnstrom OTP three-site model are encouraging.
In particular, the isomorph properties of more complex
molecule models need to be simulated, as well as theoreti-
cally contemplated; the scaling properties of molecules with
fixed bond lengths are not trivial. It should be noted that even
a quite complex model system like a phospholipid membrane
can be strongly correlating with respect to its slow degrees
of freedom,57 the interactions of which are dominated by
van der Waals forces. Another interesting question is to
study in detail the properties of liquids where the exponent
γ varies significantly throughout the phase diagram, for
instance, the Weeks-Chandler-Andersen cutoff variant of the
generalized binary LJ liquid that was recently investigated
by Coslovich and Roland,58 as well as Berthier and Tarjus.59

Another system that deserves further investigation is the
200-100 LJ system60 which we find to be an exception to the
general observation that generalized LJ systems are strongly
correlating—presumably because of its extremely narrow
range of interactions.

This series of papers investigated in depth the properties
of strongly correlating liquids. We believe to have demon-
strated that strongly correlating liquids are simpler than
liquids in general. Hopefully this insight will turn out to be
useful in furthering the understanding of the properties of
liquids in general.
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