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This paper summarizes the properties of strongly correlating liquids, i.e., liquids for which the virial/potential
energy correlation coefficient is above 0.9 for equilibrium fluctuations in the NVT ensemble. The definition
and properties of strongly correlating liquids' isomorphs are given, and various isomorph invariants are
discussed. The cause of strong virial/potential energy correlations is also discussed, and it is argued that
strongly correlating liquids are not merely to be thought of as approximate inverse power-law liquids.
The experimental predictions for strongly correlating glass-forming liquids include: i) density scaling;
ii) isochronal superposition; iii) that there is a single function of frequency from which all frequency-
dependent viscoelastic response functions may be calculated; iv) that strongly correlating liquids are
approximately single-parameter liquids with close to unity Prigogine–Defay ratio; v) that the fictive
temperature initially decreases for an isobaric temperature up jump. The paper also briefly discusses the
“isomorph filter”, which provides a necessary condition for universality of theories for the non-Arrhenius
temperature dependence of the relaxation time.
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1. Introduction

After initial brief reports in early 2008 of the existence of the class
of strongly correlating liquids [1,2] these liquids were described in
four comprehensive publications that appeared later in 2008 and in
2009 in the Journal of Chemical Physics [3–6]. The present paper
briefly summarizes the properties and characteristics of strongly
correlating liquids as detailed in Refs. [3-6] and presents several new
computer simulations. We list a number of experimental predictions
for strongly correlating liquids, focusing on glass-forming liquids. The
main message is that the class of strongly correlating liquids, which
includes the van der Waals and metallic liquids, are simpler than
liquids in general. This is consistent with the long known observation
that hydrogen-bonded liquids have several peculiar properties.

2. Strong virial/potential energy correlations in liquids

Consider a system of N particles in volume V at temperature T. The
virial W is defined by writing the pressure p is a sum of the ideal gas
term NkBT /V and a term reflecting the interactions, that is

pV = NkBT + W: ð1Þ
If U r1;:::; rNð Þ is the potential energy function, the virial (which has
dimension of energy) is defined [7–11] by

W r1;:::; rNð Þ = −1= 3∑
i

rid∇ri
U r1;:::; rNð Þ: ð2Þ

Eq. (1) describes thermodynamic averages, but it also applies for
the instantaneous values if the virial is defined by Eq. (2) and the
temperature is defined from the kinetic energy in the usual fashion
[7–11].

Consider now thermal equilibriumfluctuations at a given state point
studied at fixed volume. If ΔU is the instantaneous potential energy
minus its average andΔW the same for the virial at any given state point,
the WU correlation coefficient R is defined by (where sharp brackets
denote equilibrium NVT ensemble averages)

R =
bΔWΔU Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b ΔWð Þ2N b ΔUð Þ2N
q : ð3Þ

By the Cauchy–Schwarz inequality the correlation coefficient
obeys −1≤R≤1. We define strongly correlating liquids by the
condition [3]

R≥ 0:9: ð4Þ

The correlation coefficient is state-point dependent, but for all of
the several liquids we have so far studied by simulation [3,5,12] R is
either above 0.9 in a large part of the phase diagram, or not at all.

http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.063
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Fig. 1 shows two examples of constant-volume thermal equilibrium
fluctuations of virial and potential energy for two model systems, the
standard Lennard–Jones (LJ) liquid and the Wahnström binary
Lennard–Jones mixture [13]. In both cases there are strong virial/
potential energy correlations. In (b) one observes two striking dips in
the potential energy; these dips reflect the existence of transient
clusters characterized by the same short-range order as the crystal [14].
During the dips virial and potential energy also correlate strongly.
Actually, the WU correlation even survives crystallization [4]. The
property of strong virial/potential energy correlation is quite robust —
even complex systems like biological membranes may exhibit strong
correlations [15].

Oneway to illuminate the correlations is to plot instantaneous values
of virial and potential energy versus one another in so-called scatter
plots. Fig. 2(a) shows an example of this with data taken from a
simulation of the Kob–Andersen binary Lennard–Jones (KABLJ) liquid
[16]. This has become the standard liquid for studying viscous liquid
dynamics, because it is difficult to crystallize (which requires simulating
formore than 100 μs (Argonunits)[17]). The “slope”γ of the scatter plot
gives the proportionality constant of the fluctuations according to

ΔW tð Þ≅γΔU tð Þ: ð5Þ
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Fig. 1. (a) Instantaneous normalized equilibrium fluctuations of virial W and potential
energy U in the standard single-component Lennard–Jones (LJ) liquid at constant
volume (NVT simulation), showing that W(t) and U(t) correlate strongly. (b) The same
for the supercooledWahnström binary Lennard–Jonesmixture [13]. For this liquidW(t)
and U(t) correlate strongly even during the formation of a so-called Frank–Kaspers
cluster [14].
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Fig. 2. (a) Scatter plot showing virial/potential energy correlations for the Kob–
Andersen binary Lennard–Jones liquid (1000 particles studied by Monte Carlo
simulation, ρ=1.264, T=1.24 in standard LJ units). (b) Inherent state energies
and virials of the simulation in (a); the correlation is still high. The slope γ defined by
ΔW(t)≅γΔU(t) is slightly different, but close to that of the true dynamics ((a)).
The number γ, which varies slightly with state point, is roughly 6 for
the standard LJ liquid, roughly 5 for the KABLJ liquid, and roughly 8 for
the OTP model studied below in Fig. 7.

Since viscous liquid dynamics consists of long-time vibrations
around potential energy minima – the so-called inherent states [18] –
followed by rapid transitions between the inherent states [19,20], it is
interesting to study the inherent dynamics analogue of Fig. 2(a). This
is done in Fig. 2(b), which gives the same simulation data after
minimizing the configurations' potential energy using the conjugate
gradient method. The correlations are still present and the “slope”
γ doesn't change very much — even though the virial decreased
significantly going from (a) to (b). This illustrates the robustness of
virial/potential energy correlations.

A convenient way to get an overview of a liquid's WU thermal
equilibrium fluctuations at constant volume is to collect scatter plots
for several state points in a common diagram. Fig. 3 (top) shows such
a plot for the standard LJ liquid. Each state point is represented by a
colored oval. As in Fig. 2 the strong correlation is reflected in the fact
that the ovals are highly elongated. For each value of the density the
ovals form almost straight lines with slope close to 6; in Ref. [4] it was
shown that during and after constant-volume crystallization the
system's scatter plots still fall on this line. The bottom three figures
show the correlation coefficient R (Eq. (3)), the “slope” γ, and the
average pressure as functions of temperature for the different
densities. Clearly, both R and γ are somewhat state-point dependent.
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Fig. 3. (a) Scatter plot of the WU thermal equilibrium fluctuations at constant volume
for the standard single-component LJ liquid, and (b) plots of various quantities as
functions of temperature for the different densities studied. The full black lines mark
state points of zero average pressure.
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Fig. 4. (a) Approximation of the LJ potential by an effective inverse power law (IPL)
potential∝ r−18. The open circles mark the radial distribution function at a typical low-
pressure state point. The blue dotted curve marks the IPL potential, which
approximates the LJ potential quite well below the minimum. The difference between
the LJ potential and the IPL potential is approximately linear in r, a fact which forms the
basis for the “extended inverse power law” (eIPL) approximation (Eq. (7)) [4,5]. (b)
Two figures demonstrating that the LJ potential energy and virial in their thermal
equilibrium fluctuations both correlate strongly to the potential energy and virial for
the r−18 IPL potential. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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At a given density R increases with temperature whereas γ decreases;
at a given temperature R increase with increasing density. The thick
black lines mark state points of zero average pressure. Note that the
density effect of increasing R “wins” over the temperature effect of
decreasing R upon cooling at constant low-pressure. Thus one expects
higher correlations upon supercooling a liquid. This is an important
observation when the focus is on glass-forming liquids.

How common are strong WU correlations? In Ref. [3] we reported
simulations of 13 different model liquids. All liquids with van der
Waals type interactions were found to be strongly correlating
(RN0.9), whereas models of the two hydrogen-bonding liquids
water and methanol were not. Although much remains to be done
bymeans of theory and simulation, it has been established that liquids
can be classified into two classes: (i) Strongly correlating liquids, a
class that includes the van der Waals and metallic liquids; this liquid
class appears to have a number of regularities and simple properties.
(b) All remaining liquids — the hydrogen-bonded, the covalently
bonded, and (strongly) ionic liquids; these liquids are generally much
more complex.

3. Cause of strong virial/potential energy correlations

Before discussing the consequences of strong virial/potential
energy correlations we reflect on the cause of the correlations.
The starting point is the well-known fact [7–11] that for any liquid
in which the particles interact with purely repulsive inverse
power law forces, v(r)∝r−n, there is 100% correlation between W
and U: W(t)=γU(t) where

γ =
n
3
: ð6Þ

From the values of γ close to 6 observed for the LJ liquid one would
expect that, if the LJ liquid somehow corresponds to an IPL liquid, the
exponent n is close to 18. At first sight this may seem strange given the
r−6 and r−12 terms that enter into the definition of the LJ potential,
but in fact a potential proportional to r−18 does give a good fit to the
repulsive part of the LJ potential (Fig. 4(a)). The reason that a much
larger exponent than 12 is required is simply that the attractive r−6

term makes the LJ repulsion much steeper than that of the r−12 term
alone. Fig. 4(b) shows that both potential energy and virial
fluctuations of the LJ liquid are well represented by those of an r−18

IPL potential.
In our first publications on strongly correlating liquids [1,2] it was

suggested that the strong correlations derive from particle close
encounters taking the intermolecular distance to values below the LJ
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potential minimum, at which the IPL potential is a good approxima-
tion. It quickly became clear, however, that this is not the full
explanation; this cannot explain the existence of strong correlations
in the crystal (above 99% at low temperatures [4]) and the existence of
correlations at low pressures, at which nearest-neighbor interparticle
distances fluctuate around the LJ potential's minimum. Also, the
original explanation is a single-pair explanation, which would imply
that strong WU correlations should be present as well in constant
pressure ensembles. This contradicts our finding that switching from
constant volume to constant pressure reduce R from values above 0.9
to values around 0.1 [5].

References [4] and [5] detail the following more complete
explanation of the cause of strong correlations. The difference
between the IPL potential and the LJ potential is plotted in Fig. 4(a)
as the red dashed curve. The green dashed curve is a straight line,
which clearly approximates the red dashed curve well around the LJ
minimum (i.e., over the entire first peak of the structure factor). Thus
over the most important intermolecular distances an “extended”
inverse power law potential, eIPL, defined by

veIPL rð Þ = Ar−n+B+Cr ð7Þ

gives a good approximation to the LJ potential. It has been shown by
simulation that the linear term of the eIPL potential gives a
contribution to the total potential energy that fluctuates little at
constant volume [4,5]; likewise W(t) fluctuations have little contribu-
tion from the linear term. Thus as regards fluctuations, the pure IPL
gives representative results. This explains why the IPL approximation
works well and why there are no longer any strong correlations when
switching to constant pressure ensembles [4,5] (note that, in contrast
to averages, fluctuations are generally ensemble dependent).

While the eIPL approximation explanation of strong WU correla-
tions applies for most realistic cases, there are also strong correlations
in the purely repulsiveWeeks–Chandler–Andersen [21] version of the
KABLJ liquid [16,22,23]. The slope γ here varies significantly (from 5.0
to 7.5) over the range of densities and temperatures for which γ is
fairly constant for the KABLJ liquid. Our simulations show, interest-
ingly, that the strong WU correlations for the WCA case is a single-
particle effect, not a cooperative effect that only applies at constant
volume conditions as observed for LJ-type liquids. More work is
needed to illuminate the correlation properties of this interesting
potential.

4. Isomorphs: Curves of invariance in the phase diagram

This section defines isomorphs and summarizes their invariants.
An isomorph is a curve in the phase diagram along which a large
number of properties are invariant. As shown in Ref. [6] a liquid has
isomorphs if and only if the liquid is strongly correlating.

For any microscopic configuration r1;:::; rNð Þ of a thermodynamic
state point with density ρ, the “reduced” coordinates are defined by
rei≡ρ1=3ri. Two state points (1) and (2) with temperatures T1 and T2
and densities ρ1 and ρ2 are said to be isomorphic [6] if, whenever two

microscopic configurations r
1ð Þ
1 ;:::; r

1ð Þ
N

� �
and r

2ð Þ
1 ;:::; r

2ð Þ
N

� �
have

identical reduced coordinates, to a good approximation they have
proportional configurational NVT Boltzmann probability factors:

e−U r
1ð Þ
1 ;:::;r

1ð Þ
Nð Þ=kBT1 = C12e

−U r
2ð Þ
1 ;:::;r

2ð Þ
Nð Þ=kBT2 : ð8Þ

The constant C12 depends only on the state points (1) and (2), not on
the microscopic configurations. Isomorphic curves in the state diagram
are defined as curves for which any two state points are isomorphic.
The property of being isomorphic defines a mathematical equivalence
relation on the set of statepoints and “isomorphs” are the corresponding
equivalence classes.
The property of having isomorphs is generally approximate— only
IPL liquids have exact isomorphs. For this reason Eq. (8) should be
read as obeyed, not rigorously, but to a good approximation, and
merely for the “physically relevant” configurations, i.e., those that do
not have negligible canonical probabilities [6].

Fig. 5 illustrates Eq. (8) by checking the logarithm of this equation,
where (a) gives simulation data for the KABLJ liquid. We consider
several microscopic configurations of the state point with density and
temperature (ρ1,T1)=(1.258,0.628) in standard LJ units. For these
configurations the total potential energy was evaluated. In order to
investigate whether the state point has an isomorphic state point at
density ρ2=1.228, we scaled the simulated configurations of the
initial state point to density ρ2. For the scaled configurations the
potential energies are plotted against the original potential energies of
state point 1 (left panel of Fig. 5(a)). According to the isomorph
definition Eq. (8) the best fit slope gives the ratio between the
temperatures of the isomorphic state points; in this way we find that
T2=0.555.

The right panel of Fig. 5(a) investigates the consistency of this
procedure by reversing it in order to check whether the original
temperature T1 is arrived at. When this is done, one does find the
original temperature (0.628). Two things should be noted. The first is
the very strong correlation between the potential energies of the
scaled configurations, as required for having good isomorphs. The
second noticeable fact is that the best fit lines do not pass through
(0,0), showing that the constant C12 of Eq. (8) is not unity as it would
be for an IPL liquid (C12 is determined by the contribution to the
partition function coming from the linear term of the eIPL (Eq. (7),
and thus C12 reflects the deviation from true IPL behavior).

Fig. 5(b) shows results for the same “direct isomorph test” for the
non-strongly correlating liquid SPC water, starting from temperature
T1=200 K. From the slope of the left panel we find T2=179.6 K.
When the reverse jump is performed, however, one does not come
back to the initial state point, but to a predicted temperature of
166.4 K. This shows that water does not have isomorphs, which is
consistent with the fact that water is not a strongly correlating liquid
[3].

For thepractical identificationof an isomorph in thephasediagramthe
above methodmay be used. Alternatively, it has been shown [6] that to a
good approximation isomorphs are characterized by

ργ

T
= Const: ð9Þ

Hereγ is the above discussed “slope” characterized byΔW(t)≅γΔU(t). As
shown in Ref. [6] this quantitymay be calculated to a good approximation
from the equilibrium fluctuations at one single state point via the
followingexpression that, incidentally, also gives the least-squared linear-
regression best fit slope ofWU scatter plots (compare Appendix B of Ref.
[3]):

γ =
bΔWΔU N

b ΔUð Þ2N : ð10Þ

Several physical quantities are invariant to a good approximation
along a strongly correlating liquid's isomorphs [6]. These include:
1) Thermodynamic properties like the excess entropy (i.e., in excess
of the ideal gas entropy at same density and temperature) and the
excess isochoric specific heat, 2) static averages like the radial
distribution function(s) in reduced coordinates, 3) dynamic quantities
in properly reduced units like the diffusion constant, viscosity, and
heat conductivity, 4) time-autocorrelation functions, 5) average
reduced relaxation times, etc.

Fig. 6 shows results of simulations of the KABLJ liquid at two
isomorphic and two isothermal state points of the AA particle radial
distribution functions and the AA incoherent intermediate scattering
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Fig. 5. Direct check of the isomorph condition for (a) the KABLJ liquid that is strongly correlating (8000 particles) and (b) for the non-strongly correlating SPC water model (5120
molecules). For both liquids the consistency of the isomorph condition is checked by jumping from one to a different density and back. This works well for the KABLJ liquid but not for
SPC water; details are given in the text.
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functions, respectively. These figures confirm the prediction that
isomorphic state points have almost identical static distribution
functions and almost identical dynamics.

Since the isochoric specific heat is an isomorph invariant, this
quantity should be a function of ργ /T for a strongly correlating liquid.
Fig. 7 confirms this prediction for the Lewis–Wahnström OTP model
consisting of three LJ spheres [24].

The theory of isomorphs [6] further predicts that jumps between
two isomorphic state points should take the system instantaneous-
ly to equilibrium, because the Boltzmann statistical factors of two
isomorphic state points are proportional. More generally, isomor-
phic state points are equivalent during any aging scheme. We
recently showed [26] that the isomorph concept throws light on the
concept of an effective temperature, which can be calculated from
the violation of the fluctuation–dissipation theorem. In particular,
the isomorph theory implies that for strongly correlating liquids the
effective temperature – after a jump to a new (low) temperature
and a new density – depends only on the new density (Fig. 8(a)).
This does not apply for the non-strongly correlating monatomic
Lennard–Jones Gaussian liquid, confirming the general conjecture
that strongly correlating liquids have simpler physics than liquids
in general [26]. Fig. 8(b) shows a result confirming the finding of
Ref. [26] that the effective temperature concept for a strongly
correlating liquid makes good sense physically. On the x-axis the
inherent state energies of given state points are shown as the
system fell out of equilibrium. The arrested phase is characterized
by an effective temperature Teff [26]. On the y-axis is shown the
inherent energies found from an equilibrium simulation with
temperature equal to Teff for the corresponding arrested phase.
The red points give data for the strongly correlating KABLJ liquid, the
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green points give data for the non-strongly correlating monatomic
Lennard–Jones Gaussian liquid. Clearly, the latter system fell out of
equilibrium by freezing into a part of phase space that is not
characterized by Teff, whereas the KABLJ behavior is much simpler;
here it appears that basically the same regions of phase space are
explored during aging as in equilibrium.Morework is needed, however,
to detail this point, which at present is merely a conjecture consistent
with above discussed findings.

5. Are strongly correlating liquids merely approximate
IPL liquids?

The only liquids having 100% exact isomorphs are IPL liquids, i.e.,
liquids where the potential energy is an Euler homogeneous function
of the particle coordinates. Note that this case includes liquids that not
just have pair interactions; interactions may well be of three- or four-
body type as long as all terms in U scale with density in the same way.
The fact that only IPL liquids have exact isomorphs and the
fact that the LJ potential's repulsion is well approximated by an IPL
term (r−18) has led to speculations that all strongly correlating
liquids are “just” approximate IPL liquids. In our opinion, for the below
reasons, this is not a useful way to thinking of this large liquid class.

First of all, it should be noted that the density scaling exponent γ
usually varies throughout the phase diagram, as well as along
isomorphs. It may be shown that for any liquid with good isomorphs
γ varies only with volume [6], but since volume changes along an
isomorph, γ may do this as well. A characteristic of the isomorph
definition is that it does not refer to approximate exponents (or to
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correlations). For the LJ liquid, while γ at typical state points is close to
6, at high temperatures/pressures it approaches the value 4 coming
from the repulsive r−12 term.

Secondly, it is important to emphasize thatwhile all general isomorph
invariants are also invariants for IPL liquids along the curves of constant
ρn /3/T, several such IPL invariants are not general isomorph invariants.
Examples are [5,6] (where all below quantities are excess quantities):

1. The free energy over temperature, F /T.
2. The energy over temperature, U /T.
3. The pressure times volume over temperature, pV /T.
4. The constant-temperature compressibility times density times

temperature, κTρT.

The reason that these (and some other) IPL invariants do not
generalize to become isomorph invariants is that the constant C12 of
Eq. (8) is not unity in general, whereas for all IPL liquids one trivially has
C12=1. The constant C12 is expected to generally vary with density,
because it derives from the contribution to the free energy coming from
the linear term in the eIPL potential (Eq. (7)). Some IPL invariants like the
(excess) entropy or the (excess) CV only depend on the canonical
probabilities, for which the value of C12 is irrelevant because the
Boltzmann factors are normalized; these IPL invariants generalize to
become isomorph invariants. Other IPL invariants – those involving only
volume derivatives of the free energy – in general get contributions from
C12 for strongly correlating liquids; they do not give rise to general
isomorph invariants.

6. Some experimental predictions for strongly correlating
glass-forming liquids

Strongly correlating liquids have a number of properties since long
discussed in the literature in various contexts. For instance, since the
melting line in the phase diagram is an isomorph [6], strongly correlating
liquids have several invariants along their melting lines, including the
radial distribution function(s) and dimensionless transport coefficients.
Such regularities have been observed in simulation and experiment, and
the known exceptions appear always to involve liquids that are not
strongly correlating; we refer to the reader to Ref. [4] for more details.
This section focuses on predictions for highly viscous liquids, for which
the strong correlation property implies the following experimental
predictions:

6.1. Density scaling

In the last decade, in particular since 2005, many papers appeared
dealing with density scaling, i.e., the finding that for several glass-
forming liquids the relaxation time τ at varying pressure and
temperature is a function of the quantity ργ /T where exponent γ is
an empirical fitting parameter,

τ = F ργ
= T

� �
: ð11Þ
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Neither the function F nor the exponent γ are universal. The isomorph
theory [6,12] shows that all strongly correlating glass formers obey
density scaling with the exponent γ given by the equilibrium
fluctuations at one state point (Eq. (10)) provided γ is fairly constant
over the relevant part of phase space. This is consistent with the
experimental finding that density scaling works well for van der
Waals liquids [27,28], but not for hydrogen-bonded liquids [29–32].
Density scaling has been shown to apply in computer simulations
of strongly correlating liquids with γ given by Eq. (10) to a good
approximation [12,33].

6.2. Isochronal superposition

Isochronal superposition is the further recent finding that for
varying pressures and temperatures the dielectric loss as a function of
frequency depends only on the loss-peak frequency [34,35]. This is
trivial, of course, if the liquid obeys time–temperature–pressure
superposition (TTPS) in which case nothing changes. But many liquids
do not obey TTPS, and for such liquids isochronal superposition is a
new and striking regularity, which is found to work generally for van
der Waals liquids, but not for hydrogen-bonding liquids [35]. Since
both the relaxation time and the relaxation spectrum are isomorph
invariants [6], isochronal superposition must apply for any strongly
correlating liquid: If temperature and pressure for two state points are
such that their relaxation times are the same, the two points must
belong to the same isomorph. Thus they must have same relaxation
time spectra for any observable, for instance the normalized dielectric
loss as function of (reduced) frequency should be the same.

6.3. Frequency-dependent viscoelastic response functions

There are eight fundamental complex, frequency-dependent
linear thermoviscoelastic response functions like, e.g., the frequen-
cy-dependent isochoric or isobaric specific heat, the frequency-
dependent isobaric expansion coefficient, and the frequency-depen-
dent adiabatic or isothermal compressibility [36]. Standard linear
irreversible thermodynamics arguments, where the Onsager relations
play the role of the Maxwell relations of usual thermodynamics,
show that there are only three independent frequency-dependent
response functions. If stochastic dynamics is assumed, as is realistic
for highly viscous liquids [37], there are only two independent
response functions [38–40]. For strongly correlating liquids a further
simplification applies, however, namely that there is just a single
independent response function [1,2,37,42]. Since there are explicit
expressions linking the different response functions (depending on
the ensemble considered [36]), this can be tested experimentally.
Unfortunately it is difficult to measure thermoviscoelastic functions
properly; to the best of our knowledge there are yet no reliable data
for a complete set (three or more) of such response functions for any
liquid.

6.4. The Prigogine–Defay ratio: Strongly correlating liquids as approximate
single-parameter liquids

After many years of little interest the Prigogine–Defay (PD) ratio
[42–44] has recently again come into focus in the scientific discussion
about glass-forming liquids [36,45–48]. From a theoretical perspec-
tive the PD ratio is poorly defined since it involves extrapolations from
the liquid and glass phases to a common temperature [36,41]. It is
possible to overcome this problem by modifying the PD ratio by
referring exclusively to linear response experiments [36]; here the
traditional difference between liquid and glass responses is replaced
by a difference between low- and high-frequency values of the
relevant frequency-dependent thermoviscoelastic response function.
In this formulation, the property of strong virial/potential energy
correlations manifests itself as a PD ratio close to unity. Indeed, an
extensive compilation of data showed that van der Waals bonded
liquids and polymers have PD ratios close to unity [49].

The theoretical developments of Refs. [2,4,36] show that in any
reasonable sense of the old concept “single-order-parameter liquid”,
strongly correlating liquids are precisely the single-order-parameter
liquids. The isomorph concept makes this even clearer: State points
along an isomorph have so many properties in common that they are
identical from many viewpoints. In the two-dimensional phase
diagram this leaves just one parameter to classify which isomorph
the state point is on. Thus a liquid with (good) isomorphs is an
(approximate) single-parameter liquid. Note that this is consistent
with the old viewpoint that single-parameter liquids should have
unity PD ratio [42–44].
6.5. Cause of the relaxation time's non-Arrhenius temperature dependence:
The isomorph filter

Since the relaxation time τ is an isomorph invariant for any
strongly correlating liquid, any universally valid theory predicting τ to
depend on some physical quantitymust give τ as a function of another
isomorph invariant (we do not distinguish between the relaxation
time and the reduced relaxation time since their temperature
dependencies are virtually identical). This gives rise to an “isomorph
filter” [6], showing that several well-known models cannot be
universally valid. For instance, the entropy model cannot apply in
the form usually used by experimentalists: τ∝exp(C /SconfT) where C
is a constant and Sconf is the configurational entropy; it can only be
correct if C varies with density as C∝ργ. Likewise, the free volume
model does not survive the isomorph filter unless the threshold free
volume scales with inverse density. As an example of the isomorph
filter, note that if the characteristic volume Vc of the shoving model
(which predicts that τ∝exp(VcG∞ /kBT) [50–52])) varies with density
as Vc∝1/ρ, this model is consistent with the isomorph filter.
However, replacing G∞ by the instantaneous bulk modulus K∞ would
lead to an expression that is not isomorph invariant.
6.6. Fictive temperature variations following a temperature jump

Any jump from equilibrium at some density and temperature to
another density and temperature proceeds as if the system first
jumped along an isomorph to equilibrium at the final density and
then, starting immediately thereafter, jumped to the final temper-
ature (Fig. 8(a)): The first isomorphic jump takes the system
instantaneously to equilibrium. This applies for all strongly
correlating liquids and means that glass-forming van der Waals
and metallic liquids are predicted to have simpler aging behavior
than, e.g., covalently bonded liquids like ordinary oxide glasses
[26].

In traditional glass science the concept of “fictive temperature” is
used as a structural characteristic that by definition gives the
temperature at which the structure would be in equilibrium [53–58].
In glass science, for any aging experiment one assumes that the
fictive temperature adjusts itself monotonically from the initial
temperature to the final temperature. Consider, however, a sudden
temperature increase applied at ambient pressure. In this case there
is first a rapid thermal expansion before any relaxation takes place.
This “instantaneous isomorph” takes the system initially to a state
with canonical (Boltzmann) probability factors corresponding to a
lower temperature. In other words, immediately after a temperature
up jump the system has a structure which is characteristic of a
temperature that is lower than the initial temperature. Thus with any
reasonable definition of the fictive temperature, this quantity must
initially decrease during an isobaric temperature jump up— at least for
all strongly correlating liquids.
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7. Summary

The class of strongly correlating liquids includes the van der Waals
and metallic liquids, but excludes the hydrogen-bonded, the cova-
lently bonded, and the (strongly) ionic liquids. Due to their “hidden
scale invariance” – the fact that strongly correlating liquids inherit a
number of IPL properties – these liquids are simpler than liquids in
general. Strongly correlating liquids are characterized by having
isomorphs to a good approximation, curves along which a number of
physical properties are invariant when given in properly reduced
units. In particular, for glass-forming liquids the property of strong
virial/potential energy correlations in the equilibrium fluctuations
implies a number of experimental predictions. Some of these, like
density scaling and isochronal superposition, are well-established
experimental facts for van der Waals liquid and known not apply for
hydrogen-bonded liquids. This is predicted by the theory of
isomorphs. Some of the predicted properties have not yet been tested
experimentally, for instance that the density scaling exponent can be
determined by measuring the linear thermoviscoelastic response
functions at a single state point, or that jumps between isomorphic
state points take the system instantaneously to equilibrium, nomatter
how long is the relaxation time of the liquid at the relevant state
points.— Hopefully, this paper may inspire to experiments testing the
new predictions.
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