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Predicting the Effective Temperature of a Glass
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We explain the findings by Di Leonardo et al. [Phys. Rev. Lett. 84, 6054 (2000)] that the effective
temperature of a Lennard-Jones glass depends only on the final density in the volume and/or temperature
jump that produces the glass. This is not only a property of the Lennard-Jones liquid, but a feature of all
strongly correlating liquids. For such liquids data from a single quench simulation provide enough
information to predict the effective temperature of any glass produced by jumping from an equilibrium
state. This prediction is validated by simulations of the Kob-Andersen binary Lennard-Jones liquid and
shown not to apply for the nonstrongly correlating monatomic Lennard-Jones Gaussian liquid.
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Condensed matter is frequently found in out-of-
equilibrium states. For example, for systems like super-
cooled liquids, dense colloids, spin systems, etc., the (off-
equilibrium) glass state occurs naturally after cooling or
compression from a state of thermal equilibrium. An ef-
fective temperature describes the nonequilibrium proper-
ties of a glass, and the possibility of connecting the
effective temperature with the observed violation of the
fluctuation-dissipation theorem (FDT) [1] has opened new
ways of inquiry [2-6]. In 2000, Di Leonardo et al. [5]
studied the off-equilibrium dynamics of the single-
component Lennard-Jones (LJ) liquid (with a small
many-body term added to the potential to prevent crystal-
lization). This system was subjected to sudden temperature
decreases at constant density (quenches) as well as to
sudden density increases at constant temperature
(crunches). From the violation of the FDT, the effective
temperature was determined. Surprisingly, it was observed
that the effective temperature T, is independent of the
particular path in the temperature-density plane crossing
the glass transition line: 7.4 depends only on the final
density. In this Letter we demonstrate that the findings of
Di Leonardo et al. hold generally for strongly correlating
liquids (defined below). We further argue and demonstrate
that—for this class of liquids—from a single quench simu-
lation one can predict the effective temperature for any off-
equilibrium jump.

Reference [7] documented the existence of a large class
of liquids characterized by strong correlations between
virial (W = pV — NkgT) and potential energy (U) ther-
mal equilibrium fluctuations at fixed volume, AW(r) =
yAU(¢). Strongly correlating liquids have a hidden (ap-
proximate) scale invariance, which implies that they inherit
many—but not all—of the scaling properties of liquids
interacting via inverse power-law potentials. Strongly cor-
relating liquids include van der Waals—type liquids but not,
e.g., hydrogen-bonding liquids. Strongly correlating
liquids have curves in their phase diagrams—*‘iso-
morphs”—along which several static and dynamic prop-
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erties are invariant [8]. These invariants derive from the
fact that two microscopic configurations of two isomorphic
state points, which scale into one another, to a good ap-
proximation have identical canonical probabilities. If the
density is denoted by p, an isomorph is given by p? /T =
const. The exponent y—which may be slightly state-point
dependent—can be calculated from equilibrium fluctua-
tions at one state point or from a single quench simulation
utilizing the relation between the relaxing averages,
(W) = wU®) + W,.

Because the canonical probabilities of scaled configura-
tions belonging to the same isomorph are identical, a jump
between two isomorphic state points takes the system
instantaneously to equilibrium [property (i)][8]. More-
over, jumps from isomorphic state points to the same final
state point show identical aging behavior [property (ii)]
[8]. In view of these properties the results of Di Leonardo
et al. [5] may be understood as follows. A crunch from
density p; to density p, can be ideally decomposed into
two parts (Fig. 1): First, the system jumps instantaneously
from its initial state to the corresponding isomorphic state
at the final density (i.e., the state which has the same p?/T
as the initial state); see Fig. 1. This is an equilibrium state
[8]. Thereafter the system at constant density begins to
approach the equilibrium state defined by the temperature.
If the crunch is made to a state with very high density, the
thermalization takes an extremely long time and the effec-
tive temperature may be determined from the FDT viola-
tion as detailed below. In this way any crunch corresponds
to a quench to the final density with the same relaxation
pattern. In particular, these two transformations should
have identical FDT violation factors and identical effective
temperatures.

These arguments should apply to any strongly correlat-
ing liquid, not just the single-component LJ system. To
confirm this we simulated the Kob-Andersen binary
Lennard-Jones (KABLJ) liquid [9,10]. Following
Di Leonardo et al. [5] we subjected the KABLJ liquid to
a number of instantaneous quenches and crunches and
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FIG. 1 (color online). Patterns followed by the KABLJ liquid
in different off-equilibrium density and/or temperature jumps.
Consider, for example, the case of a crunch (horizontal dotted
line), where the system is densified at constant temperature. This
transformation is equivalent to a quench (right-most vertical
line) from an isomorphic state point having the final density of
the crunch. Thus the T (large filled circle) is identical for these
transformations. In all processes represented here the liquid
undergoes a glass transition characterized by an effective tem-
perature that can be measured from the fluctuation-dissipation
relation (FDR) Eq. (1). T versus (final) density constitutes an
isomorph, as discussed later in the text.

calculated the effective temperatures from the fluctuation-
dissipation relation (FDR). Recall that for off-equilibrium
systems the FDR in kg = 1 units is [11-15]

To x(t,t) = —=X(t,)0,C(t, t). (1)

Here C = (A(1)B(¢')) is the correlation function of the
variables A and B in the unperturbed situation, the perturb-
ing contribution to the Hamiltonian is 6H = —eB,
x(t, ') = (A(1))/ €| . is the response of A to the pertur-
bation applied at time ¢ < ¢, and X is the FDT violation
factor. This is unity at short times (¢ — )/ << 1, while
X <1 in the long-time limit (¢ — #)/¢' > 1. We chose as
dynamic variables Ay(f) = N~'Y n;cos[k - r;(r)] and
By () = 2NA(¢), where the sum is extended to all N
particles of the system and 7; = %1 is a random variable
with zero mean. With this choice the correlation function
C(t, 1) is the self-intermediate scattering function.

For quenches to low enough temperatures, at long times
an effective temperature of the slow degrees of freedom is
associated with the FDT violation factor: T = T/X [12—
16]. The effective temperature reflects the slow structural
rearrangements in the sense that the aging system behaves
as if it were thermalized at T,y [16]. We obtained X by
calculating the correlation function and the response func-
tion in the nonequilibrium regime by means of X = X(¢) =
—Tax(t,1")/aC(t, 1')|,, which applies at long times (note

that the correct X is found by taking this derivative at fixed
t, not at fixed ¢’ [17]).

Recently Berthier introduced a new method for calcu-
lating the response without applying an external field for an
off-equilibrium Monte Carlo simulation of the KABLJ
[17]. Using his procedure Fig. 2 shows the FD plots for
the KABLJ liquid during a number of temperature-density
jumps. In Fig. 2 we test the construction of equivalent
crunches and quenches argued above: a crunch and a
quench from initially isomorphic states (i.e., with the
same p”/T) to the same final T and p (red circles and
red squares). Clearly the crunch overlaps well with the
quench; in fact, they follow the same aging pattern. The
exponent y was estimated by a linear fit of the parameter
plot (W(z)) vs (U(r)) when the system is relaxing after a
temperature jump from 7' = 2.55 to T = 0.3192 at fixed
p = 1.264. The resulting value is y = 5.01 (for details,
refer to Ref. [10]). Figure 3 shows the linear relation that
connects (W(z)) and (U(z)) during two ‘‘isomorphic”
quenches.

Identical responses and correlations do not only appear
when a strongly correlating liquid is taken from two iso-
morphic states to the same state point. Supplementing
properties (i) and (ii), strongly correlating liquids have a
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FIG. 2 (color online). Response versus correlation function for
several density or temperature jumps for the KABLJ liquid. All
FD plots have fixed t = 10* (Monte Carlo steps) and ¢’ varying
from 10° to 10*. All functions plotted here have the same
reduced k-vector (referring to the final density) and the same
reduced microscopic time. In the crunch (O) we set |k| = 7.81
corresponding to the reduced k-vector |k| = 6.78 (see Ref. [10]
for details). The crunch (O) overlaps very well with the
quench ([J) that takes the system from an initial state isomorphic
to the one of the crunch to the same final state. Note also the
good superposition of the additional quench (V) that takes the
system from a state isomorphic to the initial state of (O) to a
state isomorphic to the final one of (O). The full lines have
the slopes predicted from the density-scaling relation
Eq. (2) for Tog.
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FIG. 3 (color online). Average virial versus potential energy
per particle during aging in two quenches for the KABLJ liquid.
These quenches were performed between states with same initial
and final p?/T. At each time the off-equilibrium states are
connected by an isomorph (e.g., the dashed line). In these two
jumps the FDT violation factor X should be identical. The slope
of the (W(z)) vs (U(r)) plot is . The analytical equation used for
drawing the isomorphs in the W-U plot here is reported in
Ref. [20].

third interesting aging property (iii): For two jumps
(T, p1) = (T, py) and (T, p3) — (T4, p4) between mu-
tually isomorphic initial and final states (i.e., p]/T| =
p3/Ty and p)/T, = p)/T,), the systems follow the
same path in configuration space in reduced units [10]
because the dynamical equations governing the evolution
of the particle trajectories are identical in reduced units.
Accordingly, the responses and correlations of two such
jumps must be identical in reduced units. In Fig. 2 we show
the reduced unit C and y of a quench between initial and
final states that are isomorphic, respectively, to the initial
and final states of the crunch described above (red tri-
angles). The overlap between the functions is good.
Figure 3 shows the variables (W(7)) vs (U(¢)) in two such
isomorphic jumps; they are connected by an isomorph at
each time during the relaxation.

A further consequence of property (iii) is the following.
Because the reduced-unit evolution is the same for the
system in the two jumps, their FDR violation factors
must also be identical, X, = X,. Combining this equation
with p) /T, = p}/T, and expressing X via the effective
temperature, we find p) /Teiro = p) /Tesra 1.€-,

p? /T = const. 2

This equation identifies the glass transition curve in the
(T, p) plane defined in terms of the FDR effective tem-
perature with an isomorph. This is consistent with the
findings of Ref. [5] and the standard way of defining the
glass transition, because the standard glass line in the
(T, p) plane is located where the equilibrium relaxation

time reaches a certain (high) value of order the inverse
cooling rate. For strongly correlating liquids an isomorph
is also an ‘‘isochronal” curve along which the (reduced)
relaxation time is constant [8]. Figure 2 shows the slopes
predicted by Eq. (2) (lines); clearly the prediction is
fulfilled.

It is well known (see, for example, Refs. [4,17]) that the
effective temperature is independent of the initial and final
temperature if the initial temperature is high (the system is
in a warm liquid state) and if the quenching temperature is
low enough (i.e., in the regime where X = T/T.; with
constant T,s). Consequently, Eq. (2) predicts the effective
temperatures for all possible jumps ending at density p.
The exponent y and the constant may both be calculated
from the results of one single aging simulation. In Fig. 4 we
compare T.4 identified from several crunches and
quenches (not only involving isomorphic initial and final
state points) with the prediction of Eq. (2). The agreement
is very good.

The above discussed simple aging properties are only
expected to apply for liquids with isomorphs, i.e., strongly
correlating liquids. To validate this we simulated the non-
equilibrium dynamics of the monatomic Lennard-Jones
Gaussian (MLJG) model [18]. The pair potential of the
MLIJG has an additional Gaussian attractive well compared
to the LJ liquid (see the inset of Fig. 5); details about the
model’s potential and its glassy behavior can be found in
Ref. [18]. The MLJG liquid has WU fluctuations which
correlate less than 2% at the state points studied here. As is
clear from Fig. 5, two jumps to the same final density
lead to quite different effective temperatures. Thus, this
system provides a counterexample to the observation by
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FIG. 4 (color online). Effective temperature as a function of
density in several crunch and/or quenches (in double log scale)
for the KABLJ liquid. The effective temperature is computed
from the violation factor: T/Tey = X = —Tox(t,¢)/0C(z, 1')|,.
The scaling exponent y is computed from potential energy-virial
relaxation (see Fig. 3) as described in the text. The full line is the
prediction of the density scaling equation (2) for 7.
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FIG. 5 (color online). FD plot for two jumps of the MLJG
liquid ending at same final density and temperature. The poten-
tial defining this model is shown in the inset. In this case the two
effective temperatures are very different.

Di Leonardo et al. [5] that the effective temperature de-
pends only on the final density.

We also investigated the relation between the inherent
state energies in aging and at equilibrium for the KABLJ
and the MLJG liquids (see Ref. [10] for more details). Only
for the strongly correlating liquid KABLJ can one interpret
T.¢ as an indicator of which part of the energy landscape is
visited during aging, confirming a suggestion by Sciortino
and Tartaglia in [19].

In conclusion, the existence of isomorphs for strongly
correlating liquids explains the previously reported result
[5] for the LJ liquid that the effective temperature depends
only on the final density of any jump (when temperature
and density are the externally controlled variables). We
presented simulations of the aging dynamics of another
strongly correlating liquid, the KABLJ liquid, as well as
simulations of aging of a liquid without strong virial or
potential energy correlations (the MLIJG liquid). For
strongly correlating liquids it is always possible to produce
equivalent density or temperature transformations con-
nected by the density-scaling relation. Moreover, for this
class of liquids the effective temperature satisfies the
density-scaling equation (2). Since the exponent y and
the constant of Eq. (2) may both be identified from a single
quench simulation, the implication is that for a strongly

correlating liquid the effective temperature of an arbitrary
glass may be calculated from the results of a single jump
simulation.
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