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In this paper it is shown that the physical or conductivity correlation factor can be simply and directly expressed in 
terms of the well-known tracer correlation factor and a new two particle correlation factor. A Monte Carlo calculation of 
these correlation factors was performed to illustrate the use of the expression. The physics of the two-particle correlation 
factor are discussed. 

l . ln t roducf ion  

In the preceding paper [ 1 ], hereafter referred to 
as I, it was shown that there exists a formal link be- 
tween the geometrical correlation factor , f ,  and the 
physical or conductivity correlation factor f i .  The 
idea developed in I was to study the tracer ionic mo- 
bility as a function o f  the tracer concentration at a 
fLxed total ion concentration with the restriction 
that the host ions carried no charge. The correlation 
factor contained in this tracer ionic mobility reduces 
to f a t  low tracer concentration andf i  at high tracer 
concentration. This was illustrated by Monte Carlo 
simulations of  diffusion by the vacancy mechanism 
on a square planar lattice. In this case the link be- 
tween f a n d  3~ turned out to be a linear function of  
the tracer concentration. In the present paper this 
will be proved analytically to be generally the case. 
The proof  relies on a reduction o f  the phenomenolo- 
glcal coefficients to two correlation factors which re. 
fer directly to motion at the atomic level: the usual 
single-particle correlation factor f ,  and a new two- 
particle correlation factor g. 

By showing that ]~ can be decomposed into f and 
g we remove the mystery which has surrounded fI 
ever since its introduction in 1971 by Sate and 

Kikuchi [2]. The question of  the correlation factor 
status o f f i  is finally settled, in addition, a good deal 
o f  insight into the physics o f f i  is obtained. 

2. Reduction of the phenomenological coefficients 
to two atomic level correlation factors 

For simplicity we assume diffusion to take place 
on a three dimensional simple.cubic lattice by means 
o f  the vacancy mechanism but the discussion below 
can be generalized to any other lattice and diffusion 
mechanism. The lattice has a volume V and a lattice 
constant a. The jump frequencies may vary, the lattice 
may have traps, complicated ion - ion  interactions may 
be present, etc. The only assumption to be made is that 
the lattice is macroscopically isotropic and homoge- 
neous. The numbers o f  tracer ions, unmarked ions and 
vacancies are denoted by NA.  , N  A and NV, respec- 
tively. The total number o f  ions is given by N a and N 

=NA* + N  A + N  V *. The corresponding concentrations 
( = N A . / V  etc.) are denoted by nA. ,  nA, n v ,  and n a 

* Note that N is here defined as the total number of entities 
whereas in I it was defined as the total number of entities 
per unit volume. 
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while the relative concentrations (= NA,/Nete) are given 
by CA, etc. Of course we have that 

CA* + C A + C v = 1 . (1) 

The central idea is to study the phenomenological 
coefficients as a function Of NA* at fixed N a . A con- 
venient starting point for the calculation of the phe- 
nomenological coefficients is the Einsteinian formula 
given by AUnatt [3,4] 

Li/ = lim lim ( 6 V k T t ) - l ( A R ( i ) ( t )  ~ ) ( t ) ) ,  (2) 
V-~ ** t-* ** 

where k is the Boltzmann constant, T is the tempera- 
ture, ~ (i)(t) is the total displacement of species i 
in time t, and the Dirac brackets denote a thermal 
average. The average is calculated assuming a t'mite 
volume V and periodic boundary conditions. Finally 
the limit of infinite diffusion time and volume is taken 
subject to the condition of constant ion concentra- 
tion. 

Here we are interested in the case of only two spe- 
cies: tracer (A*) and non-tracer (A) ions. To calculate 
LAA we write the total displacement of non-tracer 
ions as the sum of the individual ion displacements. 

~ ( A ) ( t )  = ~ Z~(mA)(t). (3) 
m 

Substituting eq. (3) into eq. (2) one finds 

LAA = lim lira (6VkTt) -1 
V~** t~*  

X [ ~  (~(A)2( t ) )+  ~ (~-r(mA'(t)~(A)(/))] 
m mq~n (4 )  

Now, if F denotes the average ion jump frequency, 
the usual geometrical correlation factor f is given by 

f =  Fun lim (~r2( t ) ) / r ta  2 . (5) 
V--*'~ t"*** 

This expression is independent of the ion position at 
time t = 0 since the ion traces out the whole volume V 
as t goes to infinity. Therefore the first term in square 
brackets in eq. (4) is simply equal to N A Fta2f .  By a 
similar argument limt_.** (~mm (t)~nn (0)/ t  for m =/= n 
is independent of the position of m and n at t = 0. 
This does not work, however, for one dimension. 

Next, we define a two particle correlation factor g 
by 

g= lira lira N ( ~ ( t ) ~ n n ( t ) ) / r t a  2 , ( m • n ) ,  
v~** t-*** (6) 

where N = N a + N V i .e.N =V]a 3 . It follows directly 
from eq. (4) that the limit is defined; the factor N 
compensates for the fact that interactions between 
ion m and n take place more and more seldomly when 
the volume is increased. Upon substituting eqs. (5) 
and (6) into eq. (4) we find 

LAA = lira ( F a 2 / 6 V k T ) [ N A f +  (N2/N)g]  (7a) 
V"* a* 

= (Fa2/6kT)hA(f+ cAg) ,  (7b) 

where a factor o f N  A (N A - 1) has been replaced by 

Recognizing that the correlation factors land  g are, o 
course, the same for tracer and non-tracer ions, we 
find in a similar way from eq. (2) that 

LA,A, = (Fa2/6kT)  hA, Or+ cA, g ) (8) 

and 

LA, A = (LAA,) = (Fa2/6kT)nAcA,g ~ 

= (I'a2/6kT) n A, cAg .  (9) 

It is now straightforward to find the tracer concen- 
tration dependence of the phenomenological coeffi- 
cients for fixed c a . In particular we recall the tracer 
conductivity correlation factor introduced in I (eqs. 
(6) and (11)) 

sO, = 6 k T L A ,  A , / p a 2 n A ,  (10) 

noting that k 2 = a213. It was found in I that this s fac- 
tor connects f and [I. Substituting eq. (8) of this paper 
we have that 

sO, = f +  CA*g. (11) 

Thus sO, quite generally provides a link between f 
and fI [1] and is a linear function of cA,. 

In a similar manner, the physical or conductivity 
coxrelation factor fI itself is given by (eqs. (4) and 
(10) o f I) i.e. 

fI  = (6kT/nA* a2 r )  (LA*A *, + LA*A) • (12) 

Noting eqs. (8) and.,(9) of this paper we have that 

fI = f +  cA*g + c g g  (13a) 
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and finally that 

fI = f + Cag • (13b) 

The correlation factor status and the underlying phys- 
ics o f ~  halve been a matter of some discussion ever 
since it was introduced into the literature by Sato and 
Kikuchi [2]. From eq. (13b) we see t h a t f  I is simply a 
sum of two correlation factors which refer directly to 
the atomic level. There are no mysterious "collective 
or cooperative" effects hidden in 1]. In our opinion 
the question of the correlation factor status o f f i  is 
hereby finally settled. 

Of course g could have been defined such that the 
c a factor could have been omitted in eq. (13b). How- 
ever we want g to be a direct measure of  the correla- 
tion of  the motion of  two ions. If there had been a 
factor N A instead of N in eq. (6) (thus eliminating 
c a in eq. (13b)), thong could change in two ways 
when more atoms are added to the system: either 
because N A changed, or because (Z~r" m ( t )~r  n (O)/t, 
changed. This would be unfortunate because then 
situations could arise, at least in principle, where g 
changed but that the real correlation of two atoms 
remained the same. 

Another quantity of  interest is the Haven ratio 
H R . This quantity is given by [5] 

CALA*A* -- CA*LA* A 
H R = CA(LA, A +LA,  A, ) (14) 

From eqs. (8) and (9) one finds that 

HR =f / i f+  Cag) = f i l l ,  (15) 

which is valid at any tracer concentration. 
We note of course that 

H R = 1 *,g = 0 ~*LA, A = 0.  (16) 

Usually, when H R is found to be =#1, it is thought 
that this is direct evidence of a non-trivial correlation 
factor f .  We can now see that H R =/= 1 is in reality a 
unique sign of non-trivial two-particle correlation of. 
fects! Indeed, in principle one could, at the same 
time, have that f - -  1. 

Let us now briefly discuss the physics ofg.  Con- 
sider, for example, diffusion by the vacancy mecha- 
nism for a small vacancy concentration in a J~nple 
cubic lattice. In this case fi  = 1, so thatg = 1 - f >  0. 
The physics involved is straightforward. Suppose ion 
m has just exchanged sites with a vacancy. I f  the next 

vacancy jump is perpendicular to the first, there will 
be no contribution to either f or g. If the vacancy 
jumps back again (with m) this contributes to make 
fsmaller than unity for ion m as is well-known. Final- 
ly there is the possibility that the vacancy jumps in 
the same direction as the first jump by exchanging 
sites with a new ion n. This will give a positive con- 
tribution to g for ions m and n. This contribution to 
g is the most important one, so it is not surprising 
that the total g ends up being positive. 

A negative value forg corresponds to H R being 
greater than unity. This has been observed, for in- 
stance, in Monte Carlo simulations of a high density 
lattice gas with nearest neighbor exclusion [6]. In 
this case one may speculate that the negative sign of  
g is due to a backflow effect similar to that discussed 
by Feynman and Cohen [7] for liquid helium. This 
effect results from the hydrodynamic equation of 
continuity, so it may be that g < 0 corresponds to 
liquid-like situations. This alleged liquid-like situation 
is actually what was previously called solid-like. 

3. Monte Carlo simulation of fl  and g 

In this section we make use of some of the equa- 
tions derived in previous section in order to illustrate 
how f ( eq .  (5) ) , f  I (eq. (13b)) andg (eq. (6)) can be 
calculated in a Monte Carlo calculation. We focus on 
two models. First we examine the square planar lat- 
tice of 50176 (224 X 224) sites with a single vacancy. 
In the usual way [8] the walk of the vacancy was 
directed through the use of  machine-generated ran- 
dom numbers. An average of  10 jumps per atom was 
specified. The run was repeated 400 times to obtain 
adequate statistics for g (and fI). Results are shown in 
table 1. As expected fI is very close to un i ty , f  is 
close to the exact value of  1/(~r - 1) [9] anag is 
given by 1 - f .  

Next, we examined a model where f  l ~ 1. We 
chose a model where much Monte Carlo data had al- 
ready been collected for 1] using the external field 
method [8,!0 ] . In addition, much data onfwas  
also available. The model chosen was the simple cu- 
hie lattice of 27000 (30 X 30 X 30) sites with ran- 
dom (single-site) traps where the number of vacancies 
equals the total number of traps. We selected a con- 
centration where half of  the lattice contains traps 
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Table 1 
Comparison of calculated values of correlation factors. 

Method f g fl 

Square planar lattice 0.4671 0.5325 
present study 

Square planar lattice 0.46694... 0.53305... 
exact results 

Simple cubic lattice with traps 0.6579 0.3572 
present study 

Simple cubic lattice with traps 0.655 - 
ref. [10] 

0.9996 

1.0 

0.8365 

0.852 

and a temperature such that e x p ( - w [ k T )  = 0.1 where 
w is the trapping energy. An average of  10 jumps per 
atom was specified. Again we averaged over 400 ob- 
servations in order to obtain good statistics. The re- 
suits are shown in table 1 along with previous deter- 
minations o f f  and fI  (the latter obtained using the 
external field method). The agreement is quite reason- 
able. The only difficulty with this method is the very 
much greater demand put on computer time than that 
required by the external field method [8.]. Allnatt 
and AUnatt [4] found a similar behaviour when they 
calculated the binary equivalent o f f I  in the case o f  the 
f.c.c, random alloy. 

4. Conclusions 

It is weU-known that all observable diffusion phe- 
nomena pertaining to the linear response regime can 
be calculated from the phenomenologlcal coefficients. 
From the treatment in this paper we see that these co- 
efficients depend essentially on the two correlation 
fac tors , f  and g which together contain the basic phys- 

ics o f  the diffusion process. While the tracer correla- 
t.ion factor is as old as the subject itself, the discovery 
o f g  is surprisingly recent: it is implicitly in the paper 
by Allnatt [3]. We might surmise that g may well be 
as important as f i n  future works in solid state diffu- 
sion theory. 
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