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R6sum6 - La physique du mgcanisme de conductivitg par sauts dans 
les solides d6sordonn6s est discut6e 2 la lumisre d'un modsle 
propose r6cemment. 

Abstract - The physics of ac hopping conduc2ivity in disordered 
solids is discussed in the light of a recently proposed model. 
Several new comments are made. 

One of the most interesting facts about conductivity in disordered 
solids is the surprising similarity between ionic and electronic con- 
ductivity. The same kinds of non-linearities in strong electric fields 
are observed, and ionic and electronic conductivity have similar tem- 
perature and frequency dependence /1,2/. In a recent paper by the 
author it was suggested that the latter similarities are observed be- 
cause ionic and electronic hopping conductivity have the same jump 
frequency distribution p(y) . In the ionic case, the jump frequency 
Y is given by yaexp(-BAE) where 6 is the inverse temperature and 
AE is the energy barrier. In the case of tunneling electrons, Y is 
essentially given by y aexp(-ar) where a is the decay parameter for 
the wavefunctions and r is the jump distance. If AE resp. r are 
randomly varying, one finds in both cases that p(y) varies as l/u . 
From a phenomenological point of view, ionic and electronic conducti- 
vity in disordered solids are thus claimed both to be characterized by 
randomly varying free energy barriers. 

In order to check this hypothesis, the frequency-dependent conduc- 
tivity o ( w )  must be calculated. In the CTRW approximation one finds 
/3-6/ 

Here q and n are charge resp. density of the charge carriers, a2 
is the mean square jump distance in the x-direction, d is the dimen- 
sionality, k is the Boltzmann constant, T is the temperature, y ,  
and Y, are the smallest and largest jump frequencies, and = Y,/Y, 
By letting y o  go to infinity the following expression is obtained 
where T = l/y, /3/ 
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This formula reproduces the qualitative features of ac hopping conduc- 
tivity. In particular one finds an approximate power law of the con- 
ductivity at high frequencies, Re u(w) = wS , where s e 1 - 2/ln(wr) 
/3/ - 

In the research field of ionic conductivity in glasses, the idea of 
randomly varying ion jump activation energies has been around since 
the fifties. At that time Stevels and Taylor suggested this as a rea- 
sonable hypothesis /7,8/  but they never actually calculated a(*). 
The idea was not generally accepted however, because it was thought to 
be inconsistent with the frequent observation of temperature-indepen- 
dent dielectric loss peaks /9,10/. But this argument is not correct. 
Equation (2) does indeed imply temperature-independent dielectric loss 
peaks. At the same time the activation energy for ac conductivity is 
smaller than that for dc conductivity (compare the discussion of the 
temperature-dependence of o(w) in ref. /3/). Thus there is no para- 
dox, the point is that the relevant variable to consider is the con- 
ductivity and not the dielectric loss, at least when activation ener- 
gies are discussed. 

It has been known experimentally for several years that there is 
a connection between the dc conductivity and the dielectric loss peak 
frequency W O  /11,12/. Namikawa finds that most amorphous solids sa- 
tisfy the following relation /12/ 

where p is a numerical constant of order one, E~ is the vacuum per- 
mittivity, and A E  is the dielectric loss. The above model fits nice- 
ly into eq. (3). From eq. (2) one finds that is given by 

When W O  is determined numerically, eq. (3) is found to be satisfied 
with p = 0,42. 

- log(u(OH2.crn)-7 
Fig. 1: This figure is a reinterpretation of an old figure (fig. 3 in -- 
ref. /13/) which shows a correlation for a number of chalcogenide 
glasses (at T = 300 K) between the dc conductivity and the ac conduc- 
tivity at 10' Hz. The solid line shows the prediction of eq. (2) if 
it is assumed that the glasses have the same dielectric loss A E  
(=  0,6). 



In a famous paper, Davis and Mott plotted the dc conductivity as a 
function of Reo (w = lo6 Hz) - o(0) at 300 K in a log-log plot for a 
number of chalcogenide glasses (fig. 3 in ref. /13/). Their fiqure re- 
veils a correlation between the dc and the ac conductivity of these 
glasses. It will now be shown that this correlation can be interpre- 
ted within the above model. Suppose that the glasses have the same A E .  
Then it follows from eq. ( 4 )  that 

where K is independent of the glass * ) .  If the ratio bekween the ac 
and the dc conductivity is plotted against l/o(O) in a log-log plot, 
the points are thus expected to lie on the curve which gives the real 
part of the conduckivity (relative to o(C)) as a function of WT. This 
is approximztely the case as is clear from fig. 1. The constant X in 
eq. (5) is a fitting parameter; the value used in fig. 1 corresponds 
to A E  = 0,6 - not an unreasonable value. 

In the derivation of eqs. (1) and ( 2 )  the CTRW approximation was 
used. This approximation is known to be poor in some cases /15/. It 
nay therefore be a good idea to try to apply a more reliable approxi- 
mztion, for instance the EMA /5/. If the jump frequency distribution 
is given by p(r) - L/Y, one finds that o(w) in this approximation in 
the limit y o + -  is determined by /16/ (for d 2 3 ) 

I 

Here T is a characteristic time of the same order of magnitude as 
T . Equation (6) is easily solved numerically by means of the Newton- 

Raphson method. When the solution is plotted in a log-log plot it turns 
out to be almost indistinguishable from eq. ( Z ) ,  except for a resca- 
ling of w. Phenomenologically, the CT2W approximation is thus satis- 
factory in our use where p(y) =1/ y and y o  + 

As the temperature goes to zero,the frequency-dependence of the 
conductivity becomes particularly simple in the model. In order to 
show this it is important to return to eq. (1) and keep Y ,  fixed 
throughout the calculation (Y, = 1012 Hz). Assuming zero activation 
entropy we have 

When eq. (7) is suhstitutec into eq. (1) one finds that the tempera- 
ture-dependence cancels as T + 0. The following results are obtained 
(for w < <  yo) 

nq a lim Im o(w) = w ln[;l , 
T+ 0 

In particular we find that 

Experimentally it is often found that the conductiviky is almost pro- 
portional to the frequency at low temperatures with an only weakly 
temperature-dependent constant of pro ortionality. For instance, Long 
and coworkers find that Re o (w ) a wot8 T~~~ for amorphous germanium at 

* )  A similar scaling law has recently been Ciscussed by Steve Summer- 
field /14/. 



C8-346 JOURNAL DE PHYSIQUE 

low temperatures /17/. After al1,eqs. (8) and (9) can only be valid at 
v m  low temperatures. This is easy to see if it is remembered that 
the exponent s of the ac conductivity is given by s * 1 - 2/ln(w~) 
/ 3 / .  Substituting eq. (7) into this we find that (at w fixed) 

at low temperatures. 
Finally it will be shown that eq..(2) fits nicely into the frame- 

work proposed by Macedo et al. for the description of ionic conducti- 
vity in glasses /18/. Consider an infinite network as shown in fig. 2. 

Fig. 2: Electrical equivalent-circuit used in the alternative deriva- 
tion of eq. (2). The circuit was proposed by Macedo et al. to describe 
dielectric loss in ionically conducting oxide glasses /la/. 

Each capacitance is equal to C, while the resistances R vary accor- 
ding to a probability distribution p(R). The electricalnproperties of 
the network are determined by the average impedance per RC-unit, Z(W), 
which is given by 

0 
Suppose each RC-unit somehow corresponds to an activated process in 
the solid. If the free energies of activation vary randomly, the cha- 
racteristic time t = RC is djstributed according to p(t) = l/t. Equa- 
tion (12) then becomes 

0 0 

where K is a constant and T is the maximum value of t, the 
existence of which follows if a finite average dc conductivity is re- 
quired. Because p ( t )  .: l/t is not normalizable, the constant K is 
unknown and must be determined selfconsistently. When this is done 
after the integration has been carried out, eq. (13) reduces to eq. 
( 2 ) .  

It must be emphasized that the physical interpretation of the elec- 
trical circuit is different from that of the above discussed "random 
walk" model. The circuit corresponds to macroscopic inhomogeneities 
in the solid, and in this case it is the overall potential difference 
which can be controlled experimentally. In the case of the random walk 
mode1,the fluctuation-dissipation theorem is used to derive 
from microscopic fluctuations. The implicit assumption is here that 
the local electric field is the experimentally controllable parameter. 
Thus, the electrical circuit of fig. 2 is not conceptually equivalent 
to the random walk model, although both gives rise to the same fre- 
quency-dependence of the conductivity. 
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